導航:首頁 > 解決方法 > 鈾檢測方法

鈾檢測方法

發布時間:2023-05-24 20:59:53

❶ 鈾醯離子檢測方法國標法是什麼

GB/T14549-1993《水中鈾的測定鈾醯熒光分光光度法》。鈾醯離子檢測方法國標法是一種基於鈾醯熒光分光光度法的檢測方法,可以用於水中鈾醯離子的測定。該方法的原理是利用鈾醯離氏滲子在紫外光激發下發出熒光,測量熒光強度來計算鈾醯離子的含量。該方法具有靈敏度高、准確度高、可靠性好等優點,已經被廣卜核談泛應用於鈾醯離子的檢測和分析工作中。型碰

❷ 釷的檢驗和測定方法

國家標准有的
本標准適用於各類食品中天然釷和鈾的測定。天然釷測定方法測定限為1×10**-8g/g 灰。天然鈾測定限為乙酸乙酯萃取-熒光計法2×10**-8g/g灰;三烷基氧膦(TRPO)苯取-熒光計法1×10**-7g/g灰;N235萃取-分光光度法1.5×10**-8g/g灰;目視熒光法4×10**-7g/g灰;激光熒光法為2.5×10**-8g/g灰。
2 引用標准
GB 6768 水中微量鈾分析方法
GB 14883.1 食品中放射性物質檢驗 總則
3 天然釷測定方法-三烷基(混合)胺(N235)萃取-分光光度法
3.1 原理
三烷基(混合)胺(N235)是一種混合三烷基(主要辛基)叔胺,其性質與三正辛胺相似。
食品灰用硝酸和高氯酸浸取,溶液經磷酸鹽沉澱濃集鈾和釷,在鹽析劑硝酸鋁存在下以N235從硝酸溶液中同時萃取釷和鈾,首先用8mol/L鹽酸溶液反萃取釷,再用水反萃取鈾,分別以鈾試劑III顯色,進行分光光度測定。本法可用於食品中鈾和釷聯合或單獨檢驗。
3.2 試劑和材料
3.2.1 釷標准溶液:取0.600g硝酸釷[Th(NO3)4·4H2O]溶於50mL 5mol/L硝酸溶液中,轉入500mL容量瓶,用0.5mol/L硝酸稀釋至刻度,此貯備液用重量法標定。按標定結果用lmol/L硝酸將一定量貯備液准確稀釋成1.00μgTh/mL的釷標准溶液。
標定:准確吸取30.0mL貯備液於燒杯中,加70mL水,加熱至80℃左右,以酚酞作指示劑,用氨水沉澱釷,沉澱用無灰濾紙過濾,0.1%氨水洗滌幾次後,放入已恆量的坩堝中烘乾,炭化,900℃灼燒成二氧化釷,恆量,計算出准確釷含量。
3.2.2 10%N235萃取劑:將50mLN235(工業純),50mL乙酸乙酯、50ml丙酮混合後,或單用50mLN235,以環已烷稀釋到500mL,再用2mol/L硝酸溶液萃洗平衡後待用。
3.2.3 硝酸鋁溶液:500g硝酸鋁中加少量水和33ml,氨水,加熱溶解後用水稀釋到500ml。
3.2.4 飽和硝酸銨溶液:用2mol/L硝酸溶液配製。
3.2.5 0.03%鈾試劑Ⅲ-草酸飽和溶液:稱取0.3g鈾試劑Ⅲ,溶解於水中(若溶解不完全,可加少量氫氧化鈉),稀釋至1000ml。使用前倒此溶液於小試劑瓶中,加入草酸至飽和。
3.2.6 8mol/L鹽酸溶液:取333mL鹽酸(優級純),用水稀釋至500ml,加入約1g尿素。
3.3 儀器和器材
3.3.1 分光光度計: 72型或其他型號, 3cm比色杯。
3.4 釷工作曲線的繪制 在8個分液漏斗中各加入10mL1mol/L硝酸溶液, 分別吸入相當於0,0.3,0.5,0.7,1.0, 2.0,3.0,4.0μg釷的釷標准溶液, 按3.5.5~3.5.6條測定釷的吸光度作為縱坐標, 實標加入的釷量為橫坐標作圖。
3.5 測定
3.5.1 采樣、預處理按GB14883.1規定進行。
3.5.2 稱取1~2g(精確至0.001g)樣品灰於60mL瓷蒸發皿中(大米、玉米和肉類等含鈣少的樣品灰按50mgCa/g灰的比例加入鈣載體溶液),加入10mL濃硝酸,在沙浴上緩慢蒸發至干。將蒸發皿轉入高溫爐500℃灼燒10min(樣品灰灼燒後若呈黑色或灰色時,可重復酸浸取,再灼燒處理一次),取出冷卻後加入10mL8mol/L硝酸,加熱溶解後趁熱過濾。用8mol/L 硝酸洗滌蒸發皿2~3次,再用熱的稀硝酸洗滌蒸發皿和殘渣2~3次。濾液和洗滌液合並於離心管中。
3.5.3 攪拌下滴加氨水於上述浸取液中,調節溶液pH=9使生成白色沉澱,加熱凝聚。冷卻後離心,棄去上清液。沉澱用水洗滌一次,離心,棄去上清液。
3.5.4 滴加濃硝酸入離心管,使沉澱剛好溶解。將溶液轉移入60mL分液漏斗中,用15mL硝酸鋁溶液分2次洗滌離心管,洗滌液合並入分液漏斗。
3.5.5 加15mL10%N235萃取劑入分液漏斗,萃取5min,靜置分相後棄去水相。用5mL飽和硝酸銨溶液萃洗一次。
3.5.6 萃洗後的有機相依次用5.0mL和3.5mL8mol/L鹽酸反萃取,每次反萃取5min。二次反萃取液合並於10mL比色管,加入1.00mL0.03%鈾試劑Ⅲ-草酸飽和溶液,用8mol/L鹽酸稀釋到刻度。搖勻後在分光光度計(波長665nm,3cm比色皿)以8.5mL 8mol/L鹽酸代替樣品液加顯色劑作為零值,進行比色,測定釷的吸光度。從工作曲線上查出釷含量。有機相可用於測定鈾(下接7.5.7條)。
3.5.7 化學回收率測定:准確稱取1~2g樣品灰(與樣品分析的用灰量相等)於60mL瓷蒸發皿,加入釷標准溶液2.0mL和10mL硝酸,按3.5.2~3.5.6條與未加釷標准溶液的樣品平行操作。根據測得的釷含量,按式(1)計算釷的化學回收率。
3.5.8 試劑空白值的測定:不用樣品灰按以上測定程序,以8.5mL 8mol/L鹽酸在比色管中加入顯色劑後作為零值,在同樣條件下測出吸光度作為試劑空白,應在計算結果中進行校正。
3.6 計算
A』-N
R=━━━....................................(1)
Ao
NM
A=━━━....................................(2)
WR
式中:A--食品中釷含量,μg/kg或μg/L;
A』--加入釷標准溶液的樣品所測得的釷含量,μg;
Ao--加入釷的量,μg;
M--灰樣比,g/kg或g/L;
N--樣品測定時從釷工作曲線上查得的釷含量,μg;
R-一釷的化學回收率;
W--分析樣品灰質量,g。
4 天然釷測定方法-PMBP萃取-分光光度法
4.1 原理 食品灰以王水浸取,草酸鹽沉澱載帶釷,1-苯基-3-甲基-4-苯甲醯基吡唑酮-5(簡稱 PMBP)萃取分離後,在6mol/L鹽酸介質中,以鈾試劑Ⅲ顯色進行分光光度測定。
4.2 試劑和材料
4.2.1 釷標准溶液、鈾試劑Ⅲ溶液同N235萃取-分光光度法(3.2)。
4.2.2 PMBP萃取劑:PMBP的0.3%二甲苯溶液。
4.2.3 草酸溶液:10%和0.8%兩種溶液。
4.2.4 10%磺基水楊酸溶液。
4.2.5 10%酒石酸溶液。
4.2.6 抗壞血酸。
4.2.7 鹽酸溶液:0.1mol/L和6mol/L兩種溶液。
4.2.8 1:1氨水。
4.2.9 鈣載體溶液:40mgCa/mL。
4.2.10 高氯酸。
4.2.11 王水:1體積硝酸與3體積鹽酸混合。
4.3 儀器
4.3.1 分光光度計:72型或其他型號,3cm比色杯。
4.4 工作曲線的繪制
分別吸取相當於0,0.3,0.5,0.7,1.0,3.0,5.0,7.0,9.0,10.0μg釷的釷標准溶液於十個250ml燒杯中,加20ml 6mol/L鹽酸溶液、 2mL鈣載體溶液,加水至250mL,按4.5.3~ 4.5.5條操作。繪制吸光度值對於釷含量的工作曲線。
4.5 測定
4.5.1 采樣、預處理按GB 14883.1規定進行。
4.5.2 浸取:稱取0.5~2g(精確至0.001g)灰樣於蒸發皿,用少量水將灰潤濕,慢慢加入5ml王水,蓋上表面皿,在電爐上緩緩蒸干,再放入高溫爐中,於450℃灼燒0.5h,取出冷卻。加入約20mL6mol/L鹽酸溶液,加熱至沸,使樣品溶解。稍冷,以中速定性濾紙過濾,以熱酸性水洗滌蒸發皿,再洗殘渣至濾液無色。控制濾液體積在250mL左右。
4.5.3 濃集:往濾液中加入2g草酸,微熱使溶。以1:1氨水調節pH至1左右,使生成草酸鹽沉澱。若未出現白色沉澱,則在攪拌下逐滴加入2mL鈣載體溶液,加熱,以促使生成白色沉澱。加熱陳化,冷卻0.5h以上,離心,棄去上清液。用250mL1%草酸溶液洗沉澱,離心,棄去上清液。沉澱以高氯酸和硝酸各5~10mL溶解並轉移至小燒杯中,小火蒸干。
4.5.4 萃取分離:蒸干物冷卻後,加10mL水、5mL10%磺基水楊酸溶液、約0.1g固體抗壞血酸,用1:1氨水調節pH至1左右,倒入分液漏斗,用少許水洗燒杯並倒入同一漏斗。加15mL0.3%PMBP-二甲苯溶液,萃取2~3min,分層清晰後棄去水相。用10mL0.1mol/L鹽酸溶液萃洗有機相,棄去水相。用15mL6mol/L鹽酸溶液反萃取2~3min,靜置分層清晰後,將水相放入25mL容量瓶中,再用2mL6mol/L鹽酸溶液反萃取有機相一次,合並反萃取液。
4.5.5 於上述容量瓶中依次加入約0.1g抗壞血酸、1mL10%草酸溶液、1mL10%酒石酸溶液和2.00mL0.05%鈾試劑Ⅲ溶液,以6mol/L鹽酸溶液稀釋至刻度。搖勻,放置15min後,以17mL6mol/L鹽酸溶液代替樣品液加顯色劑作為零值,在665nm波長下測定釷的吸光度。從工作曲線上查出相應的釷含量。
4.5.6 化學回收率測定:在分析樣品等量灰樣中加入釷標准溶液2.00mL,按測定程序操作,測定吸光度,計算回收率。
4.5.7 試劑空白值測定:不用樣品灰按以上測定程序,以17mL6mol/L鹽酸溶液加入顯色劑後作為零值,在同樣條件下測出吸光度作為試劑空白,應在結果計算中進行校正。
4.6 計算 公式和符號同3.6條。
5 天然鈾測定方法--乙酸乙酯萃取-光電熒光光度法
5.1 原理 食品灰經硝酸浸取,以硝酸鋁作鹽析劑,經乙酸乙酯萃取分離鈾,氟化鈉熔融燒球後, 用光電熒光光度計測定鈾的含量。
5.2 試劑
5.2.1 乙酸乙酯。
5.2.2 硝酸。
5.2.3 過氧化氫。
5.2.4 4%氟化鈉溶液:優級純或分析純。
5.2.5 80%硝酸鋁溶液:稱取400g硝酸鋁[Al(NO3)3·9H2O],溶於水中,稀釋至500mL。配製後用等體積乙酸乙酯(或乙醚)萃取洗滌一次。
5.2.6 鈾標准溶液:准確稱取1.179g經850℃灼燒過的八氧化三鈾(優級純),用10mL鹽酸和3mI過氧化氫加熱溶解,蒸至近干。再加入20mL水,使完全溶解後轉入10
天然釷測定方法測定限為1×10**-8g/g 灰。

❸ 鈾含量的檢測方法有哪些

環境監測是一項技術含量很高的工作,必須由專業人員遵照國家和國際上規定的監測環境標辯姿准主要凳灶咐有:環境質量標准,污染物棗純排放標准,分析方法標准,還有排污收費

❹ 激光熒光法測定鈾

方法提要

試樣用鹽酸、硝酸、氫氟灶棗返酸、高氯酸分解,加入熒光增強劑與溶液中鈾醯離子(UO22+)配位生成具有高熒光效率的單一配合物。該配合物受波長為337.1nm激光脈沖的輻照後,發出黃綠色的熒光。pH7左右時,鈾濃度在一定范圍內,其熒光強度與鈾濃度成正比。鐵、錳等元素的干擾,可通過內濾效應校正消除。

方法適用於水系沉積物及土壤中鈾的測定。

方法檢出限(3s):0.05μg/g。

測定范圍:0.15~20μg/g。

儀器及材料

激光鈾分析儀(WGJ-1型,杭州光學電子儀器廠)。

低熒光石英比色皿20mm×10mm。

激光管。

聚四氟乙烯坩堝30mL。

試劑

鹽酸。

硝酸。

高氯酸。

氫氟酸。

過氧化氫。

熒光增強劑混合溶液[150g/L(J-22)-1g/L(NaOH)]稱取15.0gJ-22熒光增強劑和0.10gNaOH,加水攪拌溶解並稀釋至100mL,搖勻。

鈾標准儲備溶液ρ(U)=1.00mg/mL稱取0.5896g優級純八氧化三鈾,加入10mLHCl和1mLH2O2,加熱溶解。冷卻後移入500mL容量瓶中,補加15mLHCl,用水稀釋至刻度,搖勻。

鈾標准溶液ρ(U)=1.00μg/mL用(1+99)HCl逐級稀釋鈾標准儲備溶液配製。

校準曲線

用微量吸液器分取0.0μL、2.0μL、4.0μL、6.0μL、8.0μL、10.0μL鈾標准溶液(1.00μg/mL),分別置於一組乾燥小燒杯中,加入100μL空白試驗溶液,加入4.90mL熒光增強劑混合溶液,搖勻,配成0.000μg/mL、0.0004μg/mL、0.0008μg/mL、0.0012μg/mL、0.0016μg/mL、0.0020μg/mL的鈾標准系列。將溶液倒入石英比色皿中,於激光鈾分析儀上,測定熒光強度(F)和激光強度(I0)。以鈾量為橫坐標,熒光強度(F)為縱坐標,繪制校準曲線。

分析步驟

稱取0.1g(精確至0.0001g)試樣(粒徑小於0.075mm,經室溫乾燥後,裝入磨口小玻璃瓶或小塑料瓶中備用)置於30mL聚四氟乙烯坩堝中,加入少許水潤濕,相繼加入3mLHCl、2mLHNO3、3mLHF和1mLHClO4,在控溫電熱板上於120℃分解1h。繼續升溫至240℃至高氯酸煙冒盡,取下冷卻。加入3mL(1+2)HCl,加熱溶解鹽類。取下冷卻後,移入10mL刻度塑料管中,用水稀釋至刻度,蓋上蓋子,搖勻。

用微量吸液器分取100μL清液置於10mL乾燥小燒杯中,加入4.90mL熒光增強劑混合溶液,搖勻。將溶液倒入石英比色皿中,於激光鈾分析儀上測量隱飢熒光強度(F),同時記錄透過被測溶液的激光強度(I),然後根據測定校岩頃准曲線的激光強度(I0),採用內濾效應校正後求得熒光強度FC0,見式(84.17)。從校準曲線上查得相應的鈾量。

岩石礦物分析第四分冊資源與環境調查分析技術

式中:FC0為校正干擾內濾效應後的熒光強度;F為被測溶液的熒光強度;F0為空白試驗熒光強度;I0為透過校準曲線的激光強度;I為透過被測溶液的激光強度。

鈾含量的計算公式同式(84.8),不減空白。

注意事項

內濾效應校正干擾是指對鐵、錳、鈷、鎳等離子熄滅鈾熒光的負向干擾的校正。

❺ 氫氟酸體系中鈾測定的方法

採用標准加入法直接用微量鈾分析儀測定待測 樣品溶液中的鈾濃度 ,從而計算出氫氟酸中鈾的含量

❻ 放射性測量方法

放射性測量方法按放射源不同可分為兩大類:一類是天然放射性方法,主要有γ測量法、α測量法等;另一類是人工放射性方法,主要有X射線熒光法、中子法等。表7.1給出了幾種放射性測量方法的簡單對比。

7.1.2.1 γ測量

γ測量法是利用輻射儀或能譜儀測量地表岩石或覆蓋層中放射性核素產生的γ射線,根據射線能量的不同判別不同的放射性元素,而根據活度的不同確定元素的含量。γ測量可分為航空γ測量、汽車γ測量、地面(步行)γ測量和γ測井,其物理基礎都是相同的。

根據所記錄的γ射線能量范圍的不同,γ測量可分為γ總量測量和γ能譜測量。

(1)γ總量測量

γ總量測量簡稱γ測量,它探測的是超過某一能量閾值的鈾、釷、鉀等的γ射線的總活度。γ總量測量常用的儀器是γ閃爍輻射儀,它的主要部分是閃爍計數器。閃爍體被入射的γ射線照射時會產生光子,光子經光電倍增管轉換後,成為電信號輸出,由此可記錄γ射線的活度。γ輻射儀測到的γ射線是測點附近岩石、土壤的γ輻射、宇宙射線的貢獻以及儀器本身的輻射及其他因素的貢獻三項之和,其中後兩項為γ輻射儀自然底數(或稱本底)。要定期測定儀器的自然底數,以便求出與岩石、土壤有關的γ輻射。岩石中正常含量的放射性核素所產生的γ射線活度稱為正常底數或背景值,各種岩石有不同的正常底數,可以按統計方法求取,作為正常場值。

表7.1 幾種放射性法的簡單對比

續表

(2)γ能譜測量

γ能譜測量記錄的是特徵譜段的γ射線,可區分出鈾、釷、鉀等天然放射性元素和銫-137、銫-134、鈷-60等人工放射性同位素的γ輻射。其基本原理是不同放射性核素輻射出的γ射線能量是不同的,鈾系、釷系、鉀-40和人工放射性同位素的γ射線能譜存在著一定的差異,利用這種差異選擇幾個合適的譜段作能譜測量,能推算出介質中的鈾、釷、鉀和其他放射性同位素的含量。

為了推算出岩石中鈾、釷、鉀的含量,通常選擇三個能譜段,即第一道:1.3~1.6MeV;第二道:1.6~2.0MeV;第三道:2.0~2.9MeV。每一測量道的譜段范圍稱為道寬。由於第一道對應40K的γ射線能譜,第二道、第三道則分別主要反映鈾系中的214Bi和釷系中的208Tl的貢獻,故常把第一、二、三道分別稱為鉀道、鈾道和釷道。但是,鉀道既記錄了40K的貢獻,又包含有鈾、釷的貢獻。同樣,鈾道中也包含釷的貢獻。當進行環境測量時往往增設137Cs,134Cs,60Co等道。

γ能譜測量可以得到γ射線的總計數,鈾、釷、鉀含量和它們的比值(U/Th,U/K,Th/K)等數據,是一種多參數、高效率的放射性測量方法。

7.1.2.2 射氣測量

射氣測量是用射氣儀測量土壤中放射性氣體濃度的一種瞬時測氡的放射性方法。目的是發現浮土覆蓋下的鈾、釷礦體,圈定構造帶或破碎帶,劃分岩層的接觸界限。

射氣測量的對象是222Rn,220Rn,219Rn。氡放出的α射線穿透能力雖然很弱(一張紙即可擋住),但它的運移能力卻很強。氡所到之處能有α輻射,用α輻射儀可方便測定。222Rn,220Rn的半衰期分別為3.8d和56s,前者衰變較後者慢得多,以此可加以區分。

工作時,先在測點位置打取氣孔,深約0.5~1m,再將取氣器埋入孔中,用氣筒把土壤中的氡吸入到儀器里,進行測量。測量完畢,應將儀器中的氣體排掉,以免氡氣污染儀器。

7.1.2.3 Po-210測量

Po-210法,也寫作210Po法或釙法,它是一種累積法測氡技術。210Po法是在野外採取土樣或岩樣。用電化學處理的方法把樣品中的放射性核素210Po置換到銅、銀、鎳等金屬片上,再用α輻射儀測量置換在金屬片上的210Po放出來的α射線,確定210Po的異常,用來發現深部鈾礦,尋找構造破碎帶,或解決環境與工程地質問題。

直接測氡,易受種種因素的影響,結果變化較大。測量210Pb能較好地反映當地222Rn的平均情況。210Po是一弱輻射體,不易測量,但其後210Bi(半衰期5d)的子體210Po卻有輻射較強的α輻射,半衰期長(138.4d)。因此,測210Po即可了解210Pb的情況,並較好地反映222Rn的分布規律。210Po是222Rn的子體,沿有釷的貢獻。這是和γ測量、射氣測量、α徑跡測量的不同之處。只測量210Po的α射線,而測不到Po的其他同位素放出的α射線,是因為它們的半衰期不同的緣故。

7.1.2.4 活性炭測量

活性炭法也是一種累積法測氡技術,靈敏度高,效率亦高,而技術簡單且成本低,能區分222Rn和220Rn,適用於覆蓋較厚,氣候乾旱,貯氣條件差的荒漠地區。探測深部鈾礦或解決其他有關地質問題。

活性炭測量的原理是在靜態條件下,乾燥的活性炭對氡有極強的吸附能力,並在一定情況下保持正比關系。因此,把裝有活性炭的取樣器埋在土壤里,活性炭中豐富的孔隙便能強烈地吸附土壤中的氡。一定時間後取出活性炭,測定其放射性,便可以了解該測點氡的情況,以此發現異常。

埋置活性炭之前,先在室內把活性炭裝在取樣器里,並稍加密封,以免吸附大氣中的氡。活性炭顆粒直徑約為0.4~3mm。每個取樣器里的活性炭重約數克至數十克,理置時間約為數小時至數十小時,一般為5d。時間可由實驗確定最佳值,埋置時間短,類似射氣測量;埋置時間長,類似徑跡測量,但徑跡測量除有氡的作用外,其他α輻射體也會有貢獻。活性炭測量只有氡的效果。也有把活性炭放在地面上來吸附氡的測量方法。

為了測量活性炭吸附的氡,可採取不同方法:①測量氡子體放出的γ射線;②測量氡及其子體放出的α射線。

7.1.2.5 熱釋光法

工作時,把熱釋光探測器埋在地下,使其接受α,β,γ射線的照射,熱釋光探測器將吸收它們的能量。一定時間後,取出探測器,送到實驗室,用專門的熱釋光測量儀器加熱熱釋光探測器,記錄下相應的溫度和光強。探測器所受輻射越多,其發光強度愈強。測定有關結果即可了解測點的輻射水平及放射性元素的分布情況,進而解決不同的地質問題。

自然界的礦物3/4以上有熱釋光現象。常溫條件下,礦物接受輻射獲得的能量,是能長期積累並保存下來的。只有當礦物受熱到一定程度,貯存的能量才能以光的形式釋放出來。根據礦物樣品的發光曲線,可以推算該礦物過去接受輻射的情況、溫度的情況等。

7.1.2.6 α測量法

α測量法是指通過測量氡及其衰變子體產生的α粒子的數量來尋找放射性目標體,以解決環境與工程問題的一類放射性測量方法。氡同位素及其衰變產物的α輻射是氡氣測量的主要物理基礎。

工程和環境調查中用得較多有α徑跡測量和α卡測量方法。

(1)α徑跡測量法

當α粒子射入絕緣體時,在其路徑上因輻射損傷會產生細微的痕跡,稱為潛跡(僅幾納米)。潛跡只有用電子顯微鏡才能看到。若把這種受過輻射損傷的材料浸泡在強酸或強鹼里,潛跡便會蝕刻擴大,當其直徑為微米量級時,用一般光學顯微鏡即可觀察到輻射粒子的徑跡。能產生徑跡的絕緣固體材料稱為固體徑跡探測器。α徑跡測量就是利用固體徑跡探測器探測徑跡的氡氣測量方法。

在工作地區取得大量α徑跡數據後,可利用統計方法確定該地區的徑跡底數,並據此劃分出正常場、偏高場、高場和異常場。徑跡密度大於底數加一倍均方差者為偏高場,加二倍均方差者為高場、加三倍均方差者為異常場。

(2)α卡法

α卡法是一種短期累積測氡的方法。α卡是用對氡的衰變子體(21884Po和21484Po等)具有強吸附力的材料(聚酯鍍鋁薄膜或自身帶靜電的過氯乙烯細纖維)製成的卡片,埋於土壤中,使其聚集氡子體的沉澱物,一定時間後取出卡片,立即用α輻射儀測量卡片上的α輻射,藉此測定氡的濃度。由於測量的是卡片上收集的放射性核素輻射出的α射線,所以把卡片稱作α卡,有關的方法就稱為α卡法。如果把卡片做成杯狀,則稱為α杯法,其工作原理與α卡法相同。

7.1.2.7 γ-γ法

γ-γ法是一種人工放射性法,它是利用γ射線與物質作用產生的一些效應來解決有關地質問題,常用來測定岩石、土壤的密度或岩性。

γ-γ法測定密度的原理是當γ射線通過介質時會發生康普頓效應、光電效應等過程。若γ射線的照射量率I0;γ射線穿過物質後,探測器接受到的數值為I,則I和I0之間有一復雜的關系。即I=I0·f(ρ,d,Z,E0),其中ρ為介質的密度,d為γ源與探測器間的距離,Z為介質的原子序數,E0為入射γ射線能量。

在已知條件下做好量板,給出I/I0與ρ,d的關系曲線。在野外測出I/I0後,即可根據量板查出相應的密度值ρ。

7.1.2.8 X熒光測量

X射線熒光測量,也稱X熒光測量,是一種人工放射性方法,用來測定介質所含元素的種類和含量。其工作原理是利用人工放射性同位素放出的X射線去激活岩石礦物或土壤中的待測元素,使之產生特徵X射線(熒光)。測量這些特徵X射線的能量便可以確定樣品中元素的種類,根據特徵X射線的照射量率可測定該元素之含量。由於不同原子序數的元素放出的特徵X射線能量不同,因而可以根據其能量峰來區分不同的元素,根據其強度來確定元素含量,且可實現一次多元素測量。

根據激發源的不同,X熒光測量可分為電子激發X熒光分析、帶電粒子激發X熒光分析、電磁輻射激發X熒光分析。

X熒光測量可在現場測量,具有快速、工效高、成本低的特點。

7.1.2.9活化法

活化分析是指用中子、帶電粒子、γ射線等與樣品中所含核素發生核反應,使後者成為放射性核素(即將樣品活化),然後測量此放射性核素的衰變特性(半衰期、射線能量、射線的強弱等),用以確定待測樣品所含核素的種類及含量的分析技術。

若被分析樣品中某元素的一種穩定同位素X射線作用後轉化成放射性核素Y,則稱X核素被活化。活化分析就是通過測量標識射線能量、核素衰變常數、標識射線的放射性活度等數據來判斷X的存在並確定其含量。

能否進行活化分析以確定X核素存在與否,並作定量測量,關鍵在於:①X核素經某種射線照射後能否被活化,並具有足夠的放射性活度;②生成的Y核素是否具有適於測量的衰變特性,以利精確的放射性測量。

活化分析可分為中子活化分析、帶電粒子活化分析、光子活化分析等。

(1)中子活化分析

根據能量不同,中於可分為熱中子、快中子等。熱中子同原子核相互作用主要是俘獲反應,反應截面比快中子大幾個量級。反應堆的熱中子注量率一般比快中子的大幾個量級,因此熱中子活化分析更適應於痕量元素的分析。

(2)帶電粒子活化分析

常用的帶電粒子有質子、α粒子、氘核、氚核等,也有重粒子。

帶電粒子活化分析常用於輕元素,如硅、鍺、硼、碳、氮、氧等的分析。

(3)光子活化分析

常用電子直線加速器產生的高能軔致輻射來活化樣品。

❼ 鈾、鐳平衡系數的測定

65.3.5.1 化學法

根據鈾的含量不同,選擇鈾含量化學分析方法測定鈾的含量及其不確定度,將其轉換成鈾的比活度及其不確猛顫念定枝困度。在此基礎上,用化學方法測定鐳的比活度及其不確定度。按照下式計算鈾鐳平衡系數:

岩石礦物分析第三分冊有色、稀有、分散、稀土、貴金屬礦石及鈾釷礦石分析

式中:K(U-Ra)為鈾鐳平衡系數;AU為鈾的比活度,Bq/kg;uAU為鈾的比活度的測量不確定度,Bq/kg;ARa為鐳的比活度,Bq/kg;URa為鐳的比活度的測量不確定度,Bq/kg。

65.3.5.2 物理法

用高純鍺γ譜儀能譜法同時測定鈾和鐳的比活度及其不確洞芹定度。按照式(65.43)計算鈾鐳平衡系數。

閱讀全文

與鈾檢測方法相關的資料

熱點內容
治療hpv有什麼好方法嗎 瀏覽:953
方差分析數據變換方法 瀏覽:65
和田玉籽料玉器鑒別方法 瀏覽:381
導線計算方法 瀏覽:319
票房的計算方法 瀏覽:570
少兒象棋教學方法探討 瀏覽:891
口腔黏液囊腫治療方法 瀏覽:412
什麼是密度測量方法 瀏覽:588
衛生間做防水的正確方法 瀏覽:549
快速認識圈子的方法 瀏覽:255
前臂肌肉鍛煉方法 瀏覽:626
爆炸掛鉤正確掛餌方法 瀏覽:159
兒童過敏了起包怎麼辦最快方法 瀏覽:547
避之寶的使用方法 瀏覽:1004
hvlp噴槍使用方法 瀏覽:268
狗吃糖果的正確方法 瀏覽:495
阻力對物體運動的實驗研究方法 瀏覽:474
生肖位數的計算方法 瀏覽:173
手足蠟膜使用方法 瀏覽:455
宇宙直徑計算方法 瀏覽:681