初中數學的動點問題大致可以分為兩種動點1。運動的動點:此類動點給出的有運動方向和運動速度,我們主要根據運動速度×時間=路程,來表示某些線段的長。根據動點的位置可以將線段分為走過的(根據速度×時間來進行表示)、剩下未走的(用動點要運動的總路程-走過的)。特別注意,當動點在折線上運動時,要把走過的線段去掉某些部分才能和所求線段對應;剩下未走的也由於動點移動到不同線段上而改變其終點位置進行表示當所表示線段與動點運動方向不同時,一般採用相似知識,找出和某些可以計算長度且方向與所求線段方向一致的線段來尋求相似比2。不定點:這類動點一般結合存在性問題出現,即是否存在點P使得題目滿足一些什麼結論或當某些結論存在時,求動點P的位置。此時解答可以把題目要求滿足的情況作為一個使用條件,使P恰在滿足要求的位置,然後結合幾何知識進行解答例如當題目要求是否存在點P,使某個三角形面積為20。我們就要先用代數式表示三角形面積,然後令其值為20即可總之,動點的題目類型較多,這里很難一下說明。在解答時多注意將代數式化簡和幾何知識結合,你就可以慢慢摸索的其中的一些規律
Ⅱ 動點問題怎麼做
動點問題做法如下:
所謂「動點型問題」是指題設圖形中存在一個或多個動點,它們在線段、射配隱線或弧線上運動的一類開放性題目.
解決這類問題的關鍵是動中求靜,靈活運用有關數學知識解決問題.
方法
從變換的角度和運動變化來研究三角形、四邊形、函數圖像等圖形,通過「對稱、動點的運動」等研究手段和方法,來探索與發現圖形性質及圖形變化,在解題過程中滲透空間觀念和合情推理。
選擇基本的幾何圖形,讓學生經歷探索的過程,以能力立意,考查學生的自主探究能力,促進培養學生解決問題的能力。
圖形在動點的運動過程中觀察圖形的變化情況,需要理解圖形在不同位置的情況,才能做好計算推理的過程。
在變化中找到不變的性質是解決數學「動點」探究題的基本思路,這也是動態幾何數學問題中最核心的數學本質。
已知數軸上兩點A、B對應的數分別為-1、3,點P為數軸上一動點,其對應的數為x.
(1)若點P到點A,點B的距離相等,求點P對應的數;
(2)數軸上是否存在點P,使點P到點A、點B的距離之和為6?若存在碧扮,請求出x的值;若不存在,說明理由;
(3)點A、點B分別以2個單位長度/分、1個單位長度/分的速度向右運動,同時點P以6個單位長度/分的速度從O點向左運動.當遇到A時,點P立即以同樣的速度向右運動,並不停地往返於點A與點B之間,求當點A與點B重合時,點P所經過悔賣灶的總路程是多少?
動點A從原點出發向數軸負方向運動,同時,動點B也從原點出發向數軸正方向運動,3秒後,兩點相距15個單位長度.
已知動點A、B的速度比是1:4.(速度單位:單位長度/秒)。
(1)求出兩個動點運動的速度,並在數軸上標出A、B兩點從原點出發運動3秒時的位置;(2)若A、B兩點從(1)中的位置同時向數軸負方向運動,幾秒後原點恰好處在兩個動點正中間;
(3)在(2)中A、B兩點繼續同時向數軸負方向運動時,另一動點C同時從B點位置出發向A運動,當遇到A後,立即返迴向B點運動,遇到B點後立即返迴向A點運動,如此往返,直到B追上A時,C立即停止運動.
若點C一直以20單位長度/秒的速度勻速運動,那麼點C從開始到停止運動,運動的路程是多少單位長度.
Ⅲ 初一動點問題的方法歸納有哪些
初一動點問題的方法歸納如下:
1、數軸上兩點之間的距離可用絕對值來表示,即兩點所表示的數差的絕對值。
2、數軸上一個動點字母表示用有理數的加法或減法即可解決,就是起點所表示的數加上或減去動點運動的距離,向正方向用加,負方向用減。
3、求數軸上任意兩點間的線段的中點,用兩點所表示的數相加的和除以2,如數軸上的點所表示的數是a,b,則線段AB的中點所表示的數是(a+b)/2。
4、數軸上兩點間的距離,即為這兩點所對應的坐標差的絕對值,也即用右邊的數減去左邊的數的差。即數軸上兩點間的距離=右邊點表示的數-左邊點表示的數。
5、數軸是數形結合的產物,分析數軸上點的運動要結合圖形進行分析,點在數軸上運動形成的路徑可看作數軸上線段的和差關系。
Ⅳ 解決數學的動點問題的方法
解決動點問題
1.化動為靜,把運動中的點,把所有可能出現的情況,各固定一個點,來進行分析
2.用運動時間T來表示在整個運動過程中,相關的一些線段的長度
3.在涉及計算的時候,多數會利用三角形的全等,相似,或者特殊角的三角函數來進行計算
4.涉及特殊四邊形的,要考慮相關圖形的一些特殊性質。
這是我個人淺顯的看法,你自己試在分析的時候嘗試用下,看對你能否有幫助。
Ⅳ 數學動點問題解題技巧是什麼(初一)
解決動點問題首先要做到仔細理解題意,弄清運動的整個過程和圖形的變化,然後再根據運動過程展開分類討論畫出圖形,最後針對不同情況尋找等量關系列方程求解。
而對於建立在數軸上的動點問題來說,由於數軸本身的特點,這類問題常有兩種不同的解題思路。
一種是根據「形」的關系來分析尋找等量關系,也就是利用各線段之間的數量關系列方程求解。
另一種是從「數」的方面尋找等量關系,就是利用各點在數軸上表示的數之間存在的內在關系列方程。
簡介
數形結合的思想方法是數學教學內容的主線之一,應用數形結合的思想,可以解決以下問題:
1、集合問題:在集合運算中常常藉助於數軸、Venn圖來處理集合的交、並、補等運算,從而使問題得以簡化,使運算快捷明了。
2、函數問題:藉助於圖象研究函數的性質是一種常用的方法。函數圖象的幾何特徵與數量特徵緊密結合,體現了數形結合的特徵與方法。
3、方程與不等式:處理方程問題時,把方程的根的問題看作兩個函數圖象的交點問題;處理不等式時,從題目的條件與結論出發,聯系相關函數,著重分析其幾何意義,從圖形上找出解題的思路。