① 中考數學動點問題的解決方法
解決動點問題的關鍵是「動中求靜」。
所謂「動點型問題」是指題設圖形中存在一個或多個動點,它們在線段、射線或弧線上運動的一類開放性題目.解決這類問題的關鍵是動中求靜,靈活運用有關數學知識解決問題。
「動點型問題」題型繁多、題意創新,考察學生的分析問題、解決問題的能力,內容包括空間觀念、應用意識、推理能力等,是近幾年中考題的熱點和難點。
從變換的角度和運動變化來研究三角形、四邊形、函數圖像等圖形,通過「對稱、動點的運動」等研究手段和方法,來探索與發現圖形性質及圖形變化,在解題過程中滲透空間觀念和合情推理。在動點的運動過程中觀察圖形的變化情況,理解圖形在不同位置的情況,做好計算推理的過程。在變化中找到不變的性質是解決數學「動點」探究題的基本思路,這也是動態幾何數學問題中最核心的數學本質。
考點一:建立動點問題的函數解析式(或函數圖像)
函數揭示了運動變化過程中量與量之間的變化規律,是初中數學的重要內容。動點問題反映的是一種函數思想,由於某一個點或某圖形的有條件地運動變化,引起未知量與已知量間的一種變化關系,這種變化關系就是動點問題中的函數關系。
考點二:動態幾何型題目
點動、線動、形動構成的問題稱之為動態幾何問題. 它主要以幾何圖形為載體,運動變化為主線,集多個知識點為一體,集多種解題思想於一題. 這類題綜合性強,能力要求高,它能全面的考查學生的實踐操作能力,空間想像能力以及分析問題和解決問題的能力。
動態幾何特點--問題背景是特殊圖形,考查問題也是特殊圖形,所以要把握好一般與特殊的關系;分析過程中,特別要關注圖形的特性(特殊角、特殊圖形的性質、圖形的特殊位置。)動點問題一直是中考熱點,近幾年考查探究運動中的特殊性:等腰三角形、直角三角形、相似三角形、平行四邊形、梯形、特殊角或其三角函數、線段或面積的最值。
考點三:雙動點問題
動態問題是近幾年來中考數學的熱點題型.這類試題信息量大,其中以靈活多變而著稱的雙動點問題更成為中考試題的熱點中的熱點,雙動點問題對同學們獲取信息和處理信息的能力要求更高;解題時需要用運動和變化的眼光去觀察和研究問題,挖掘運動、變化的全過程,並特別關注運動與變化中的不變數、不變關系或特殊關系,動中取靜,靜中求動.
② 動點問題的一般解決方法是什麼
初中數學的動點問題大致可以分為兩種動點1。運動的動點:此類動點給出的有運動方向和運動速度,我們主要根據運動速度×時間=路程,來表示某些線段的長。根據動點的位置可以將線段分為走過的(根據速度×時間來進行表示)、剩下未走的(用動點要運動的總路程-走過的)。特別注意,當動點在折線上運動時,要把走過的線段去掉某些部分才能和所求線段對應;剩下未走的也由於動點移動到不同線段上而改變其終點位置進行表示當所表示線段與動點運動方向不同時,一般採用相似知識,找出和某些可以計算長度且方向與所求線段方向一致的線段來尋求相似比2。不定點:這類動點一般結合存在性問題出現,即是否存在點P使得題目滿足一些什麼結論或當某些結論存在時,求動點P的位置。此時解答可以把題目要求滿足的情況作為一個使用條件,使P恰在滿足要求的位置,然後結合幾何知識進行解答例如當題目要求是否存在點P,使某個三角形面積為20。我們就要先用代數式表示三角形面積,然後令其值為20即可總之,動點的題目類型較多,這里很難一下說明。在解答時多注意將代數式化簡和幾何知識結合,你就可以慢慢摸索的其中的一些規律