① 任務礦石中銀含量的測定
——原子吸收光譜法
任務描述
銀的測定方法很多,視銀的含量和實驗室的工作條件可以選用不同的方法。發射光譜法在測定痕量銀的同時,還可以測定硼、鉬、鉛等組分;低含量的銀也可以用光度測定;原子吸收光譜法在銀的測定中,獲得了廣泛的應用,方法簡便,靈敏度高。微克級的銀可用火焰原子吸收光譜法測定,石墨爐原子吸收光譜法可測定納克級的銀。含量較高的銀可以採用容量法進行測定。通過本次任務的學習,掌握原子吸收光譜法測定的方法原理、實驗條件、操作方法,能夠正確填寫數據記錄表格。
任務實施
一、儀器及試劑
(1)原子吸收分光光度計、銀空心陰極燈。
(2)銀標准貯存溶液:稱取0.5000g銀(99.99%)於100mL燒杯中,加入20mL硝酸(1+1),微熱溶解完全,煮沸驅除氮的氧化物。取下冷至室溫,移入1000mL容量瓶中,加入20mL硝酸(1+1),用不含氯離子水定容。此溶液含銀0.5mg/mL。
(3)銀標准溶液:移取10mL 銀標准貯存溶液於100mL 容量瓶中,加入4mL 硝酸(1+1),用不含氯離子水定容。此溶液含銀50μg/mL。
(4)鹽酸(AR)。
(5)硝酸(AR)。
(6)高氯酸(AR)。
二、分析步驟
稱取0.2500~1.0000 g試樣於250mL燒杯中,加少許水潤濕搖散(隨同試樣做空白試驗),加25mL鹽酸,加熱溶解,低溫蒸至溶液體積10mL。加入5~10mL硝酸,繼續加熱溶解至體積為10mL左右,加5mL高氯酸,加熱冒煙至濕鹽狀,取下冷卻,用水吹洗表面皿及杯壁,加入鹽酸(加入量使最後測定溶液酸度保持在10%),煮沸使可溶性鹽類溶解,冷卻至室溫,移入容量瓶中(容量瓶大小視含量而定),以水定容,靜置或干過濾。濾液於原子吸收分光光度計燈電流3mA,波長328.1nm,光譜通帶0.4nm,燃燒器高度5mm,空氣流量5L/min,乙炔流量1.0L/min,用空氣-乙炔火焰,以水調零,測量溶液的吸光度。將所測吸光度減去試樣空白吸光度,從工作曲線上查出相應的銀的質量濃度。隨同試樣做空白試驗。
工作曲線的繪制:移取0、1.00、2.00、3.00、4.00、5.00mL 銀標准溶液於一組100mL容量瓶中,加20mL鹽酸(1+1 ),用水定容。與試樣相同的測定條件下,測量標准溶液吸光度。以吸光度(減去零濃度溶液吸光度)為縱坐標,以銀的質量濃度為橫坐標,繪制工作曲線。
三、結果計算
樣品中銀的含量按下式計算:
岩石礦物分析
式中:w(Ag)為銀的質量分數,μg/g;ρ為從工作曲線上查得試樣溶液中銀的濃度,μg/mL;ρ0為從工作曲線上查得試樣空白中銀的濃度,μg/mL;m為稱取試樣的質量,g;V為試樣溶液的體積,mL。
四、質量表格填寫
測定完成後,填寫附錄一質量記錄表格3、4、7。
任務分析
一、原子吸收光譜法測定銀的原理
試樣經鹽酸、硝酸、氫氟酸、高氯酸分解,趕盡氟和破壞有機物後,在酸性介質中用空氣-乙炔火焰,於原子吸收光譜議上,在波長328.1 nm處測量銀的吸光度。方法測定范圍為1~500μg/g。
二、銀的測定方法概述
1.滴定法
銀的滴定法是使用較為廣泛的方法之一。基於銀與某種試劑在一定條件下生成難溶化合物的沉澱反應,其中碘量法和硫氰酸鹽滴定法用得最為普遍。其他還有配位滴定法、亞鐵滴定法、電位滴定法、催化滴定法等。這里重點介紹硫氰酸鹽滴定法。
在弱的硝酸介質中,硫氰酸鉀或硫氰酸銨與銀離子反應,形成微溶的硫氰酸銀沉澱,反應式如下:
Ag++SCN-→AgSCN↓
用硝酸鐵或鐵銨釩作為指示劑,終點時過量的硫氰酸鉀同 Fe3+形成紅色配合物[Fe(SCN)6]3-。由於Ag+與SCN-結合能力遠比Fe3+強,所以只有當Ag+與SCN-反應完後,Fe3+才能與SCN-作用,使溶液呈現淺紅色。
Ni2+、Co2+、Pb2+(大於300mg),Cu2+(大於10mg)、Hg2+(大於10μg)、Au3+以及氯化物、硫化物干擾硫氰酸鹽滴定銀。此外氧化氮和亞硝酸根離子可氧化硫氰酸根離子,也干擾測定,所以必須預先除去。Pd與SCN-離子生成棕黃色膠狀沉澱,也消耗SCN-。以硫氰酸鹽作為銀滴定劑專屬性較差,因此在滴定前一般先將銀與其他干擾元素分離。常用的分離方法有火試金法、氯化銀沉澱法、巰基棉分離法、硫化銀沉澱法、泡沫塑料分離法等。
2.可見分光光度法
自從原子吸收光譜法用於銀的測定以來,光度法測定銀的研究工作和實際應用顯著地減少。然而某些銀的光度法具有靈敏度高、設備簡單等優點。因此在某種場合下,分光光度法仍不失為銀的一種方便的測定手段。
分光光度法測定銀的顯色劑種類很多,主要有:
(1)鹼性染料:三苯甲烷類、羅丹明B類;
(2)偶氮染料:吡啶偶氮類、若丹寧偶氮類;
(3)含硫染料:雙硫腙、硫代米蚩酮、金試劑;
(4)卟啉類染料;
(5)其他有機染料。
下面重點介紹含硫類染料光度法。
用於光度法測定銀的含硫染料有:雙硫腙、硫代米蚩酮(TMK )、金試劑等。其中TMK最為常用。TMK是測定銀的靈敏度較高的試劑,通常採用膠束增溶光度法進行測定,現已用於岩石、礦物、廢水等物料中微量銀的測定。在pH值為2.8~3.2 的乙酸-乙酸鈉緩沖溶液中,TMK與銀形成一種不溶於水的紅色配合物,可溶於與水混溶的乙醇溶液中,最大吸收波長為525nm,銀量在2.0~25μg/25mL范圍內符合比爾定律。具體分析步驟如下:
稱取0.5000~1.000g礦樣於瓷坩堝中,放入700℃馬弗爐中灼燒1.5h,取出冷卻,將試樣移入100mL燒杯中,加5mL鹽酸-磷酸混合酸(4+1),5mL氯化鈉(100g/L),加熱溶解,冷卻,加40~50mL氨水(1+3 )使溶液pH為8~9,過濾於100mL容量瓶中,用水定容,搖勻。吸取10mL清液於50mL燒杯中,加入5mL乙酸(10%),4mL乙酸-乙酸鈉(pH4 )緩沖溶液,1mL 檸檬酸銨(400g/L )、1mL EDTA(100g/L )溶液(用15% 氨水配製),1.5mL 0.1g/L硫代米蚩酮的乙醇溶液,搖勻,加入1mL十二烷基苯基磺酸鈉溶液(30g/L),移入25mL容量瓶中,用水定容,搖勻。用1cm比色皿,以試劑空白作參比,於波長525 nm處測量吸光度。
3.原子吸收光譜法
在原子吸收光譜法測定貴金屬元素中以銀的靈敏度為最高,也是目前測定銀的主要手段,廣泛應用於岩石、礦物、礦渣、廢水、化探樣品等物料中銀的測定。銀在火焰中全部離解,自由銀原子的濃度僅受噴霧效率的影響。火焰法測定水溶液中銀的靈敏度以1% 吸收計,一般為0.05~0.1μg/mL。無論是用空氣-丙烷或是空氣-乙炔火焰,溶液中共存的各種離子對銀的火焰法測定幾乎都不產生干擾。此類方法有兩種常用的測定介質:氨性介質和酸性介質,酸性介質一般含較高濃度的鹽酸,方法最簡單,試液中大量鉛的影響採用加入乙酸銨、氯化銨或在EDTA及硫代硫酸鈉共存下消除。
銀的原子吸收分為火焰法和無火焰法兩種,方法的對比見表7-4。
為了發揮原子吸收光譜法的優勢,廣大分析工作者做了大量工作,如採用預富集濃縮、石英縫管技術、原子捕集技術等,進一步提高了方法的靈敏度,滿足不同含量銀的測定要求,使之成為測定銀的行之有效的方法。
原子吸收光譜法按其測定方式,分為直接測定法和預富集分離法。預富集分離又分為溶劑萃取、萃取色譜、離子交換等。
表7-4 火焰法與無火焰法測定銀對比
原子吸收光譜法採用空氣-乙炔火焰,以銀空心陰極燈為輻射光源。用328.1 nm為吸收線,溶液中共存的各種離子均不幹擾測定,但如果稱樣量較大,稀釋體積較小時,其背景值較大,此時須用氘燈扣除背景吸收。也可用非吸收線332.3 nm進行背景校正。
本法適用於礦石中20~1000 g/t銀的測定。
4.原子發射光譜法——平面光柵攝譜儀
銀是屬於易揮發元素。在炭電弧游離元素的揮發順序中它是位於前半部,在鐵、錳之間,鉛的後面。用電弧光源蒸發鉛的試金熔珠時,銀要在大部分鉛蒸發之後才進入弧焰。在銀和金同時存在的礦石中,銀總是比金和其他鉑族元素蒸發得更快。銀的電弧光譜線並不多,靈敏線僅有328.068 nm和338.289 nm兩條。其中328.068 nm更靈敏些,測定靈敏度通常可達 1×10-6。其餘的次靈敏線,如 224.641 nm、241.318 nm、243.779 nm、520.907 nm、546.549 nm等,測定靈敏度僅為0.03%~0.1%。銀缺乏中等靈敏度的譜線。採用上述兩條靈敏線測定地質樣品中的銀是很方便的。它們的光譜干擾很少,對於Ag 328.068 nm需注意Mn 328.076 nm和Zr 328.075 nm的干擾。當礦樣中的Cu、Zn含量高時,Cu 327.396 nm、Cu 327.982 nm以及Zn 328.233 nm的擴散背景,也將對這根銀線產生極不利的影響。
5.原子發射光譜法——等離子體法
(1)ICP-AES法。ICP-AES具有良好的檢出限和分析精密度,基體干擾小,線性動態范圍寬,分析工作者可以用基準物質配製成一系列的標准,以及試樣處理簡便等優點,因此,它已廣泛應用於地質、冶金、機械製造、環境保護、生物醫學、食品等領域。ICP-AES測銀常用的譜線是328.07 nm。
用ICP-AES測銀,主要解決基體干擾問題,對於含量較高的試樣,經稀釋後可不經分離富集而直接測定,對於含微量銀的試樣,必須經過分離富集,常用手段仍然是火試金、活性炭吸附富集分離、泡沫塑料富集分離等,如果分離方法合適,尚可實現貴金屬多元素的同時測定。
(2)ICP-MS法。ICP-MS具有許多獨特的優點,與ICP-AES相比,ICP-MS的主要優點是:①檢出限低;②譜線簡單,譜線干擾少;③可進行同位素及同位素比值的測定。用ICP-MS測定銀,基體干擾仍是主要問題,除了經典的火試金法外,也可根據試樣性質的不同採用相應的分離手段。
實驗指南與安全提示
高氯酸煙不能蒸得太干,否則結果會偏低。
如果試樣含硅很高或被灼燒過,加入氫氟酸分解試樣。
原子吸收光譜法測定銀,按其測定方式,可分為直接原子吸收光譜法和預富集分離-原子吸收光譜法:
——直接原子吸收光譜法:對於銀量在10 g/t以上的礦樣都可採用直接原子吸收光譜法,一般都在酸性和氨性介質中測定。採用的酸性介質有HCl介質、HCl-HNO3介質、HNO3介質、HClO4介質。HCl介質為10%~20%,由於酸度大,對霧化器腐蝕嚴重,有人採用HCl-NH4Cl、HCl-硫脲、HNO3-硫脲介質。採用HCl-硫脲介質,能避免大量鈣、鐵的吸收干擾。若在HClO4-硫脲介質中進行測定,可測定高銅、高鉛中的銀。在上述介質中引入酒石酸銨、碳酸銨、檸檬酸銨、酒石酸等掩蔽劑,可消除錳、鈣、鉛等元素的干擾。在HClO4-硫脲、HCl-硫脲、HNO3-硫脲介質中測定銀是目前原子吸收光譜法測定銀的較好方法。
氨性介質火焰原子吸收光譜法:氨性介質火焰原子吸收光譜法測定銀,是將試樣用王水冷浸過夜,用氨水處理後離心制備成氨水-氯化銨介質溶液,將清液噴入空氣-乙炔火焰,進行原子吸收光譜法測定。該法已用於化探樣品中銀的測定。對於含硫、碳的化探樣品,不能與金在同一稱樣中測定,也不能藉助灼燒來除去。試樣在700℃高溫下灼燒1h,銀的損失非常嚴重。該法採用酸浸法直接分解試樣,如含有大量有機物易產生一些泡沫,並使溶液呈黃色,但不影響測定。採用氨水-氯化銨為測定介質,使大量金屬離子沉澱分離,也使背景值降到最低程度。這樣可以提高測量精度,但卻降低了方法的檢出限。方法的選擇性好,經氨水分離後,溶液中的共存離子一般不幹擾測定,大量鈣產生Ca 328.6 nm背景,在解析度較高的原子吸收光譜儀上基本沒有波及Ag 328.1 nm測定線,但高濃度鈣離子會使火焰中原子密度增大,改變銀的吸收系數,會產生微小的負誤差。在含有足夠氯化銨條件下,氫氧化鐵對銀的吸附甚微,故亦不幹擾測定。
——預富集分離-原子吸收光譜法:預富集分離主要有溶劑萃取、萃取色譜、離子交換溶劑萃取法是富集分離銀的有效手段。在原子吸收光譜法測定中,採用溶劑萃取銀是目前測定微量銀應用最廣泛的富集分離方法。該法的優點是:①操作簡單快速,不需要特殊的儀器設備;②大大降低檢出限,提高靈敏度;③選擇性較好,能夠排除大量基體的干擾;④直接霧化,使萃取富集分離和原子吸收光譜法測定為一體,聯合進行測定。萃取色譜法是原子吸收測定銀常用的富集分離方法之一。採用該法富集分離銀不但操作簡單快速,富集能力強,回收率高,而且易於解脫。與溶劑萃取法相比具有試劑用量少、成本低、不污染環境等優點。採用的萃取劑有:雙硫腙、磷酸三丁酯、三正辛胺、P350等。採用的載體有:聚四氟乙烯、泡沫塑料等。離子交換樹脂法應用於原子吸收測定銀的預富集報道較少。
拓展提高
銀精礦分析方法
銀精礦為有色金屬工業生產過程中的中間產品,確定銀的品位及相關元素的含量對銀精礦供需雙方的交易和生產工藝流程的確定起著重要的作用。主要測定元素除主成分銀外,還有金、銅、砷、鉍、鉛、鋅、硫、鋁和鎂。目前,銀和金含量的測定,主要採用最經典的火試金重量法,一般都進行二次試金回收;銅含量的測定,高含量的採用碘量法,低含量的採用原子吸收光譜法;鉛和鋅的測定,高含量的採用EDTA滴定法,低含量的則採用原子吸收光譜法;砷含量的測定,採用溴酸鉀滴定法,低含量的採用原子熒光光譜法;硫含量的測定,採用硫酸鋇重量法和燃燒中和法;鉍含量的測定,主要是原子熒光光譜法;鋁的測定,有光度法和EDTA滴定法;鎂的測定,一般採用原子吸收光譜法。隨著科學技術的進步和發展,先進的分析測試手段和方法已應用到銀精礦的分析測定中,如ICP-AES、ICP-MS和XRF等方法。
火試金法測定金和銀:試樣經配料,高溫熔融,融態的金屬鉛捕集試料中的金銀形成鉛扣,試樣中的其他物質與熔劑生成易熔性熔渣。將鉛扣灰吹,得金銀合粒,用乙酸煮沸處理合粒表面黏附的雜質,合粒經硝酸分金後,用重量法測定金和銀的含量。
本方法適用於銀精礦中0.5~40 g/t金和3000~15000 g/t銀的測定。
1.試劑
(1)碳酸鈉。
(2)氧化鉛:金含量小於2×10-8,銀含量小於2×10-7。
(3)氯化鈉。
(4)二氧化硅:粒度180~150μm。
(4)以上試劑均為工業純、粉狀。
(5)鉛箔:鉛含量大於99.9%,不含金銀。
(6)硼砂:粉狀。
(7)澱粉:粉狀。
(8)硝酸鉀:粉狀。
(9)硝酸,優級純:不含氯離子,硝酸(1+7)(1+2)。
(10)冰乙酸(1+3)。
2.儀器、設備
(1)分析天平:感量0.1mg和0.01mg;微量天平:感量0.01mg、0.001mg。
(2)試金電爐:最高加熱溫度在1350℃。
(3)試金坩堝:材質為耐火黏土。高130mm,頂部外徑90mm,底部外徑50mm,容積約為300mL。
(4)鎂砂灰皿:頂部內徑約35mm,底部外徑約40mm,高30mm,深約17mm。
製法:水泥(標號425 )、鎂砂(180μm )與水按質量比(15∶85∶10 )攪拌均勻,在灰皿機上壓製成型,陰干3個月後備用。
(5)骨灰灰皿:1份質量的骨灰粉與3份質量的水泥(標號425)混勻,加入適量水攪拌,在灰皿機上壓製成型,陰干3個月後使用。
3.分析步驟
(1)稱樣量:5.00~10.00g。
(2)配料:根據試樣的化學組成及試樣量,按下列方法於黏土坩堝中進行配料並攪勻,覆蓋約5 mm厚氯化鈉。①碳酸鈉:40 g;②氧化鉛:150 g;③二氧化硅:按等於1.0硅酸度的渣型計算加入量;④硝酸鉀、澱粉:根據試樣中硫及碳量,按鉛扣40 g計算加入量(硝酸鉀的氧化力為4.0;澱粉的還原力為12 )。
(3)熔融:將配好料的黏土坩堝置於900℃的試金電爐中,升溫40min至1100℃,保溫15min出爐,將熔融物倒入已預熱過的鑄鐵模中,保留坩堝。冷卻後,鉛扣與熔渣分離,把熔渣去掉覆蓋劑後收回原坩堝中,用於補正。將鉛扣捶成立方體。適宜的鉛扣應表面光亮、重35~45 g。否則應重新配料。
(4)灰吹:將鉛扣置於已在900℃預熱30min的灰皿中,關閉爐門1~2min,待鉛液表面黑色膜脫去,稍開爐門,使爐溫盡快降至840℃進行灰吹,當合粒出現閃光後,灰吹結束。將灰皿移至爐門口,稍冷後,移入灰皿盤中。
(5)分金:用醫用止血鉗夾住合粒,置入30mL瓷坩堝中,保留灰皿,用於補正。加入30mL乙酸(1+3),置於低溫電熱板上,保持近沸,並蒸至約10mL,取下冷卻,傾出液體,用熱水洗滌3 次,放在電爐上烤乾,取下冷卻,稱重,即為合粒質量。用錘子捶扁合粒,將捶扁的合粒放回30mL瓷坩堝中,加入15mL硝酸(1+7 )放在低溫電熱板上,保持近沸,並蒸至約5mL,取下冷卻,傾出硝酸銀溶液,再加入10mL硝酸(1+1),置於電熱板上並蒸至約5mL,取下冷卻,用熱水洗滌坩堝3次。將盛有金粒的瓷坩堝置於高溫電爐上烘烤5min,取下冷卻後稱量,此為金的質量。將合粒質量減去金粒質量即為銀的質量。
(6)補正:將熔渣和灰皿置於粉碎機中粉碎後加入40g 碳酸鈉、20g 二氧化硅、15 g硼砂、4 g澱粉攪勻,覆蓋約5mg氯化鈉。以下按上述操作進行。
4.結果計算
按下式計算金、銀的含量,以質量分數表示:
岩石礦物分析
岩石礦物分析
式中:w(Au)和w(Ag)分別為金和銀的質量分數,g/t;m1為第一次試金金銀合粒的質量,mg;m2為補正金銀合粒的質量,mg;m3為試金空白金銀合粒的質量,mg;m4為第一次試金獲得金的質量,mg;m5為補正合粒中金的質量,mg;m6為空白中金的質量,mg;m0為試樣的質量,g。
閱讀材料
金銀的分析方法發展過程
中國古代金的分析技術可以追溯到石器時代,最古老的黃金分析方法是淘金法,淘金法伴隨著黃金被發現和開採的歷史,它出現在夏代的新石器時代晚期,距今有4000年以上。當時只能根據揀出的金的個數來判斷含金砂石的價值及其產地價值,所以最初的淘金法是一種數量分析法。夏代開始人們認識了黃金的密度較大,以砂石中淘洗出金的多少來判斷砂石價值。春秋戰國時期淘金法有了新的發展,天平的使用使人們可以定量分析判斷砂石及其產地的價值。隨著「先碎」、「後淘」工藝的出現,在宋朝淘金法得以進一步的發展,使淘採的對象從砂石擴展到礦石,加上使用天平得以定量分析礦石含金量。
金、銀的火法試金在國內外已有悠久的歷史,該法是以冶金學的原理和技術運用到分析化學領域。12世紀英國已將灰吹法作為公認的檢定方法,1343年法國提出了分金技術。16世紀中期,歐洲已有不少論述試金法的著作,其中載記的方法,已近於現在所用的方法。我國在15~16世紀明代的著作中已經詳細地記載了與試金分析有關的金屬鉛定量捕集銀的方法、鉛銀合金的灰吹法分離、金與銀定量分離等技術。在《天工開物》中記載:「欲去銀存金,則將其金打成薄片,剪碎,每塊以土泥裹塗,入坩堝中鵬砂(即硼砂)焙化,其銀即吸入土內,讓金流出,以成足色。然後,入鉛少許,另入坩堝內,勾出土中銀,亦毫釐具在也。」這段記載說明了當時已經掌握了金與銀的分離方法,以及明確地提出金屬鉛捕集銀是定量的。
金銀的火試金法雖然操作較繁雜,但它是特效方法,迄今仍廣泛應用。火試金法從鉛試金開始,逐漸發展了錫試金法、銻試金法、鉍試金法、鋶試金法等。早期用多種含硫、氮的有機物和無機物沉澱的重量法也不少,但多數因選擇性不好受到限制,只有少數方法,如還原沉澱金的重量法仍在應用,並列為國內外標准分析方法。經典的火試金法隨著科學技術的發展而發展,近年來使用了放射性同位素來檢查貴金屬在試金過程中的行為,可以直觀地和精確地了解貴金屬的分布,從而設法減少貴金屬在試金過程中的損失。試金法與各種先進的測試手段相結合,並加之電子微量天平的應用,使火試金法得以進一步的發展。該方法具有取樣代表性好,方法適用性廣,富集效果好等優點。
在中國古代人們還通過利用黃金、白銀一些物理性質來對黃金、白銀進行鑒別、鑒定、檢驗。如利用表面顏色、硬度、氧化法、溶解法、試金石法、密度法等來鑒別金、銀。
硬度法是人們利用黃金硬度小的特徵,對其進行粗略辨識的方法,在《本草拾遺》中就有「咬時極軟,即是真金」的記載,因此在民間就流傳著用牙咬、指甲劃,辨別真金的方法。
表面A色鑒別法就是利用A色鑒別金的成色高低,是一種簡單實用的方法。在曹昭著的《新增格古要論》中對不同成色的金有如下記載「其色七青、八黃、九紫、十赤,以赤為足色金也」,是一種半定量的黃金鑒定方法。
試金石法和密度法是較為准確的方法,一直延續至今。
《前漢書·食貨志》中有「黃金方寸,二中一斤」的說法。《天工開物》中有「凡金之至重,每銅方寸重一兩者,銀照依其則寸增重三錢,銀方寸重一兩者,金照依其則寸重二錢」的記載,由於測試方法和測試儀器的改進,密度法測定金的成色目前仍然使用。
試金石法是一種鑒定金、銀真偽和成分的方法。該法實質上與比色分析法中的目視比色法極為相似。通常採用一種稱作試金石的石頭,在待測物料上磨道,再把對牌以同樣的方式在試金石上磨道,通過對比色澤的比較就可以初步確定待測物料的成色。
金銀的濕法分析,近年來有很大的發展,出現了一些成熟的、快速的分析方法,利用金銀變價性質建立的氧化還原滴定法是測定高含量金銀的有效方法。其中金的氧化還原反應滴定法根據反應情況分為兩大類:一是以三價金還原為一價金的反應,這類方法的典型代表是氫醌滴定法;另一類是三價金還原為零價金的反應,其代表是碘量法。而銀的滴定法最常見是基於銀與某種試劑在一定的條件下生成難溶的化合物的沉澱反應,主要有氯化鈉法、硫氰酸鹽滴定法和碘量法。光度法是研究應用較多的一種方法。吸光光度法與有機溶劑萃取結合,可用於復雜物料的分析,如硫代米蚩酮吸光光度法測定金、雙硫腙吸光光度法測定銀。此外還有熒光光度法、化學光度法都可以達到很低的檢出限。溶出伏安法、離子選擇性電極電位法在金、銀分析中也有新的發展。原子發射光譜法(AES)用於純金、純銀已日趨成熟,原子吸收光譜法用於金銀的測定是非常成功的,等離子體的應用,為金銀分析開拓了廣闊的前景。此外,X射線熒光光譜法、動力學法、中子活化分析也有應用。
② 重金屬的檢測有哪些方法
一、原子吸收光譜法(AAS)
原子吸收光譜法是20世紀50年代創立的一種新型儀器分析方法,它與主要用於無機元素定性分析的原子發射光譜法相輔相成,已成為對無機化合物進行元素定量分析的主要手段。
它具有分析迅速、樣品前處理簡單、可分析元素范圍廣、譜線簡單,光譜干擾少,試樣形態多樣性及測定時的非破壞性等特點。它不僅用於常量元素的定性和定量分析,而且也可進行微量元素的測定,其檢出限多數可達10-6。
以上內容參考 網路—重金屬檢測
③ 重金屬檢測方法
重金屬分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子熒光法(AFS)、電感耦合等離子體法(ICP)、X熒光光譜(XRF)、電感耦合等離子質譜法(ICP-MS)對國內用戶而言,儀器成本高。陽極溶出法,檢測速度快,數值准確,可用於現場等環境應急檢測。X熒光光譜(XRF)分析,優點是無損檢測,可直接分析成品。
1原子吸收光譜法(AAS)
原子吸收光譜法是20世紀50年代創立的一種新型儀器分析方法,它與主要用於無機元素定性分析的原子發射光譜法相輔相成,已成為對無機化合物進行元素定量分析的主要手段。這種方法根據被測元素的基態原子對其原子共振輻射的吸收強度來測定試樣中被測元素的含量。AAS法檢出限低,靈敏度高,精度好,分析速度快,應用范圍廣(可測元素達70多個),儀器較簡單,操作方便等。火焰原子吸收法的檢出限可達到10的負9次方級(10ug/L),石墨爐原子吸收法的檢出限可達到10ug/L,甚至更低。原子吸收光譜法的不足之處是多元素同時測定尚有困難。
原子吸收分析過程如下:1、將樣品製成溶液(空白);2、制備一系列已知濃度的分析元素的校正溶液(標樣);3、依次測出空白及標樣的相應值;4、依據上述相應值繪出校正曲線;5、測出未知樣品的相應值;6、依據校正曲線及未知樣品的相應值得出樣品的濃度值。
現在由於計算機技術、化學計量學的發展和多種新型元器件的出現,使原子吸收光譜儀的精密度、准確度和自動化程度大大提高。用微處理機控制的原子吸收光譜儀,簡化了操作程序,節約了分析時間。現在已研製出氣相色譜一原子吸收光譜(GC-AAS)的聯用儀器,進一步拓展了原子吸收光譜法的應用領域。
2原子熒光法(AFS)
原子熒光光譜法是通過待測元素的原子蒸氣在特定頻率輻射能激發下所產生的熒光發射強度來測定待測元素含量的一種分析方法。原子熒光光譜法雖是一種發射光譜法,但它和原子吸收光譜法密切相關,兼有原子發射和原子吸收兩種分析方法的優點,又克服了兩種方法的不足。原子熒光光譜具有發射譜線簡單,靈敏度高於原子吸收光譜法,線性范圍較寬干擾少的特點,能夠進行多元素同時測定。原子熒光光譜法的檢出限比原子吸收法要低,譜線清洗干擾少,靈敏度較高,線性范圍大,但是測定的金屬種類有限。
原子熒光光譜儀可用於分析汞、砷、銻、鉍、硒、碲、鉛、錫、鍺、鎘鋅等11種元素。現已廣泛用環境監測、醫葯、地質、農業、飲用水等領域。
現已研製出可對多元素同時測定的原子熒光光譜儀,它以多個高強度空心陰極燈為光源,以具有很高溫度的電感耦合等離子體(ICP)作為原子化器,可使多種元素同時實現原子化。多元素分析系統以ICP原子化器為中心,在周圍安裝多個檢測單元,與空心陰極燈一一成直角應,產生的熒光用光電倍增管檢測。光電轉換後的電信號經放大後,由計算機處理就獲得各元素分析結果。
3紫外-可見分光光度法(UV)
其檢測原理是:重金屬與顯色劑一通常為有機化合物,可與重金屬發生絡合反應,生成有色分子團,溶液顏色深淺與濃度成正比。在特定波長下,比色檢測。
分光光度分析有兩種,一種是利用物質本身對紫外及可見光的吸收進行測定;另一種是生成有色化合物,即顯色」,然後測定。雖然不少無機離子在紫外和可見光區有吸收,但因一般強度較弱,所以直接用於定量分析的較少。加入顯色劑使待測物質轉化為在紫外和可見光區有吸收的化合物來進行光度測定,這是目前應用廣泛的測試手段。顯色劑分為無機顯色劑和有機顯色劑,而以有機顯色劑使用較多。大多數有機顯色劑本身為有色化合物,與金屬離子反應生成的化合物一般是穩定的螯合物。顯色反應的選擇性和靈敏度都較高。有些有色螯合物易溶於有機溶劑,可進行萃取浸提後比色檢測。近年來形成多元配合物的顯色體系受到關注。多元配合物的指三個或三個以上組分形成的配合物。利用多元配合物的形成可提高分光光度測定的靈敏度,改善分析特性。顯色劑在前處理萃取和檢測比色方面的選擇和使用是近年來分光光度法的重要研究課題。
4 X射線熒光光譜法(XRF)
X射線熒光光譜法是利用樣品對x射線的吸收隨樣品中的成分及其多少變化而變化來定性或定量測定樣品中成分的一種方法。它具有分析迅速、樣品前處理簡單、可分析元素范圍廣、譜線簡單,光譜干擾少,試樣形態多樣性及測定時的非破壞性等特點。它不僅用於常量元素的定性和定量分析,而且也可進行微量元素的測定,其檢出限多數可達10-6。與分離、富集等手段相結合,可達10-8。測量的元素范圍包括周期表中從F-U的所有元素。多道分析儀,在幾分鍾之內可同時測定20多種元素的含量。x射線熒光法不僅可以分析塊狀樣品,還可對多層鍍膜的各層鍍膜分別進行成分和膜厚的分析。
當試樣受到x射線,高能粒子束,紫外光等照射時,由於高能粒子或光子與試樣原子碰撞,將原子內層電子逐出形成空穴,使原子處於激發態,這種激發態離子壽命很短,當外層電子向內層空穴躍遷時,多餘的能量即以x射線的形式放出,並在外層產生新的空穴和產生新的x射線發射,這樣便產生一系列的特徵x射線。
特徵x射線是各種元素固有的,它與元素的原子系數有關。所以只要測出了特徵x射線的波長λ,就可以求出產生該波長的元素。即可做定性分析。在樣品組成均勻,表面光滑平整,元素間無相互激發的條件下,當用x射線(一次x射線)做激發原照射試樣,使試樣中元素產生特徵x射線(熒光x射線)時,若元素和實驗條件一樣,熒光x射線強度與分析元素含量之間存在線性關系。根據譜線的強度可以進行定量分析。
④ 誰知道怎麼用最簡單的方法檢測水中是否重金屬超標
觀察茶具或茶杯上的顏色,超標會出現青綠色。
含重金屬的水來擦洗瓷器或衣物上時,會出現褐色的痕跡。
燒開水,然後喝一下,在喝的過程中仔細感覺一下水中是否有異味。是否有一種澀澀的味道。如果有就說明水質的硬度偏高。
用杯子在自來水龍頭下面接水,聞一下水裡是否有一股漂白粉的味道,如果有的話,你家的自來水中可能含有餘氯。
用比較透明的容器,沒有印花的玻璃杯,一次性的塑料杯即可。接滿一杯子水,放置幾個小時然後在光線好的地方仔細觀察,觀察一下水中是否有懸浮物。如果有的話建議處理。
⑤ 重金屬的測定方法有哪些
食品中重信侍金屬元素限量的檢測方法有光度法、比濁法、斑點比較法、色譜法、光譜法、電化學分析法、中子活化分析等。有關國家標准均詳細規定了食品中重金屬元素的含量測定方法。以下列出的是食品中的鉛、鎘、汞和砷的國家標准檢測方法。
(1)食品中鉛的常用檢測方法有:石墨爐原子吸收光譜法,其檢出限為5微克/千克;火焰原子吸收光譜法,檢出限為0.1毫克/千克;單掃描極譜法,檢出限為0.085毫克/千克;二硫腙光度法,檢出限為0.25毫克/千克;氫化物原子熒光光譜法,檢出限為5微克/千克。
(2)食品中鎘的常用檢測方法有:石墨爐原子吸收光譜法,其檢出限為0.1微克/千克;火焰原子吸收光譜法,檢出限為5微克/千克;光度法,檢出限為50微克/千克;州橋原子熒光法,檢出限為1.2微克/千克。
(3)食品中總汞的常用檢測方法有:原子熒光光譜分析法,檢出限為0.15微克/千克;冷原子吸收滑跡吵光譜法,檢出限為0.4微克/千克(壓力消解法)或10微克/千克(其它消解法);二硫腙光度法,檢出限為25微克/千克。甲基汞的分析常常先用酸提取巰基棉吸附分離,然後用氣相色譜法或冷原子吸收光譜法進行測定。
(4)食品中總砷的常用檢測方法有:氫化物原子熒光光譜法,檢出限為0.01毫克/千克;銀鹽法,檢出限為0.2毫克/千克;砷斑法,檢出限為0.25毫克/千克;硼氫化物還原光度法,檢出限為0.05毫克/千克。
⑥ 怎樣快速檢測水中的重金屬含量
快速檢測方法很多方法一,使用攜帶型儀器檢測方法二,使用試紙法快速檢測水中重金屬方法三,檢測重金屬污染程度的可能性.在CA培養基內分別加入不同濃度的鋅、銅、鉛等重金屬,再將水黴菌菌株移至此些培養基上培養.由實驗結果得知,培養基內含500 ppm硫酸鋅、40 ppm硫酸銅與500ppm硝酸鉛時,皆會使水霉無法生長;而含有450 ppm硫酸鋅、30 ppm硫酸銅與450ppm硝酸鉛時,水霉雖生長不佳,但仍可生長、繁殖. 由於水黴菌在適當濕度、溫度並提供適量光照的環境下生長十分快速,約1~2日,所以可以十分快速檢驗水中重金屬的含量,加上菌株容易取得、培養材料十分便宜,因此,利用水霉或檢測水中水霉含量即可作為檢測重金屬污染程度一項十分經濟、快速、簡便且准確的參考指標之一.至於有關水黴菌對各種重金屬的靈敏度與如何推廣應用水霉來檢測水中,甚至土壤中重金屬污染程度則有待進一步試驗和改善.
⑦ 食品中重金屬的檢測方法有哪些
食品中重金屬的檢測方法如下:⑧ 任務礦石中鈀含量的測定
——活性炭吸附DDO光度法
任務描述
鈀是鉑族元素之一。在地殼中含量極微,屬「超痕量元素」,比「稀有元素」還少,比某些「分散元素」分散。鉑族元素的分析,是現今人們公認的一個難題。勘查地球樣品中的鉑族元素的含量低,基體復雜,樣品均勻性差,干擾因素多;且鉑族元素本身具有相似的電子層結構和化學性質,很多分析試劑能同時與多種鉑族元素發生相似的反應並產生干擾,很難找到一些特效的分析試劑。加之,它們又多伴在一起,因此分離和測定十分困難。本次任務用DDO光度法測定礦石中的鈀含量,通過本次任務,掌握兩個知識點:一是鈀的富集與分離,二是鈀的顯色測定。
任務實施
一、試劑配製
(1)石油醚-三氯甲烷混合溶液(3 +1):石油醚的沸程在60~90℃或90~120℃為佳。
(2)DDO溶液(2g/L):稱取0.2g DDO溶於100mL丙酮中。
(3)氯化鈉溶液(200g/L):稱取20g氯化鈉,溶於100mL水中。
(4)乙酸丁酯。
(5 )鈀標准溶液:稱取0.1000 g光譜純鈀片於500mL燒杯中,加20mL王水,於砂浴上加熱溶解,然後以少量鹽酸吹洗杯壁,加入5滴氯化鈉溶液(200g/L),並移到水浴上蒸干,加2mL鹽酸(1 +1),蒸發到干,反復處理三次,取下用鹽酸溶液(8mol/L)溶解,移入1L容量瓶中,並用鹽酸溶液(8mol/L)定容,此貯備液含鈀100μg/mL。吸取10mL貯備液於 500mL 容量瓶中,以並用鹽酸溶液(8mol/L )定容,此貯備液含鈀2μg/mL。
二、分析步驟
稱取10~30g試樣於瓷舟中,在550~650℃的高溫爐中焙燒1~2h,中間攪拌2~3次,冷後移入250mL燒杯中,加入50mL王水(1+1 ),搖勻,蓋上表面皿,在電熱板上加熱分解15~20min,取下表面皿,低溫蒸至黏稠狀,加HCl重復蒸發兩次(每次5mL),加水60mL稀釋,過濾。用水洗凈燒杯及沉澱,在濾液中加0.3 g活性炭(可滴加少量金標准溶液)攪拌均勻,放置過夜。用定性濾紙過濾並擦凈燒杯,再用水洗沉澱約15 次。將活性炭連濾紙轉移至瓷坩堝中,放入馬弗爐低溫升至650℃灰化完全。
在含鈀灰分的瓷坩堝中加王水5mL,水浴加熱溶解,加3 滴氯化鈉溶液(200g/L),繼續水浴蒸干,加鹽酸2~3次趕硝酸。殘渣用15mL鹽酸溶液(8mol/L)溶解後,並將此溶液移入25mL比色管中(至20mL)。
加乙酸丁酯4mL萃取1min,分層後棄去有機相。在水相中加入1mL DDO溶液(2g/L),搖勻,放入60~70℃的水浴中保溫10min,然後冷卻(或在25℃的室溫中放置1h),加入5mL石油醚-三氯甲烷混合溶劑,振搖1min,分層後,吸取有機相,用1cm吸收池,在波長450 nm處以試劑空白作參比,測定其吸光度。
鈀工作曲線的繪制:分別吸取含鈀0、2.00、4.00、8.00、12.00、20.00μg的鈀標准溶液於25mL比色管中,用鹽酸溶液(8mol/L)稀釋至20mL,以下操作同試樣分析步驟。
三、結果計算
鈀的含量按下式計算:
岩石礦物分析
式中:w(Pd)為鈀的質量分數,μg/g;m1為從工作曲線上查得試樣溶液中鈀的質量,μg;m0為從工作曲線上查得試樣空白中鈀的質量,μg;m為稱取試樣的質量,g。
四、質量記錄表格
測定完成後,填寫附錄一中質量記錄表格3、4、8。
任務分析
一、方法原理
試樣先經灼燒使某些不溶於王水的鈀礦物轉變為能在王水中溶解的單體金屬,然後用王水分解,以HCl驅除大部分HNO3後,加水稀釋,濾去殘渣。濾液用水稀釋使溶液中含酸量每100mL不超過5mL,分數次加入活性炭以使鈀吸附完全。濾出活性炭灰化後,溶於王水。先用乙酸丁酯萃取Au及Fe等雜質。然後在水相中使Pd與DDO反應。Pd(Ⅱ)與雙十二烷基二硫代乙二醯胺(DDO)生成黃色配合物,用石油醚-三氯甲烷混合液萃取測定鈀。
二、干擾情況
在本法的顯色條件下,80μg Au(Ⅲ)、40μg Rh(Ⅱ)、20μg Ir(Ⅳ)、20mg Ag(Ⅰ)、100μg Se(Ⅳ)、40μg Te(Ⅳ)、20mg Fe(Ⅲ)、20mg Cu(Ⅱ)、50mg Ni(Ⅱ)、50mg Pb(Ⅱ)對鈀的測定不幹擾。硝酸根的存在對鈀測定有嚴重干擾,導致結果偏低。高氯酸根的存在對測定無影響。
所取試樣中鈀含量小於5μg時,採用目視比色本法可測低至0.01 g/t的試樣。
三、配製貴金屬標准溶液的注意事項
在貴金屬分析化學中,通常使用貴金屬的氯化物或氯離子配合物與各種試劑發生反應,因為貴金屬氯化物和氯配合物的制備方法容易、穩定性好,而且具有確定的價態和形態。其他鹽類,如硝酸鹽、硫酸鹽、過氯酸鹽等不夠穩定,有的組成復雜,或與試劑反應難於進行。因此貴金屬的標准溶液(除銀一般是以AgNO3形式配製外)大都是以氯配合物的形式制備。
採用純度在99.95% 以上的金屬片或粉末以王水或(鹽酸+氧化劑)溶解時,溶解之後應除去氧化劑,如用鹽酸除硝酸和氮的氧化物時,應在沸水浴上小心蒸發,並加入氯化鈉或氯化鉀作保護劑;以鹽酸溶液稀釋定容時,應控制鹽酸濃度,以便保證較高的氯離子濃度,避免價態的變化和發生水解,以保證標准溶液能夠長期儲存。
貴金屬標准存儲溶液應具有較高的金屬離子濃度,以便在儲存時不易發生濃度的變化。分析用標准工作溶液常常由存儲溶液稀釋制備,但在常溫下保存時間一般不得超過2個月。
貴金屬標准溶液的儲存是一個重要的問題。影響貴金屬標准溶液穩定性的主要因素有兩個方面:貴金屬配合物離子的穩定性和容器對貴金屬離子的吸附。配合物離子穩定性依賴於酸度和氯離子濃度。對於鋨、釕標准溶液的儲存,還應考慮揮發損失的問題,在鹽酸(1mol/L)介質中,釕溶液保存在石英玻璃或玻璃容器里可穩定4個月,4個月後會損失25%;鋨溶液只能穩定2個月,2個月後會損失50%。銀標准溶液應避光保存。容器對貴金屬離子的吸附與容器的種類和溶液酸度有關,溶液的酸度越高,器壁吸附越少。
實驗指南與安全提示
DDO和Pd的反應稍慢,且試劑又不溶於水和鹽酸中,故加入DDO試劑應沿著管壁緩緩加入,並激烈振盪兩次,讓試劑很好地分散於溶液中,並放置30min,或在60~70℃的水浴中保溫10min。DDO與Pd(Ⅱ)形成黃色配合物,其配位比為2∶1,配合物被有機溶劑萃取後,色強非常穩定,15 h內無變化。
DDO對Pd有很高的選擇性。除100μg以上的金影響測定外,Fe、Co、Ni、Pb、Ir、Cu、Ag對Pd的測定無干擾。Pt(Ⅳ)、Rh(Ⅲ)若無強還原劑存在也無干擾。
當Pt、Pd的含量較低時,可採用目視比色測定。Pt、Pd與DDO的有色配合物在有機相中24 h內穩定。
加入DDO溶液的量要求准確,因試劑本身有淺綠色。
Pt(Ⅳ)不與DDO反應,但加入SnCl2還原為Pt(Ⅱ)就立即生成紅色螯合物,可穩定24h以上。
DDO的制備:稱取15 g二硫代已二醯胺於錐形瓶中,加入100mL乙醇溶解,在另一燒杯中,稱取46 g月桂胺,加入50mL乙醇溶解,將上述溶液合並,混勻,蓋上帶玻璃管的橡皮塞(作空氣冷凝管),在水浴上加熱,保持微沸30~40min,待無氨味時取出,倒入燒杯中,用冰水冷卻,抽濾,用冰冷卻過的乙醇洗滌至無綠色,取出沉澱於另一燒杯中,用100mL丙酮溶解後,移到錐形瓶(帶空氣冷凝管)中,加入一小勺活性炭,在水浴上加熱5~10min,趁熱抽濾,用丙酮洗滌,將濾液置於蒸發皿上,使其自然乾燥。若顏色不正常時,可用丙酮重結晶一次。
由於鈀的化合物均易分解,所以在蒸干時要特別小心,否則結果嚴重偏低。
活性炭吸附鈀應在低酸度下進行,故溶礦過程中盡量蒸去多餘的酸。
顯色反應應在鹽酸(>6mol/L)介質中進行。
拓展提高
鎳鋶試金法測定礦石中的貴金屬
鎳鋶試金法(也稱硫化鎳試金法)是以硫化鎳、硫化鐵(和硫化銅)組成的鋶來捕集貴金屬,它適合於捕集金和所有鉑族元素。也可用於其他試金法熔煉有困難的高硫高鎳樣品。硫化鎳有足夠大的密度(5.3g/cm3),便於與熔渣分開,並容易粉碎。鎳鋶扣捕集貴金屬的能力很強,試金扣的量在12g以上能將50g樣品中的貴金屬捕集完全。鎳鋶試金法中熔渣的硅酸度在1.5~2.0之間為好。但是要注意渣的是酸度不要太大,否則熔渣很黏,不利於鋶扣與熔渣的分離。鋶扣一般採用鹽酸溶解,硫成硫化氫逸出,銅、鐵、鎳(包括銀)以氯配合物形式進入溶液,金和鉑族金屬留在殘渣內。濃鹽酸溶解鋶扣時,鋨的損失比較大,鉑、鈀也會有一定的損失。用稀鹽酸溶解或採用封閉溶解法可減少這些元素的損失。鎳鋶試金法測定金的重現性不太好,其中既有金的捕集效率問題,也有金在鹽酸溶解時的損失問題。採用碲共沉澱法可以改善金的回收率和重現性。鎳鋶試金法需要加入硫黃作為還原劑和硫化劑,硫黃的加入量要適當。加得少了,在用鹽酸溶解扣時,鋨、釕的損失會增加。過量了又給試金扣的溶解帶來困難。為了避免硫黃過剩,可以用硫化鐵代替一部分硫黃,而且這樣的試金扣在水中能自行粉化。
一、鋶鎳試金法的特點
1.鋶鎳試金法優點
(1)可以捕集所有的鉑族元素。
(2)不同類型的樣品,其熔劑的組成變化相對較小。
(3)對含硫和鎳的樣品不需要事先除去。
(4)熔劑與樣品的比例較小,所以可以處理較大量的樣品。
(5)硫化鎳扣可直接用於激光剝蝕法。
2.鋶鎳試金法的局限性
(1)空白較高。有時有些元素的空白值可達數百個pg/g水平。尤其是鎳試劑的空白較高,建議使用純度較高的羰基鎳粉。
(2)Os以OsO4的形式揮發。
(3)在硫化鎳扣用鹽酸溶解時,有的貴金屬元素比如釕和鈀會以氯化物或含氯的配合物形式揮發損失。
(4)個別元素會由於硫化鎳捕集效率低或碲共沉澱的不完全分離而導致回收較差(<90%)。
(5)鹽酸溶解硫化鎳扣時,會產生大量硫化氫氣體,需要有效的排煙氣設備。
採用減小硫化鎳試金扣的方法可以降低試劑空白。早先的硫化鎳試金法一般要加入10 g以上的鎳,現在一般大約為幾克(根據樣品中鉑族元素含量范圍和樣品基體性質而定)。
二、鎳鋶試金法配料
配料是鎳鋶試金分析中關鍵的一步。首先要了解所測樣品的種類,以確定熔料的配方。
根據試料中的物質組成,按照預期生成熔渣的硅酸度,通過反應式計算,可獲得配料中各種試劑的加入量。
1.一般地質樣品配料大體范圍
(1)岩石、沉積物、土壤類:如石英、輝石、橄欖石、方解石、沉積岩、土壤、水系沉積物、海洋沉積物等,配方一般為(20g樣):Na2B4O5(OH)420~25g,Na2CO310~14g,Ni 2~3g,SiO21~2g,麵粉0.5~1g。
(2)礦石類樣品等:如鉻鐵礦、超基性岩、黃鐵礦、黃銅礦、閃鋅礦、鎳礦等,配方一般為(20g樣):Na2B4O5(OH)4或Li2B4O725g,Na2CO315~20g,Ni 3.5~6g,SiO23~6g,麵粉2g。
許多鉻鐵礦中往往含有較多的鉑族元素,而鉻鐵礦是很難熔融的礦物,熔劑配方對鉻鐵礦的熔解很關鍵。可以加入偏磷酸鈉使鉻鐵礦完全熔融,其熔劑配方為:樣品10g,SiO29g,(NaPO3)x15g,Li2B4O730g,Ni 7.5g,S 4.5g。熔融溫度必須達到1200℃。
2.針對不同物料調整配方的要點
(1)硅酸鹽類樣品:硅酸鹽樣品中二氧化硅佔一半以上,還有少量鈣、鎂、鋁,需要加入較多的碳酸鈉,適量的硼砂。
(2)碳酸鹽類樣品:此類樣品的主要成分為碳酸鈣、碳酸鎂,在熔樣時分解逸出二氧化碳成為氧化鈣、氧化鎂,因此在熔樣時必須加入較多酸性熔劑二氧化硅和較多硼砂。
(3)氧化礦樣品:氧化礦樣品指含有較多赤鐵礦、磁鐵礦的樣品,具有一定的氧化力,能消耗掉部分還原劑,配料時需加以考慮。
(4)硫化礦樣品:含有較多的硫化物,還原力較強。需加入較多碳酸鈉,減少硫的加入量。
銅精礦、硫化銅鎳礦、輝銻礦、鎳礦、黃鐵礦等礦種常含有鉑族元素和金銀,熔礦相對困難,配料時需加大碳酸鈉和二氧化硅的量。
三、應用實例
鋶鎳試金-ICP-MS測定礦石中的貴金屬大多數鋶鎳試金-ICP-MS分析流程不包括鋨的測定,因為鋨被氧化成四氧化鋨,揮發損失。以前先將鋨蒸餾出,再用王水溶解殘渣測鋨。這種方法流程過長,不利於大批量樣品分析。改進的鎳鋶試金-碲共沉澱ICP-MS測定鉑族元素的方法,採用封閉溶解貴金屬硫化物濾渣與同位素稀釋法測鋨相結合,解決了包括鋨在內的全部鉑族元素和金的測定,避免了鋨的蒸餾分離和(或)單獨測定,簡化了分析流程。該方法要點如下:
1.樣品處理步驟
(1)取樣20g 於玻璃三角瓶中,加入混合熔劑,充分搖動混勻後,轉入黏土坩堝中。
(2)准確加入適量鋨稀釋劑,覆蓋少量熔劑,放入已升溫至1100℃的馬弗爐中熔融1.5 h。
(3)取出坩堝,將熔融體注入鐵模,冷卻後,取出鋶鎳扣,粉碎。轉入燒杯,加入60ml濃鹽酸,加熱溶解至溶液變清且不再冒泡為止。
(4)加入1mL碲共沉澱劑(含碲0.5mg),1mL二氯化錫(1mol/L)溶液,加熱0.5 h並放置數小時使碲凝聚。
(5)用0.45μm濾膜負壓抽濾,2mol/L鹽酸洗沉澱數次。
(6)將沉澱和濾膜一同轉入帶螺帽的Teflon封閉溶樣器,加入1mL王水,密封,於約100℃電熱板上溶解2~3 h。
(7)冷卻後轉入10mL比色管中,水定容待測。
2.鉑族元素的測定
樣品溶液直接用ICP-MS測定,釕、銠、鈀、銥、鉑用常規標准溶液標化測定。鋨採用同位素稀釋法測定。內標採用10 ng/mL的鎘、鉈標准溶液。雖然採用了密封溶渣的方法,但對鋨進行同位素稀釋測定仍是必不可少的。一方面是因為密封溶解不能確保沒有氣體泄漏;另一方面,即便是溶解過程沒有鋨的泄漏損失,由於不同氧化程度的鋨在ICP技術中靈敏度的巨大差異,採用標准溶液標化會造成分析結果的極大誤差。
閱讀材料
貴金屬首飾分析
在貴金屬首飾中,黃金首飾占據主導地位,銀飾品由於其白色和低廉的價格而成為普通百姓歡迎的主要原因。隨著人們生活的提高,鉑金首飾的消費也迅速增長。當今的黃金首飾市場已趨於國際化,生產和消費已超出地域限制的趨勢。通常,廣大消費者關心的是所購買的金或鉑金首飾是否符合標示的含金或含鉑量,同時希望有一種簡單易行的非破壞性鑒別方法;對於首飾生產廠家,應該以誠信為本,從生產的源頭即飾品材料的成分分析進行把關,使其質量達到國家規定的標准,避免不符合產品出廠;同時,在飾品進入市場之後,有關部門應加強監管,不定期進行抽樣化驗,禁止不合格產品或假貨在市場上銷售。只有這樣,才能維護首飾消費者的合法利益。
一、金首飾的成色
在首飾交易中,金的成色常用「開(K)」表示,[「開」(K)源於英文詞carat,稱「克拉」,原用於表示寶石的質量單位,1ct=0.200g];其純度以千分比表示。純金為24開,也即成色是1000‰。以此推算,1 K的含金量=41.66‰,18 開金就是含有750‰的金。由於41.66‰為無限循環小數,因此不同地域就出現不同的K金標准。國際標准化組織(ISO )推薦的22 K、18 K、14 K 和9 K 飾品金的成色分別含金916‰、750‰、585‰和375‰。我國黃金首飾分類標准如表,基本上與國際標准接軌。由於不同的購買目的,每個國家對黃金首飾成色的要求大不相同,表7-6列出了我國黃金首飾成色分類標准(GB11887-1990 )。
表7-7列出了黃金的成色等級及其適用地域范圍。
表7-5 我國黃金首飾成色分類標准
表7-6 黃金成色等級和適用范圍
二、金首飾的鑒定
從嚴格的意義上來說,首飾的鑒定和分析有著不同的含義。鑒定意味著是對飾品真假的區別或鑒別,它既要維持原有飾品的原貌,又能快速地對飾品做出比較正確的結論。而分析往往意味著是通過某種現代儀器手段或方法對首飾的組成和(或)含金量給出公正和正確的分析結果。
鑒定常常根據金的物理性質如顏色、密度和硬度等進行測估。在金首飾的鑒定中,試金石法和密度法的應用由來已久。前者現在稱為「條痕比色法」,即將金首飾在試金石(一種特殊的硅酸鹽石頭)上輕輕劃痕,然後再與「對牌」(即已知金成色的標准)在試金石上的劃痕顏色比較。據稱有經驗的鑒定者可以將金成色控制在1% 的誤差內。這種方法在以前銀行和舊首飾的收購中常常使用,因為具有立等可取的快速特點。密度法的應用據說是阿基米德在為國王金冠打造中是否被摻假一事的冥思苦想中,因進浴池洗澡受滿池水的溢出啟發而發現了「浮力定律」,並由此揭開了假金皇冠的秘密。自此之後,密度法的鑒定就有了科學依據。
採用密度法鑒定金飾品,首飾應該潔凈乾燥,設法避免在液體中稱量時附著在首飾上的氣泡,最好是按照國家標准《貴金屬及其合金密度的測試方法》(GB/T1423 -1996)進行。值得注意的是,該法不適用於空心首飾和鑲嵌首飾。當然,也不適用於金包鎢的假首飾,因為鎢和金的密度相近。
三、金首飾的分析及含金量的精密測定
(一)無損分析
利用某些現代儀器對貴金屬飾品的成色進行無損檢測被認為是比較理想的方法,因為它具有不破壞樣品、無污染、快速和准確的特點,同時又能提供樣品中多種雜質元素及其含量數據。例如,藉助黃金首飾標樣,X射線熒光光譜法(XRF )廣泛用於飾品的組成和元素含量的測定,並且已被制定成國家標准檢測方法。然而這一方法的測定結果仍受到飾品表面的光滑度、形狀、大小的影響以及因樣品照射位置、面積的差異導致主、次元素熒光強度不同程度的損失,於是有不少改進的測定方法報道,例如無標樣的XRFA方法、XRF-密度校正法等,從而在一定程度上提高了方法的檢測精度和擴大了方法的適用范圍。
(二)化學分析
多姿多彩的金飾品皆源於金基合金材料,材料成分的准確分析是金飾品質量控制的根本保證。因此,僅僅依靠無損分析法顯然是不現實的,因為單就制備用於分析這些合金的標樣就是一件十分復雜和消耗人力、資金的工作。如果把金飾品的分析納入貴金屬合金材料分析范疇的話,原則上貴金屬合金材料中的許多化學分析或儀器分析方法都能適用。這些分析方法既能夠准確地測定主金屬組分的含量,也能夠提供次成分乃至雜質元素的分析結果。如AAS、ICP-AES法等。
應該指出的是,廣大消費者最關心的是飾品中主成分金、鉑、鈀、銀等的含量,其他金屬成分對構成首飾的成本與其工藝所體現的價值相比都微不足道。正因為如此,貴金屬飾品的主成分分析關鍵在於測定方法的准確與否。對於金(或銀)的主成分分析,火試金重量法是具有高准確度的測定方法之一,也是傳統的金銀飾品分析檢測方法。與火試金重量法相比,容量法、電位滴定法和庫侖分析法的操作手續是簡單的,尤其是具有高准確度、精密度和不需要標准樣品的庫侖分析法,對於貴金屬飾品主含量的測定是特別適宜的。
四、鉑金首飾的成分
銀白色的首飾高貴典雅,然而用銀打造的首飾佩戴不久便會晦暗而喪失光澤。金屬鉑的亮白色雖然不及銀,但卻能夠長期經受腐蝕並保持其白色,因此鉑金首飾受到人們的青睞。目前,鉑首飾主要用純鉑和鉑合金製作,也有含鉑的白色K金,例如含有10% Pt、10% Pd、3% Cu和2% Zn的18 K金。所謂白色K金就是為了取代昂貴的鉑而在金基體中加入能夠使金漂白的元素,如 Ag、Al、Co、Cr、In、Fe、Mg、Mn、Ni、Pd、Pt、Si、Sn、Ti、V、Zn等,但白色K金大多數是Au-Pd-Ag系合金,其中可能還含有Cu、Ni、Fe、Mn等。含Ni的白色K金價格便宜,但Ni對人體皮膚具有潛在的毒性問題頗受爭議,為保護消費者的利益,某些歐洲國家今年來已制定了有關製造和銷售與皮膚接觸的含鎳首飾的法令,並制定了相關標准。白色K金依舊按金的成色區分,而對鉑首飾的成色還沒有硬性規定的標准。由於鉑的供給受到資源的限制,近年來價格逐漸攀升,幾乎接近金價的3 倍,這樣一來,鉑首飾的鑒別與分析更令人關注。
五、鉑金首飾分析
到目前為止,還缺乏一種簡單的、像鑒別黃金首飾那樣來鑒別鉑首飾的方法。一些分析工作者試圖採用像無損分析金飾品那樣,用X射線熒光光譜法來進行分析,但是鉑飾品成分比較復雜,難以獲得用作比較的標准樣品。曾有利用XRF金標樣的多元素回歸方程,對Pt、Pd的熒光強度進行修正後並當作Au、Ag的熒光強度,再以計算機編程計算鉑製品中Pt、Au、Pd、Ag、Cu、Ni等元素含量的X射線熒光光譜測定方法,但其准確度和適用性仍有待研究。
在溶液中利用氯化銨將Pt(Ⅳ)沉澱成(NH)2PtCl6的重量法現在已經很少用於分析工作中,因為(NH)2PtCl6沉澱不很完全,且Ir、Rh存在時共沉澱。然而對於鉑飾品這一特殊分析對象,經改進的(NH)2PtCl6-光譜(或原子吸收)法則能夠適用,而且還被制定為鉑首飾合金分析的標准方法。鉑首飾中鉑含量的測定,採用精密庫侖滴定分析法是較好的選擇。該法不需要鉑首飾標准樣品,測定方法的選擇性好,准確度和精密度都很高,而且測定手續簡便快速。
⑨ 任務貴金屬分析方法的選擇
任務描述
貴金屬元素由於其性質的特殊性,在樣品溶解、分離富集等方面與一般元素有很大的不同之處。通過本次任務的學習,加深對貴金屬元素性質的了解,能根據礦石的特性、分析項目的要求及干擾元素的分離等情況正確選擇分離和富集方法,學會基於被測試樣中貴金屬元素含量的高低不同以及對分析結果准確度的要求不同而選用適當的分析方法,能正確填寫樣品流轉單。
任務分析
一、貴金屬在地殼中的分布、賦存狀態及其礦石的分類
貴金屬元素是指金、銀和鉑族(銠、釕、鈀、鋨、銥、鉑)共8 種元素,在元素周期表中位於第五、六周期的第Ⅷ族和第IB副族中。由於鑭系收縮使得第二過渡元素(釕、銠、鈀、銀)與第三過渡元素(鋨、銥、鉑、金)的化學性質相差很小,因此貴金屬元素的化學性質十分相近。
鉑族元按其密度不同,分為輕重兩族。釕、銠、鈀為輕族;鋨、銥、鉑為重族。
金在自然界大都以自然金形式存在,也能和銀、銅和鉑族元素形成天然合金。根據最新研究成果,金的地殼豐度值僅為1 ng/g。金礦床中伴生的有用礦產很多。在脈金礦或其他原生金礦床中,常伴生有銀、銅、鉛、鋅、銻、鉍和釔等;在砂金礦床中,常伴生有金紅石、鈦鐵礦、白鎢礦、獨居石和剛玉等礦物。此外,在有色金屬礦床中,也常常伴生金。金的邊界品位一般為1 g/t。一般自然金里的金含量大於80%,還有少量的銅、鉍、銀、鉑、銻等元素。
銀在地殼中的平均含量為1×10-7,在自然界多以硫化物形式存在,單獨存在的輝銀礦(Ag2S)很少遇見,而且主要伴生在銅礦、鉛鋅礦、銅鉛鋅礦等多金屬硫化物礦床和金礦床中。在開采和提煉銅、鉛、鋅、鎳和金主要組分時,可順便回收銀。一般含銀品位達到5~10 g/t即有工業價值。
鉑族元素在自然界分布量很低,鉑在地殼中的平均豐度僅為5×10-9,鈀為5×10-8。它們和鐵、鈷、鎳在周期表上同屬第Ⅷ族,因此也與鐵、鈷、鎳一樣,具有親硫性。鉑族元素常與鐵元素共生,它們主要富集在與超基性岩和基性岩有關的銅鎳礦床、鉻鐵礦床和砂礦床內。銅鎳礦床中所含鉑族元素以鉑、鈀為主,其次是銠、釕、鋨、銥。鉻鐵礦中所含鉑族元素以鋨、釕、銥為主。鉑族元素之間,以及它們與鐵、鈷、鎳、銅、金、銀、汞、錫、鉛等元素之間能構成金屬互化物。在自然界存在自然鉑和自然鈀。自然鉑含鉑量為84%~98%,其餘為鐵,及少量鈀、銥、鎳、銅等。自然鈀含鈀量為86.2%~100%,同時含有少量鉑、銥、銠等。自然釕很少見,我國廣東省發現的自然釕中含有91.1%~100% 的釕。鉑族元素還可以與非金屬性較強的第Ⅵ主族元素氧、硫、硒、碲及第V主族元素砷、銻、鉍等組成不同類型的化合物。目前已知的鉑族元素礦物有120多種。在一些普通金屬礦物(如黃銅礦、磁黃鐵礦、鎳黃鐵礦、黃鐵礦、鉻鐵礦等)以及普通非金屬礦物(如橄欖石、蛇紋石、透輝石等)中也可能含有微量鉑族元素。
鉑族元素的共同特性是具有優良的抗腐蝕性、穩定的熱電性、高的抗電火花蝕耗性、高溫抗氧化性能以及良好催化作用,故在工業上應用很廣泛,特別是在國防、化工、石油精煉、電子工業上不可缺少的重要原料。
二、貴金屬的分析化學性質
(一)化學性質
1.金
金具有很高的化學穩定性,即使在高溫條件下也不與氧發生化學作用,這大概就是在自然界中能夠以自然金甚至是以微小金顆粒存在的重要原因。金與單一的鹽酸、硫酸、硝酸和強鹼均不發生化學反應。金能夠溶解在鹽酸和硝酸的混合酸中,其中在王水中的溶解速率是最快的。用於分析化學中的金標准溶液通常就是以王水溶解純金來制備,但需要用鹽酸反復蒸發除去多餘的硝酸或氮氧化合物。在有氧化劑存在的鹽酸中,如 H2O2、KMnO4、KClO3、KBrO3、KNO3和溴水等,金也能夠很好被溶解,這主要是由於鹽酸與氧化劑相互作用產生新生態的氯氣同金發生反應所致。
2.銀
銀有較高的化學穩定性,常溫下不與氧發生化學作用,在自然界同樣能夠以元素形態存在。當與其他元素發生化學反應時,通常形成正一價的銀化合物。在某些條件下也可生成正二價化合物,例如AgO和AgF2,但這些化合物不穩定。
金屬銀易溶於硝酸生成硝酸銀,也易溶於熱的濃硫酸生成硫酸銀,而不溶於冷的稀硫酸中。銀在鹽酸和王水中並不會很快溶解,原因在於初始反應生成的Ag-以AgCl沉澱沉積在金屬表面而形成一層灰黑色的保護膜,阻止了銀的進一步溶解。但是如果在濃鹽酸中加入少量的硝酸,銀的溶解是比較快的。這是因為形成的 AgCl 又生成可溶性的[AgCl2]-配離子。這一反應對含銀的貴金屬合金材料試樣的溶解是很有用的。銀與硫接觸時,會生成黑色硫化銀;與游離鹵作用生成相應的鹵化物。銀飾品在空氣中長久放置或佩戴後失去光澤常常與其表面上硫化物及其氯化物的形成有關。在有氧存在時,銀溶解於鹼金屬氰化物而生成[Ag(CN)2]-配離子。銀在氧化劑參與下,如有Fe3+時也能溶於酸性硫脲溶液而形成復鹽。
3.鉑族金屬
鉑族金屬在常溫條件下是十分穩定的,不被空氣腐蝕,也不易與單一酸、鹼和很多活潑的非金屬元素反應。但是在確定的條件下,它們可溶於酸,並同鹼、氧和氯氣相互作用。鉑族金屬的反應活性在很大程度上依賴於它們的分散性以及同其他元素,即合金化的元素形成中間金屬化合物的能力。
就溶解能力而言,鉑族金屬粉末較海綿狀的易於溶解,而塊狀金屬的溶解是非常緩慢的。與無機酸的反應,除鈀外,鉑族金屬既不溶於鹽酸也不溶於硝酸。鈀與硝酸反應生成Pd(NO3)2。海綿鋨粉與濃硝酸在加熱條件下反應生成易揮發的OsO4。鈀、海綿銠與濃硫酸反應,生成相應的PdSO4、Rh2(SO4)3。鋨與熱的濃硫酸反應生成OsO4或OsO2。鉑、銥、釕不與硫酸反應。王水是溶解鉑、鈀的最好溶劑。但王水不能溶解銠、銥、鋨和釕,只有當它們為高分散的粉末和加熱條件下可部分溶解。在有氧化劑存在的鹽酸溶液中(如H2O2、Cl2等)於封管的壓力條件下,所有的鉑族金屬都能被很好地溶解。
通常,鹼溶液對鉑族金屬沒有腐蝕作用,但當加入氧化劑時則有較強的相互作用。如OsO4就能夠在鹼溶液中用氯酸鹽氧化金屬鋨來獲得。在氧化劑存在條件下,粉末狀鉑族金屬與鹼高溫熔融,反應產物可溶於水(對於Os和Ru)、鹽酸、溴酸和鹽酸與硝酸的混合物中,由此可將難溶的鉑族金屬轉化為可溶性鹽類。高溫熔融時,常用的混合熔劑有:NaOH+NaNO3(或NaClO3)、K2CO3+KNO3、BaO2+BaNO3、NaOH+Na2O2和Na2O2等。利用在硝酸鹽存在條件下的NaOH或KOH的熔融、利用Na2O2的熔融以及利用BaO2的高溫燒結方法通常被認為是將鉑族金屬如銠、銥、鋨、釕轉化成可溶性化合物的方便途徑。
在鹼金屬氯化物存在條件下,鉑族金屬的氯化作用同樣是將其轉化成可溶性化合物的最有效途徑之一。
(二)貴金屬分析中常用的化合物和配合物
1.貴金屬的鹵化物和鹵配合物
貴金屬的鹵化物或鹵配合物是貴金屬分析中最重要的一類化合物,尤其是它們的氯化物或氯配合物。因為貴金屬分析中大多數標准溶液的制備主要來自這些物種;鉑族金屬與游離氯反應,即氯化作用,被廣泛用於分解這些金屬;更重要的是在鉑族金屬的整個分析化學中幾乎都是基於在鹵配合物水溶液中所發生的反應,包括分離和測定它們的方法。
鉑族金屬配合物種類繁多,能與其配位的除鹵素外,還有含O、S、N、P、C、As等配位基團,常見的有
2.貴金屬氧化物
金、銀的氧化物在分析上並不重要。金的氧化物有Au2O3、Au2O,Au2O很不穩定,與水接觸分解為Au2O3和Au。用硝酸汞、乙酸鹽、酒石酸鹽等還原劑還原Au(Ⅲ)可得到Au2O。Au(Ⅲ)與NaOH作用時,生成Au(OH)3沉澱。通常,Au(OH)3以膠體形態存在,所形成的膠粒直徑一般為80~200 nm。
向銀溶液中小心加入氨溶液時可形成白色的氫氧化銀。當以鹼作用時則有棕色的氧化銀析出。氧化銀呈鹼性,能微溶於鹼並生成[Ag(OH )2]-;在300℃條件下分解為 Ag和O2。
鉑族金屬及其化合物在空氣中灼燒可形成各種組分的氧化物。由於許多氧化物不穩定,或者穩定的溫度范圍比較窄,或者某些氧化物具有揮發性,因此在用某些分析方法測定時要十分注意。例如,一些採用重量法的測定需在保護氣氛中灼燒成金屬後稱重。Os(Ⅷ)、Ru(Ⅷ)的氧化物易揮發,這也是與其他貴金屬分離的最好方法。鉑族金屬對氧的親和力順序依次為:Pt<Pd<Ir<Ru<Os。鉑的親和力最差,但粉末狀的鉑能很好與氧結合。貴金屬的氧化物在溶液中多呈水合氧化物形式存在。
3.貴金屬的硫化物
形成硫化物是貴金屬元素的共性,但難易程度不同。其中IrS生成較難,而PdS、AgS較容易形成。貴金屬硫化物均不溶於水,其溶解度按下列順序依次減小:Ir2S3、Rh2S3、PtS2、RuS2、OsS2、PdS、Au2S3、Ag2S。在貴金屬的氯化物或氯配合物(銀為硝酸鹽)溶液中,通入H2S氣體或加入Na2S溶液可得到相應的硫化物沉澱。
4.貴金屬的硝酸鹽和亞硝酸鹽化合物或配合物
在貴金屬的硝酸鹽中,AgNO3是最重要的化合物。分析中所用的銀標准溶液都是以AgNO3為初始基準材料配製的。其他貴金屬的硝酸鹽及硝基配合物不穩定,易水解,在分析中較少應用。鉑族金屬的亞硝基配合物是一類十分重要的配合物。鉑族金屬的氯配合物與NaNO2在加熱條件下反應,生成相應的亞硝基配合物。這些配合物很穩定,在pH 8~10的條件下煮沸也不會發生水解。利用這種性質可進行貴金屬與賤金屬的分離。
三、貴金屬礦石礦物的取樣和制樣
含有貴金屬元素的樣品在分析之前必須具備兩個條件:①樣品應是均勻的;②樣品應具有代表性。否則,無論分析方法的准確度如何高或分析人員的操作如何認真,獲得的分析結果往往是毫無意義的。此外,隨著科學技術的發展,貴金屬資源被廣泛應用於各工業部門和技術領域,由於貴金屬資源逐漸減少,供需矛盾日漸突出,其價格日趨昂貴,因此對分析結果准確性的要求比其他金屬要高。
貴金屬礦石礦物的取樣、加工是為了得到具有較好代表性和均勻性的樣品,使所測試樣品中貴金屬的含量能夠較真實地反映原礦的情況,避免取樣帶來的誤差。貴金屬在自然界中的賦存狀態很復雜,又由於貴金屬元素的含量較低,故分析試樣的取樣量必須滿足兩個因素:①分析要求的精度;②試樣的均勻程度,即取出的少量試樣中待測元素的平均含量要與整個分析試樣中的平均含量一致。實際上貴金屬元素在礦石中的分布並不均勻,往往集中在少數礦物顆粒中,要達到取出的試樣與總試樣完全一致的要求是很難做到的。因此,只能在滿足所要求的分析誤差范圍內進行取樣,增加取樣量,分析誤差可能會減小。試樣中貴金屬礦物的破碎粒度與取樣量有很大關系,粒度愈大,試樣愈不均勻,取樣量也應愈大,因此加工礦物試樣時應盡可能磨細。為了達到一定的測量精度,除滿足上述取樣量的條件外,還應滿足測定方法的靈敏度。
一般的礦樣,可按常規方法取樣、制樣。金多以自然金的形式存在於礦石礦物中,它的粒度變化較大,大的可達千克以上,而微小顆粒甚至在顯微鏡下都難以分辨。金的延展性很好,它的破碎速度比脈石的破碎速度慢,因此對未過篩的和殘留在篩縫中的樣品部分絕對不能棄之,此部分大多含有自然金。金礦石的取樣與加工一般按切喬特經驗公式進行。對於比較均勻的樣品,K取值為0.05,一般金礦石樣品,K取值為0.6~1.5。
對於較難加工的金礦石,在棒磨之前加一次盤磨碎樣並磨至0.154mm,因為棒磨機的作用是用鋼棒沖擊和擠壓岩石再磨細金粒,能滿足一般金粒較細的試樣所需的破碎粒度。含有較粗金粒的試樣,用棒磨機只能使金粒壓成片狀或帶狀,達不到破碎的目的。而盤磨機是利用搓壓的作用力使石英等硬度較大的物料搓壓金粒來達到破碎的目的。
在金礦樣的加工過程中,應注意以下幾個方面:
(1)如果礦樣量在1kg以下,碎樣時應磨至200目。一半送分析用,一半作為副樣。如果礦樣量在1 kg以上,按加工流程進行破碎,作基本分析的樣品重量不應少於500~600 g。
(2)若樣品中含有明金時,應增設80目過篩和篩上收金的過程。
(3)對於1∶20萬區域化探水系沉澱物樣品,應將原分析樣混勻後分取40g,用盤磨粉碎至200目,混勻後作為金的測定樣。
(4)在過篩和縮分過程中,任何時間都不能棄去篩上物和損失樣品。
(5)所使用的各種設備每加工完一個樣品後必須徹底清掃干凈,並認真檢查在縫隙等處有無金粒殘留。
(6)礦樣經棒磨機粉碎至200 目後,送分析之前必須再進行混勻,以防止因金的密度大在放置時間過久或運送過程中金下沉而導致樣品不均勻。
由於金在礦石中的不均勻性,要製取有代表性、供分析用的礦樣,應盡可能地增大礦石取樣量。在磨樣過程中,對分離出粗粒的金應分別處理。其他貴金屬礦樣的取樣與加工要比金礦石的容易。
為了獲得准確的分析結果,貴金屬試樣在分析之前,取樣與樣品的加工,試樣的分解將是整個分析工作中的重要環節。另一方面,由於在大多數的分析方法中,獲得的分析結果常常是通過與已知的標准物質的含量,包括標准溶液和標准樣品進行比較獲得的,因此,准確的分析結果同樣也依賴於貴金屬標准溶液的准確制備。
四、貴金屬礦樣的樣品處理技術
貴金屬礦石礦物的分解有其特殊性,是分析化學中的難題之一。因為多數貴金屬具有很強的抗酸、鹼腐蝕的特點,常用的無機溶劑和分解技術難以分解。
含銠、銥和釕等試樣,在常溫、常壓,甚至較高溫度、壓力下用王水也難以分解。
砂鉑礦多由超基性岩體中的鉻-鉑礦風化次生而成,其密度及硬度極高、化學惰性極強,在高溫、高壓條件下溶解也較慢。
鋨銥礦是以鋨和銥為主的天然合金,晶格類型的差別較大(銥為等軸晶系,鋨為六方晶系)。含鋨高時稱為銥鋨礦,呈鋼灰色至亮青銅色;含銥高時稱為鋨銥礦,呈明亮錫白色。它們的密度都很大,性脆且硬,含銥、釕高時磁性均較強,鋨高時相反。化學性質也都很穩定,於王水中長時間煮沸難以被分解。
為了分解這些難溶物料,需要引入一些特殊的技術,如焙燒預處理技術、鹼熔融技術、加壓酸消解技術等。
(一)焙燒預處理方法
貴金屬在礦石中除以自然金、自然鉑等形式存在外,還以各種金屬互化物形式存在,並常伴生在硫化銅鎳礦和其他硫化礦中。用王水分解此類礦樣時,由於硫的氧化不完全,易產生元素硫,並吸附金、鉑、鈀等,使測定結果偏低,尤其對金的吸附嚴重,故需要先進行焙燒處理,使硫氧化為SO2而揮發。焙燒溫度的控制是很重要的,溫度過低,分解不完全;溫度過高,會燒結成塊,影響分析測定。常用的焙燒溫度為600~700℃,焙燒時間與試樣量和礦石種類有關,一般為1~2h。不同硫化礦的焙燒分解情況不同,其中黃鐵礦最易分解,其次是黃銅礦,最難分解的是方鉛礦。以下是幾種貴金屬礦石的焙燒處理方法。
(1)含砷金礦的焙燒。先將礦石置於高溫爐中,升溫至400℃恆溫2h,使大部分砷分解、揮發,繼續升溫至650℃,使硫和剩餘的少量砷完全揮發。於礦石中加入NH4NO3、Mg(NO3)2等助燃劑,可提高焙燒效率,縮短焙燒時間。如果金礦中砷的含量在0.2% 以上,且砷含量比金含量高800倍的條件下焙燒時,會生成砷和金的一種易揮發的低沸點化合物而使金損失,此時的焙燒溫度應控制在650℃以下。當金礦石中硅含量較高時,加入一定量NH4HF2可分解SiO2。
(2)含銀硫化礦的焙燒。先將礦石置於高溫爐中,升溫至650℃,恆溫2h,使硫完全揮發。當礦石中硅含量較高時,即使加入NH4HF2,由於焙燒過程中生成難溶的硅酸銀,使測定結果嚴重偏低。為此,用酸分解焙燒試樣時,加入HF以分解硅酸銀,可獲得滿意的結果。
(3)含鉑族元素硫化礦的焙燒。與含金硫化礦的焙燒方法相同。
(4)含鋨硫化礦的焙燒。試樣進行焙燒時,易氧化為OsO4形式揮發損失,於焙燒爐中通入氫氣,硫以H2S形式揮發;或按10∶1∶1∶1比例將礦石、NH4Cl、(NH4)2CO3、炭粉混合後焙燒,可加速硫的氧化,對鋨起保護作用。
(二)酸分解法
貴金屬物料的酸分解法是最常用的方法,操作簡便,不需特殊設備。常用的溶劑是王水,它所產生的新生態氯具有極強的氧化能力,是溶解金礦和某些鉑族礦石的有效試劑。溶解金時可在室溫下浸泡,加熱使溶解加速。溶解鉑、鈀時,需用濃王水並加熱。此外,分解金礦的試劑很多,如HCl-H2O2、HCl-KClO3、HCl-Br2等。被硅酸鹽包裹的礦物,應在王水中加少量HF或其他氟化物分解硅酸鹽。酸分解方法不能用於含銠、銥礦石的分解,此類礦石只有在高溫、高壓的特定條件下強化溶解才能完全溶解。
(三)鹼熔法
固體試劑與試樣在高溫條件下熔融反應可達到分解的目的。最常用的是過氧化鈉熔融法,幾乎可以分解所有含貴金屬的礦石,但對粗顆粒的鋨銥礦很難分解完全,常需要用合金碎化後再鹼熔才能分解完全。本法的缺點是引入了大量無機鹽,對坩堝腐蝕嚴重,又帶入了大量鐵、鎳。使用鎳坩堝還能帶入微量貴金屬元素。此法多用於無機酸難以分解的礦石。
五、貴金屬元素的分離和富集方法
貴金屬元素在岩石礦物中的含量較低,因此,在測定前對其進行分離富集往往是必要且關鍵的一步。貴金屬元素的分離和富集有兩種方法;一種是干法分離和富集——火法試金;一種是濕法分離和富集——將樣品先轉為溶液,然後採用沉澱、吸附、離子交換、萃取、色層等方法進行分離富集貴金屬與賤金屬分離,主要有共沉澱分離法、溶劑萃取法、離子交換分離法、活性炭分離富集法、泡沫塑料富集法及液膜分離富集法等。目前應用最廣泛的是火試金法、泡沫塑料法、萃取法。具體方法詳見任務2、任務3、任務4的相關內容。
六、貴金屬元素的測定方法
(一)化學分析法
1.重量法測定金與銀
將鉛試金法得到的金、銀合粒,稱其總量。經「分金後」得到金粒,稱重。兩者重量之差為銀的重量。
為了減少金在灰吹中的損失和便於分金,在熔煉時通常加入毫克量的銀。如果試樣中含金量較高,加入的銀量必須相應增加,以達金量的3倍以上為宜。低於此數時,分金不完全,且銀不能完全溶解,影響測定結果。
在實際應用中,不同含金量可按表7-1所示的銀與金的比例加入銀,可滿意地達到分金效果。
表7-1 銀與金的比例
如合粒中含銀量低、金量高時,可稱取兩份試樣,一份不加銀,所得合粒稱重,為金銀合量。另一份加銀,分金後測金。二者重量之差為銀量。亦可先將金、銀合粒稱重,再加銀灰吹,然後進行分金,測得金量。差減法得銀量。
分金可採用熱硝酸(1∶7),此時合粒中的銀、鈀以及部分鉑溶解,而金不溶並呈一黑色的整粒留下來。如果留的下金粒帶黃色,則表示分金不完全,應當取出,補加適量銀,包在鉛片中再灰吹,然後分金。
用硝酸(1∶7)分金後,金粒中還殘留有微量銀,可再用硝酸(1∶1)加熱數分鍾除去。
2.滴定法
在貴金屬元素的滴定法中,主要利用貴金屬離子在溶液中進行的氧化還原反應、形成穩定配合物反應、生成難溶化合物沉澱或被有機試劑萃取的化合反應。被滴定的貴金屬離子本身多數是有顏色的,而且存在著復雜的化學形態和化學平衡反應,故導致滴定法的應用有一定的局限性。
金的滴定法主要依據氧化還原反應,包括碘量法、氫醌法、硫酸鈰滴定法、釩酸銨滴定法及少數催化滴定法和原子吸收-碘量法聯合的分析方法。其中碘量法和氫醌法在我國應用最普遍,它們與活性炭或泡塑吸附分離聯用,方法的選擇性較好,且可測得微量至常量的金,已成為經典的測定方法或實際生產中的例行測定規程。由於樣品的成分的復雜性,故用活性炭吸附分離-碘量法測定金時,還應針對試樣的特殊性採取相應的預處理手段。例如,含鉛、銀高的試樣,可加入5~7g硫酸鈉,煮沸使二氯化鉛轉化為硫酸鉛沉澱過濾除去,銀用鹽酸溶液(2+98)洗滌,可避免氯化銀沉澱以銀的氯配離子形式進入溶液中而被活性炭吸附。含鐵、鉛、銅、鋅的試樣,在滴定時加入0.5~1 g氟化氫銨可掩蔽50mg鐵、鉛,3~5mL的EDTA溶液(25g/L)可掩蔽大量鉛、銅、鋅,但需立即加入碘化鉀,以避免Au(Ⅲ)被還原為Au(Ⅰ)。含硫高時,於馬弗爐中500℃溫度下焙燒3h後再於650~700℃恆溫1~2h,可避免金的分析結果偏低。含銻的試樣,用氫氟酸蒸發2次,可消除其對金的影響。試樣中含鉑和鈀時,會與碘化鉀形成紅色和棕色碘化物,且消耗硫代硫酸鈉,可於滴定時加入5mL硫氰酸鉀溶液(250g/L),使之形成穩定的配合物而消除干擾。用碘量法測定金的誤差源於多種因素:金標准溶液的穩定性、活性炭吸附金的酸度、水浴蒸發除氮氧化物的條件、澱粉指示劑用量、滴定前碘化鉀的加入量、分取試液和滴定液的濃度、標定量的選擇等,因此應予以注意。
關於銀的化學滴定法,應用最普遍的是硫氰酸鉀(銨)和碘化鉀沉澱滴定法,其次是硫代硫酸鈉返滴定法、硫酸亞鐵氧化還原滴定法和二硫腙萃取滴定法等。
硫氰酸鉀滴定法測定銀:將試金所得的金、銀合粒用稀硝酸溶解其中的銀,以硫酸鐵銨為指示劑,用硫氰酸鉀標准溶液滴定至淡紅色,即為終點。其主要反應式如下:
Ag++KCNS→K++AgCNS↓
Fe3++3KCNS→3K++Fe(CNS)3
在鉑族金屬的滴定中,以莫爾鹽還原Pt(Ⅳ),用釩酸銨返滴定法或二乙基二硫代氨基甲酸鈉滴定法的條件苛刻,選擇性差,不能用於組成復雜的試樣分析中。於pH為3~4酸性介質中,長時間煮沸的條件下,Pt(Ⅳ)能與EDTA定量絡合,在乙酸-乙酸鈉緩沖介質中,用二甲酚橙作指示劑,乙酸鋅滴定過量的EDTA,可測定5~30mg Pd。利用這一特性,採用丁二肟分離鈀,用酸分解濾液中的丁二肟,可測定含鉑、鈀的冶金物料中的鉑。Pd(Ⅱ)的滴定測定方法較多,常見的是利用形成難溶化合物沉澱和穩定配合物的反應。在較復雜的冶金物料中,採用選擇性試劑掩蔽鈀,二甲酚橙作指示劑,鋅(鉛)鹽滴定析出與鈀等量的EDTA測定鈀的方法較多。
(二)儀器分析法
貴金屬在地殼中的含量很低,因此各種儀器分析方法在貴金屬的測定中獲得了非常廣泛的應用。主要有可見分光光度法、原子吸收光譜法、發射光譜法、電感耦合等離子體原子發射光譜法、電感耦合等離子體質譜法等。具體的應用請參閱本項目的任務2、任務3、任務4的相關內容。
七、貴金屬礦石的分析任務及其分析方法的選擇
貴金屬礦石的分析項目主要是金、銀、銠、釕、鈀、鋨、銥、鉑含量的測定,除精礦外,一般礦石中貴金屬的含量都比較低,因此,在選擇分析方法時,靈敏度是需要重點考慮的因素。一般,銀的測定主要用原子吸收光譜法和可見分光光度法,且10 g/t以上含量的不需要預富集,可直接測定。可見分光光度法、原子吸收光譜法、電感耦合等離子體原子發射光譜法、電感耦合等離子體質譜法在金的測定上都獲得了廣泛的應用。金的測定一般都需要採取預富集手段。銠、釕、鈀、鋨、銥、鉑在礦石中含量甚微,因此對方法的靈敏度要求較高。目前,電感耦合等離子體質譜法在銠、釕、鈀、鋨、銥、鉑的測定的應用已經越來越廣泛和成熟。另外光度法、電感耦合等離子體發射光譜法也在銠、釕、鈀、鋨、銥、鉑的測定中發揮了重要作用。
技能訓練
實戰訓練
1.學生實訓時按每組5~8人分成幾個小組。
2.每個小組進行角色扮演,利用所學知識並上網查詢相關資料,完成貴金屬礦石委託樣品從樣品驗收到派發樣品檢驗單工作。
3.填寫附錄一中質量表格1、表格2。