導航:首頁 > 解決方法 > 小學數學60題解決方法

小學數學60題解決方法

發布時間:2023-05-13 03:48:12

① 小學數學解決問題的策略有哪些

小學數學解決問題的策略有以下幾個步驟:

1. 閱讀理解題目

首先要仔細閱讀題目,理解題意,找出問題的關鍵點和要求,確定所給的數據和需要求解的未知量。

2. 列出方程式

根據問題的描述和要求,列出方程式,盡量簡化表達式,定義正確的符號,以便更好地表示關余老系。

3. 解方程式

使用基本的數學運算和計算技巧,解決方程式,逐步求解未知量,檢查答案是否與判毀世問題所要求的一致。

4. 回答問題

將求得的解答應用到原題目上,判斷結果是否符合要求,是否能夠解釋和說明問題的全部內容。

5. 檢查掘肢結果

最後一步是檢查答案是否正確,如果有時間,可以反復檢查解答過程和結果,發現錯誤並改正,以確保結果正確。

這些策略在小學數學中是非常重要的,能夠幫助學生系統性地解決數學問題。當學生掌握這些策略,並能夠熟練運用時,就能夠更自信地面對數學問題,並取得更好的成績。

② 小學數學問題解決策略有幾種

小學生數學問題解決策略有:作圖解決問題的策略、列舉信息的策略、動手做的策略、嘗試的策略等。教師應該充分利用學生已有的生活經驗,隨時引導學生把所學的數學知識應用到生活中去。
1、作圖解決問題的策略
線段圖在解答分數問題時的作用是顯而易見,教過小學高年級數學的教師都會對運用線段圖來解答分數問題情有獨鍾,但線段圖在解決其他類型的問題同樣也會發揮其直觀、形象作用。
2、列舉信息的策略
枚舉篩選法是指解某些數學題時,有時要根據題目的一部分條件,先把可能的答案一一列舉出來,然後再根據另一部分條件檢驗,篩選出題目的答案。數學問題的解決過程既是一種不斷地變更問題的過程,也是一種不斷試錯與篩選的過程。
3、動手做的策略
這是一種通過探索性動手操作而獲得問題解決的策略。在學習空間與圖形這一塊內容時,動手做的策略就會顯得很有效。如在講授認識平行四邊形這一新課時,教學目標就是要讓學生能夠自己動手操作探索出平行四邊形的基本特徵兩條對邊互相平行且相等。需要注意的是,在學生動手之前,教師不要給太多的暗示,要把實際操作策略的選擇權留給學生,讓學生在自主探索中實現操作策略的多樣化。
4、嘗試的策略
美國著名心理學家桑代克曾把人和動物的學習定義為刺激與反應之間的聯結,聯結是通過盲目嘗試、逐步減少錯誤而形成的,即通過試誤形成的。桑代克的嘗試--錯誤說早在一百年前就提出來了,也被大多數人所認同。這里的嘗試策略也就是多種方法的「試誤」過程。不同的學生有著不同的數學水平,因此,要允許學生以不同的方式去學習數學。教師所要做的,就是要充分尊重每一個學生的個體差異,讓學生採用嘗試的策略去解決問題。

③ 小學生解決問題的方法有哪些

1.歸納法。就是用聯系、運動、發展變化的觀點看待問題,把有待解決的問題,通過某種轉化過程,歸結為一類已經解決或容易解決的問題。其實質就是對問題進行變形,促使矛盾轉化。例如:完全歸納法(數學歸納法)與不完全歸納法。

2.假設法。

就是先對題目中的已知條件或問題作出某種假設,然後,按照題中的已知條件進行推算,根據數量上出現矛盾,加在適當調整,最後找到正確答案的一種解題思想方法。如「雞兔同籠」問題。

3.逆推法。採用與事情發生過程相反的順序思考的解題方法做做逆推法。

4.列舉篩選法。解某些數學題時,有時要根據題目的一部分條件,把可能的答案一一列舉出來,然後根據另一部分條件檢驗,篩選出題目的答案。

5.圖解法。解數學題時,可以設法把條件、問題以及它們的數量關系用線段圖、韋恩圖等圖形反映上來,使我們能藉助圖形進行分析、推理,尋找解題途徑,這種方法叫圖解法。

6.類比法。

「類比」是根據兩個或兩類事物有些屬性相同,推測它們另一些屬性也可能相同的推理。在解題中,根據題中所求問題與已知條件相類似的關系,利用類比推理,找類比模型,從而尋找解題途徑的方法叫類比法。

7.小學數學中常用邏輯推理法。

(1)分析與綜合法

分析法是從需證的結論出發,以一系列已知定義、定理為依據逐步逆溯,從而達到已知條件的推理方法。特別是應用題,幾何證明題等。

綜合法是從題設條件出發,以一系列已知定義、定理為依據,逐步推演出所需證明的結論的推理方法。

(2)歸納與演繹法

歸納與演繹是相互聯系著的,歸納得出的結論,可以用演繹法去驗證,演繹的前提是通過歸納得出的。

由特殊性前提引出一般性結論的推理叫做歸納推理。以歸納推理為主要內容的科學研究方法叫做歸納法。

一般地,在小學數學課中,運算定律,基本性質,法則等都是運用不完全歸納讓學生從頭從一般原理到特殊事例的推理叫做演繹推理。以演繹推理的主要內容的科學研究方法叫演繹法。一般地,在小學數學教材中,當以歸納推理的形式得出運算定律,基本性質、法則、公式後,都再以演繹推理的形式進行計算。

如三段論(由大前提、小前提、結論構成)

(3) 觀察與實驗法

(4)聯想法

(5)猜想法

(6)對應法。

④ 小學數學解決問題的思路和方法

小學數學解決問題的思路和方法如下:

1、形象思維方法

形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,並從具體形象展開來的思維過程。

形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。

公式法:運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

解題技巧:

1.剔除法:利用已知條件和選項所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。

2. 特殊值檢驗法:對於具有一般性的數學問題,在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。

⑤ 小學數學解題思路和方法

數學難嗎?數學是大多數學生都重視的一門課,它讓人又愛又恨。因此,提升數學分數是很多家長和孩子茫然無措的難題。而解決這種情況的最有效辦法就是,學習完知識後,把所有知識全部過濾一遍,查漏補缺,把不熟練的熟練起來,不會的地方一定搞清楚,你會發現數學的高分就是這么簡單。

解題思路:

已知一個加數個位上是0,去掉0,就與第二個加數相同,可知第一個加數是第二個加數的10倍,那麼兩個加數的和572,就是第二個加數的(10+1)倍。

解:第一個加數:572÷(10+1)=52

第二個加數:52×10=520

答:這兩個加數分別是52和520。

⑥ 小學六年級數學應用題60道答案

1、一根繩長4/5米,先用去1/4,又用去1/4米,一共用去多少米?
2、山羊50隻,綿羊比山羊的 4/5多3隻,綿羊有多少只?
3、看一本120頁的書,已看全書的 1/3,再看多少頁正好是全書的 5/6?
4、一瓶油4/5千克,已用去3/10千克,再用去多少千克正好是這桶油的 1/2?
5、一袋大米120千克,第一天吃去1/4,第二天吃去餘下的 1/3,第二天吃去多少千克?
6、一批貨物,汽車每次可運走它的 1/8,4次可運走它的幾分之幾?如果這批貨物重116噸,已經運走了多少噸?
7、某廠九月份用水28噸,十月份計劃比九月份節約 1/7,十月份計劃比九月份節約多少噸?
8、一塊平行四邊形地底邊長24米,高是底的 3/4,它的面積是多少平方米?
9、人體的血液占體重的 1/13,血液里約 2/3是水,爸爸的體重是78千克,他的血液大約含水多少千克?
10、六年級學生參加植樹勞動,男生植了160棵,女生植的比男生的 3/4多5棵。女生植樹多少棵?
11、新老派光小學四年級人數是五年級的 4/5,三年級人數是四年級的 2/3,如果五年級是120人,那麼三年級是多少人?
12、甲、乙兩車同時從相距420千米的A、B兩地相對開出,5小時後甲車行了全程的 3/4,乙車行了全程的 2/3,這時兩車相距多少千米?
13、五年級植樹120棵,六年級植樹的棵數是五年級的7/5,五、六年級一共植樹多少棵?
14、修一條12/5千米的路,第一周修了2/3千米,第二周修了全長的1/3 ,兩周共修了多少千米?
15、一條公路長7/8千米,第一天修了1/8千米,再修多少千米就正好是 1/2全長的 ?
16、小華看一本96頁的故事書,第一天看了 1/4,第二天看了 1/8。兩天共看了多少頁?
17、一本書有150頁,小王第一天看了總數的1/10,第二天看了總數的 1/15,第三天應從第幾頁看起?
18、學校運來2/5 噸水泥,運來的黃沙是水泥的5/8 還多 1/8噸,運來黃沙多少噸?
19、小偉和小英給希望工程捐款錢數的比是2 :5。小英捐了35元,小偉捐了多少元?
20、電視機廠今年計劃比去年增產2/5。去年生產電視機1/5萬台,今年計劃增產多少萬台?
21、某村要挖一條長2700米的水渠,已經挖了1050米,再挖多少米正好挖完這條水渠的2/3?
22、某校少先隊員採集樹種,四年級採集了1/2千克,五年級比四年級多採集1/3千克,六年級採集的是五年級的6/5。六年級採集樹種多少千克?
23、倉庫運來大米240噸,運來的大豆是大米噸數的5/6,大豆的噸數又是麵粉的3/4。運來麵粉多少噸?
24、甲筐蘋果9/10千搜清克,把甲的1/9給乙筐,甲乙相等,求乙筐蘋果多少千克?
25、一桶油倒出2/3,剛好倒出36千克,這桶油原來有多少千克?
26、甲、乙兩個工程隊共修路360米,甲乙兩隊長度比是5 : 4,甲隊比乙隊多修了多少米?
27、服裝廠第一車間有工人150人,第二車間的工人數是第一車間的2/5,兩個車間的人數正好是全廠工人總數的5/6,全廠有工人多少人?
28、一批水果120噸,其中梨占總數的2/5,又是蘋果的4/5,蘋果有多少千克?
29、甲乙兩數的和是120,把甲的1/3給乙,甲、乙的比是2:3,求原來的甲是多少?
30、小紅採集標本24件,送給小芳4件後,小紅恰好是小芳的4/5,小芳原有多少件?
31、兩桶油共重27千克,大桶的油用去2千克後,剩下的油與小桶內油的重量比是3:2。求大桶里原來裝有多少千克油?
32、一個長方體的棱長和是144厘米,它的長、寬、高之比是4:3:2,長方體的體積是多少?
33、小紅有郵票60張,小明有郵票40張,小紅給多少張小明,兩人的郵票張數比為1:4?
34、王華以每小時4千米的速度從家去學校,1/6小時行了全程的2/3,王華家離學校有多少千米?
35、3台織布機3/2小時織布72米,平均每台織布機每小時織布多少米?
36、一輛汽車行9/2千米用汽油9/25升,用3/5升汽油可以行多少米?
37、有一塊三角形的鐵侍漏賀皮,面積是3/5平方米。它的底是3/2米,高是多少米?
38、水果店運來梨和蘋果共50筐,其中梨的筐數是蘋果的2/3,運來梨和蘋果各多少筐?
39、用24厘米的鐵絲圍成一個直角三角形,這個三角形三條邊長度的比是3∶4∶5,這個直角三角形的面積是多少平方厘米?斜邊上的高是多少厘米?
40、一個長方形的周長是49米,長和寬的比是4∶3,這個長方形的面積是多少平方米?
41、甲、乙兩個人同時從A、B兩地相向而行,甲每分鍾走100米,與乙的速度比是5∶4,5分鍾後,兩人正好行了全程的3/5,A、B兩地相距多少米?
42、一所小學擴建校舍,原計劃投資28萬元,實際投資比原計劃節省了 1/7,實際投資多少萬元?
43、玩具廠計劃生產游戲機2000台,實際超額完成 1/10,實際生產多少台?
44、一根電線長40米,先用去 3/8,後又用去 3/8米,這根電線還剩多少米?
45、某種書先提價 1/6,又降價 1/6,這種書的原價高還是現價高?
46、一本書共100頁,小明第一天看了1/5,第二天看了1/4,剩下的第三天看完,第三天看了多少頁?
47、光明小學十月份比九月份節約用水 1/9,十月份用水72噸,九月份用水多少噸?
48、修一條公路,修了全長的 3/7後,離這條公路的中點還有1.7米,求這條公路的長?
49、光明小學有60台電腦,比五愛小學多 1/5,五愛小學有多少台電腦?
50、光明小學有60台電腦,比五愛小學少1/5,五愛小學有多少台電腦?
51、一袋大米兩周吃完,第一周吃了1/3,第二周比第一周多吃了5千克,這袋大米共重多少千克?
52、小明讀一本書,已讀的頁數是未讀的頁數的3/2,他再讀30頁,這時已讀的頁數是未讀的7/3,這本書共多少頁?
53、飼養小組養的小白兔是小灰兔的3/5,小灰兔比小白兔多24隻,小白兔和小灰兔共多少只?
54、某漁船一天上午捕魚1200千克,比下午少1/7,全天共捕魚多少千克?
55、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,還剩25/3千克,這桶油原有多少千克?
56、一條路已經修了全長的1/3,如果再修60米,就正好修了全長的一半,這條路長多少米?
57、牧場養牛480頭,比去年養的多1/5,比去年多多少頭?
58、一份材料,甲單獨打完要3小時,乙單獨打完要5小時,甲、乙兩人合打多少小時能打完這份材料的一半?
59、打掃多功能教師,甲組同學1/3小時可以打掃完,乙組同學1/4小時可以打掃完,如果甲、乙合做,多少小時能打掃完整個教室?
60.行同一段路,甲要20分鍾,乙要18分鍾,甲的速度比乙的速度慢百分之幾?

⑦ 小學數學解題方法

小學數學解題方法

引導語:下面我帶大家來看看小學數學解題方法,希望能夠幫助到大家,謝謝您的閱讀的。

一、對照法

如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。

例1:三個連續自然數的和是18,則這三個自然數從小到大分別是多少?

對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數。

例2:判斷題:能被2除盡的數一定是偶數。

這里要對照“除盡”和“偶數”這兩個數學概念。只有這兩個概念全理解了,才能做出正確判斷。

二、公式法

運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

例3:計算59×37+12×59+59

59×37+12×59+59

=59×(37+12+1)…………運用乘法分配律

=59×50…………運用加法計演算法則

=(60-1)×50…………運用數的組成規則

=60×50-1×50…………運用乘法分配律

=3000-50…………運用乘法計演算法則

=2950…………運用減法計演算法則

三、比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

比較法要注意:

(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。

(2)找聯系與區別,這是比較的實質。

(3)必須在同一種關系下(同一種標准)進行比較,這是“比較”的基本條件。

(4)要抓住主要內容進行比較,盡量少用“窮舉法”進行比較,那樣會使重點不突出。

(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。

例4:填空:0.75的最高位是(),這個數小數部分的最高位是();十分位的數4與十位上的數4相比,它們的()相同,()不同,前者比後者小了()。

這道題的意圖就是要對“一個數的最高位和小數部分的最高位的區別”,還有“數位和數值”的區別等。

例5:六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生?

這是兩種方案的比較。相同點是:六年級人數不變;相異點是:兩種方案中的條件不一樣。

找聯系:每人種樹棵數變化了,種樹的總棵數也發生了變化。

找解決思路(方法):每人多種7-5=2(棵),那麼,全班就多種了75+15=90(棵),全班人數為90÷2=45(人)。

四、分類法

根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。

分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。

例6:自然數按約數的個數來分,可分成幾類?

答:可分為三類。(1)只有一個約數的數,它是一個單位數,只有一個數1;(2)有兩個約數的,也叫質數,有無數個;(3)有三個約數的,也叫合數,也有無數個。

五、分析法

把整體分解為部分,把復雜的事物分解為各個部分或要素,並對這些部分或要素進行研究、推導的一種思維方法叫做分析法。

依據:總體都是由部分構成的。

思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路。

也就是從求解的問題出發,正確選擇所需要的兩個條件,依次推導,一直到問題得到解決為止,這種解題模式是“由果溯因”。分析法也叫逆推法。常用“枝形圖”進行圖解思路。

例7:玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件。問平均每天超過計劃多少件?

思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件。計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴, 還得求出來。要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知。

六、綜合法

把對象的各個部分或各個方面或各個要素聯結起來,並組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法。

用綜合法解數學題時,通常把各個題知看作是部分(或要素),經過對各部分(或要素)相互之間內在聯系一層層分析,逐步推導到題目要求,所以,綜合法的解題模式是執因導果,也叫順推法。這種方法適用於已知條件較少,數量關系比較簡單的數學題。

例8:兩個質數,它們的差是小於30的合數,它們的和即是11的倍數又是小於50的偶數。寫出適合上面條件的各組數。

思路:11的倍數同時小於50的偶數有22和44。

兩個數都是質數,而和是偶數,顯然這兩個質數中沒有2。

和是22的兩個質數有:3和19,5和17。它們的差都是小於30的合數嗎?

和是44的兩個質數有:3和41,7和37,13和31。它們的差是小於30的合數嗎?

這就是綜合法的思路。

七、方程法

用字母表示未知數,並根據等量關系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導的過程。方程法最大的`特點是把未知 數等同於已知數看待,參與列式、運算,克服了算術法必須避開求知數來列式的不足。有利於由已知向未知的轉化,從而提高了解題的效率和正確率。

例9:一個數擴大3倍後再增加100,然後縮小2倍後再減去36,得50。求這個數。

例10:一桶油,第一次用去40%,第二次比第一次多用10千克,還剩餘6千克。這桶油重多少千克?

這兩題用方程解就比較容易。

八、參數法

用只參與列式、運算而不需要解出的字母或數表示有關數量,並根據題意列出算式的一種方法叫做參數法。參數又叫輔助未知數,也稱中間變數。參數法是方程法延伸、拓展的產物。

例11:汽車爬山,上山時平均每小時行15千米,下山時平均每小時行駛10千米,問汽車的平均速度是每小時多少千米?

上下山的平均速度不能用上下山的速度和除以2。而應該用上下山的路程÷2。

例12:一項工作,甲單獨做要4天完成,乙單獨做要5天完成。兩人合做要多少天完成?

其實,把總工作量看作“1”,這個“1”就是參數,如果把總工作量看作“2、3、4……”都可以,只不過看作“1”運算最方便。

九、排除法

排除對立的結果叫做排除法。

排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。

例13:為什麼說除2外,所有質數都是奇數?

這就要用反證法:比2大的所有自然數不是質數就是合數。假設:比2大的質數有偶數,那麼,這個偶數一定能被2整除,也就是說它一定有約數2。一個數的約 數除了1和它本身外,還有別的約數(約數2),這個數一定是合數而不是質數。這和原來假定是質數對立(矛盾)。所以,原來假設錯誤。

例14:判斷題:(1)同一平面上兩條直線不平行,就一定相交。(錯)

(2)分數的分子和分母同乘以或同除以一個相同的數,分數大小不變。(錯)

十、特例法

對於涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。特例法的邏輯原理是:事物的一般性存在於特殊性之中。

例15:大圓半徑是小圓半徑的2倍,大圓周長是小圓周長的()倍,大圓面積是小圓面積的()倍。

可以取小圓半徑為1,那麼大圓半徑就是2。計算一下,就能得出正確結果。

例16:正方形的面積和邊長成正比例嗎?

如果正方形的邊長為a,面積為s。那麼,s:a=a(比值不定)

所以,正方形的面積和邊長不成正比例。

十一、化歸法

通過某種轉化過程,把問題歸結到一類典型問題來解題的方法叫做化歸法。化歸是知識遷移的重要途徑,也是擴展、深化認知的首要步驟。化歸法的邏輯原理是,事物之間是普遍聯系的。化歸法是一種常用的辯證思維方法。

例17:某制葯廠生產一批防“非典”葯,原計劃25人14天完成,由於急需,要提前4天完成,需要增加多少人?

這就需要在考慮問題時,把“總工作日”化歸為“總工作量”。

例18:超市運來馬鈴薯、西紅柿、豇豆三種蔬菜,馬鈴薯佔25%,西紅柿和豇豆的重量比是4:5,已知豇豆比馬鈴薯多36千克,超市運來西紅柿多少千克?

需要把“西紅柿和豇豆的重量比4:5”化歸為“各占總重量的百分之幾”,也就是把比例應用題化歸為分數應用題。

;

⑧ 小學數學解決問題的步驟

小學數學解決問題的基本策略:

1、畫圖策略

在解題過程中,運用畫圖的方法,畫出與題意相關的示意圖,藉助示意圖來幫助推理、思考,這是小學數學解決問題中最常用的一種策略。

常見的畫圖方式有:線段圖、集合圖等。將疑難問題的文字「翻譯成圖」,能夠立竿見影地理清思路,找到解題策略。

5、替換策略

「替」,顧名思義就是「替代」;「換」,自然就是「更換」的意思。

替換策略是用來解決幾個數量與總量之間的關系問題。

運用替換策略能把兩個量與總量的關系簡化為一個量與總量的關系,從而有助於解決問題。

6、逆推策略

逆推,即「逆回來、倒過去」推想,也叫倒推法、還原法。

就是從事情的結果出發,倒過去推想它最開始是怎樣的。

當我們已知「現在」的狀態,要去求「原來」時,常常可以運用逆推策略幫助思考。

⑨ 小學數學解題方法大全

小學數學的解題 方法 有哪些?很多人經常抓不住解題的精髓,以至於數學成績總是提不高。下面是我為大家整理的關於小學數學解題 方法大全 ,希望對您有所幫助。歡迎大家閱讀參考學習!

一、小學數學解題方法:形象思維方法

形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,並從具體形象展開來的思維過程。

形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。它的思維過程表現為表象、類比、聯想、想像。它的思維品質表現為對直觀材料進行積極想像,對表象進行加工、提煉進而提示出本質、規律,或求出對象。它的思維目標是解決實際問題,並且在解決問題當中提高自身的思維能力。

1、實物演示法

利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法。

這種方法可以使數學內容形象化,數量關系具體化。比如:數學中的相遇問題。通過實物演示不僅能夠解決「同時、相向而行、相遇」等術語,而且為學生指明了思維方向。再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多。

雞兔同籠問題。製作三個表格:第一張表格是逐一舉例法,根據雞與兔共20隻的條件,假設雞只有1隻,那麼兔就有19隻,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以後發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由於雞與兔共20隻,所以各取10隻,接著根據實際的數據情況確定列舉的方向。

4、探索法

按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法。我國著名數學家華羅庚說過,在數學里,「難處不在於有了公式去證明,而在於沒有公式之前,怎樣去找出公式來。」蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在 兒童 的精神世界中,這種需要特別強烈。「學習要以探究為核心」,是新課程的基本理念之一。人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常採取的一種好方法就是探究、嘗試。

第一、探究方向要准確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。例如,教學「比例尺」時,教師創設「學生出題考老師」的教學情境,師:「現在我們考試好不好?」學生一聽:很奇怪,正當學生疑惑之時,教師說:「今天改變過去的考試方法,由你們出題考老師,願意嗎?」學生聽後很感興趣。教師說:「這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?」於是學生紛紛上台度量、報數,教師都一個接一個地回答對應的實際距離。學生這時更感到奇怪,異口同聲地說:「老師您快告訴我們吧,您是怎樣算的?」教師說:「其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?」於是引出所要學習的內容「比例尺」。

第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律。

第三,獨立探究與合作探究結合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。

5、觀察法

通過大量具體事例,歸納發現事物的一般規律的方法叫做觀察法。巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家.」

小學數學「觀察」的內容一般有:①數字的變化規律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系。

如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出乘法交換率:在乘法算式里,交換兩個因數的位置,積不變。

「觀察」的要求:

第一、觀察要細致、准確。

第二、科學觀察。科學觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象。比如,在教學長方體的認識時,要做到「有序」觀察:(1)面——形狀、個數、面與面之間的關系;(2)棱——棱的形成、條數、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數,認識頂點的一個重要作用是引出長方體長、寬、高的概念。

6、典型法

針對題目去聯想已經解過的典型問題的解題規律,從而找出解題思路的方法叫做典型法。典型是相對於普遍而言的。解決數學問題,有些需要用一般方法,有些則需要用特殊(典型)方法。比如,歸一、倍比和歸總演算法、行程、工程、消同求異、平均數等。

運用典型法必須注意:

(1)要掌握典型材料的關鍵及規律。

(2)熟悉典型材料,並能敏捷地聯想到所適用的典型,從而確定所需要的解題方法。

(3)典型和技巧相聯系。

7、放縮法

通過對被研究對象的放縮估計來解決問題的方法叫做放縮法。放縮法靈活、巧妙,但有賴於知識的拓展能力及其想像能力。

思路一:「放大」。通過觀察發現,語、數、外三科成績在題目中各出現兩次,我們求197+199+196的和,這個和是「語數外成績的2倍」,除以2得三科成績之和,再減去任意兩科的成績,就得到第三科的成績。

思路二:「縮小」。我們用語數成績的和減去語外的成績,199-197=2(分),這是數學減英語成績的差。數學和英語的和是196分,再求數學的分數就不難了。

放縮法有時運用在估算和驗算上。

8、驗證法

你的結果正確嗎?不能只等教師的評判,重要的是自己心裡要清楚,對自己的學習有一個清楚的評價,這是優秀學生必備的學習品質。

驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功。應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養成嚴謹細致的好習慣。

(1)用不同的方法驗證。教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算。

(2)代入檢驗。解方程的結果正確嗎?用代入法,看等號兩邊是否相等。還可以把結果當條件進行逆向推算。

(3)是否符合實際。「千教萬教教人求真,千學萬學學做真人」陶行知先生的話要落實在教學中。比如,做一套衣服需要4米布,現有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)

按照「四捨五入法」保留近似數無疑是正確的,但和實際不符合,做衣服的剩餘布料只能捨去。教學中,常識性的東西予以重視。做衣服套數的近似計算要用「去尾法」。

(4)驗證的動力在猜想和質疑。牛頓曾說過:「沒有大膽的猜想,就做不出偉大的發現。」「猜」也是解決問題的一種重要策略。可以開拓學生的思維、激發「我要學」的願望。為了避免瞎猜,一定學會驗證。驗證猜測結果是否正確,是否符合要求。如不符合要求,及時調整猜想,直到解決問題。

二、小學數學解題方法: 抽象思維 方法

運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫 邏輯思維 。

抽象思維又分為:形式思維和辯證思維。客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式。形式思維是辯證思維的基礎。

形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。

辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律。

小學、中學數學要培養學生初步的抽象思維能力,重點突出在:

(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性。

(2)思維方法上,應該學會有條有理,有根有據地思考。

(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。

(4) 思維訓練 上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地推理。

9、對照法

如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。

10、公式法

運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

11、比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

比較法要注意:

(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。

(2)找聯系與區別,這是比較的實質。

(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件。

(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。

(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。

相關 文章 :

1. 小學數學常用解題思路

2. 小學數學公式大全(完整)

3. 小學數學的19種學習方法

4. 小學數學教法方法有哪些

5. 小學五年級數學學習方法和技巧大全

⑩ 小學數學解決問題方法大全

小學數學解決問題的 方法 有哪些?解決問題需要注意什麼問題?要抓住什麼要點?下面是我為大家整理的關於小學數學解決問題 方法大全 ,希望對您有所幫助。歡迎大家閱讀參考學習!

1小學數學解決問題方法大全

(1)多讀題,緩慢讀題,讀得順暢、連貫,劃出問題,圈出關鍵詞句。

讀題有利於學生對問題的理解,有助於通過語言描述看到問題解決的契機。對於問題意義表徵受阻的學困生,有必要指導他們從「指讀」(用筆尖指著題目,眼睛看著所指的文字讀)開始,逐步養成邊讀邊思考,反復讀幾遍,直至讀懂的習慣。進一步,還可以指導他們劃出題中已知的數學信息和所求問題,並在句中圈出關鍵詞。

(2)把「大數」化「小」。

例如,一本書共369頁,平均每天看41頁,多少天看完?對有困難的學生,只要將原題改為:一本書24 頁,平均每天看8 頁,多少天看完?他們往往能脫口而出「3天」。再用「小步子」進行追問:用什麼方法算?怎樣列式?為什麼這樣列式?這兩題有什麼相同和不同?從而使學生領悟到,兩題都是求一個數裡面有幾個幾。

(3)聯系生活,想像情境。

讓學生想像自己是問題中的「小明」,進入情境,想像自己拿著20元錢去買票。從而增強學生身臨其境的感受,有助於解決問題。以上三條策略,其實就是過去的讀題、審題策略,現在依然非常實用。

(4)列表、畫圖。

表、圖具有直觀形象的特點,可以幫助學生簡潔、明了、正確地表徵問題,提高解決問題的能力。在用比例知識解決正反比例的問題時,學困生往往不清楚量與量之間的對應關系。可以引導學生列表來幫助理解。

2解決問題方法

(1)培養良好的審題習慣。一要審數和符號,二要審運算順序,明確先算什麼,後算什麼。三要審計算方法的合理、簡便,看能否簡算,然後再動手解題。

(2)養成仔細計算、規范書寫的習慣。按格式書寫,數位對齊,字跡工整、不潦草,保持作業的整齊美觀。

(3)養成估算和驗算的習慣。這是計算正確的保證。驗算是一種能力,也是一種習慣。

(4)強調檢查。計算都要抄題,要求學生凡是抄下來的都校對,做到不錯不漏。

(5)合理使用草稿紙。在打草稿的時候,要從左往右,從上到下,有序的打下去。一張寫完,再翻一張,估計位置不夠不要隨意下筆換一個空間大的地方打草稿。檢查時,也可從草稿入手。

3解決問題方法

1、仔細觀察的習慣。通過課堂上仔細觀察情境圖、操作的過程,發展到留心觀察周圍事物的習慣。

2、敢於提問的習慣。教師要引導學生不恥下問,隨時表揚那些敢於、善於提問題的同學。對於學生的問題,教師要耐心解答。課堂上把提問的權利還給學生。

3、多角度思考的習慣。遇到問題不要局限或拘泥於一個角度思考問題,而是從多個角度去探討問題的答案,鼓勵學生的 創新思維 、求異思維。

4、善於聯想、猜想和假設的習慣。遇到問題,無從下手時,可以大膽去猜想、假設答案,然後再往前推理。尤其是在做那些難度較大的思考題時,可用這種方法。

如果學生養成了這幾種好的習慣,學生的思維靈活度便會大大提高,理解能力也會跟著上升。

4解決問題方法

(1)合理強化。

在學困生不合理的知識結構問題解決之後,應進行相應的練習。實施練習的首要原則是增強針對性,做到缺什麼補什麼,什麼弱強化什麼;同時,注意及時強化與把握好強化的頻率。

及時強化是根據遺忘曲線先快後慢的規律,使學生新獲得的知識點和知識結構當堂鞏固;強化的頻率是指根據掌握、回生的實際情況,縮短或延長強化的周期,以促進問題解決方法的內化。

(2)分解強化。

為了讓學困生形成比較穩定、清晰的思路,我們通常採用「分解強化」策略實施訓練,即將問題分解為若干個「小步子」,為思維的清晰化提供一個支架,再逐漸將支架拆除。

(3)順向加工策略。

順向加工策略,是指不考慮一道題的特殊問題,而是整體考慮該類問題所含變數能組成多少種問題情境,予以全面呈現,一一練習,以此幫助學生有效地形成解決該類型問題的知識系統。

(4)在輔導學困生時,要注意強調第四個步驟。例如,一個圓錐形的模具,底面半徑是75px,高是100px。它的體積是多少?學困生往往能選擇公式V = 13Sh ,但是算式卻列成1/3×3×4。原來,他們直覺地認為是三個數相乘,卻忽略了公式的實際意義。因此,強調所需條件,提醒關注已知數據常常是必要的。

相關 文章 :

1. 小學數學解決問題策略

2. 小學數學教學方法有哪些問題

3. 小學數學的19種學習方法

4. 小學數學應用題解題方法

5. 小學數學學好的方法和技巧

閱讀全文

與小學數學60題解決方法相關的資料

熱點內容
怎樣最簡單做兒童指套方法 瀏覽:345
手機截圖後圖片在哪裡設置方法 瀏覽:119
電腦三屏安裝方法 瀏覽:514
溜冰鞋的正確方法和視頻 瀏覽:577
中度腰間盤突出鍛煉方法 瀏覽:747
川大商學院研究生學習方法 瀏覽:541
被駝鳥追怎麼自救方法 瀏覽:258
美國廚衛防水膠怎麼使用方法 瀏覽:235
顛嫻有那幾種治療方法 瀏覽:624
減速機擺線針輪的安裝方法 瀏覽:146
bt511檢測方法 瀏覽:584
如何解決通分的方法 瀏覽:636
展示櫃製作方法視頻教程 瀏覽:222
第三視角拍攝方法和技巧 瀏覽:961
戒面膜的正確方法 瀏覽:466
語音課教學方法 瀏覽:949
常用的冷敷方法有哪幾種 瀏覽:733
鑒別白色水晶石頭的方法 瀏覽:494
洗青菜的正確方法 瀏覽:848
吉林省二本線計算方法 瀏覽:480