區別如下:
區別一:
從按鈕功能方面:
(A鍵)DIRECT,直接測量按鍵(離液晶屏較遠),也就是用批頭直接去接觸線路時,請按此按鈕。
(B鍵)INDUCTANCE,感應測量按鍵時(離液晶屏較近),也就是用批頭感應接觸線路時請按住此按鈕,才可達到目的。
區別二:
從本測電筆適用范圍方面:
本測電筆適用范圍於直接檢測12-250v的交直流電和間接檢測交流電的零線、相線和斷點之間。可以測量不帶電導體的通斷。
區別三:
從直接檢測方面:
a、最後所測數字為所測電壓值;
b、如果未達到高斷顯示值的70%時,將會顯示低斷值;
c、當測量直流電時,應該將手碰觸碰另一極。
區別四:
從間接檢測方面:
按住B鍵,讓批頭靠近電源線,如果電源線帶有電的話,數顯電筆的顯示器上就會顯示高電壓符號。
區別五:
從斷點檢測方面:
按住B鍵,從電線縱向移動,顯示窗內沒有顯示處就是斷點處。
❷ 總結!14個常用的統計假設檢驗的方法
本文分享利用SPSSAU進行14個常用的統計假設檢驗的方法,分為以下五個部分:
一、正態性檢驗
正態性特質是很多分析方法的基礎前提,如果不滿足正態性特質,則應該選擇其它的分析方法,因此在做某些分析時,需要先進行正態性檢驗。如果樣本量大於50,則應該使用Kolmogorov-Smirnov檢驗結果,反之則使用Shapro-Wilk檢驗的結果。
常見的分析方法正態性特質要求歸納如下表(包括分析方法,以及需要滿足正態性的分析項,如果不滿足時應該使用的分析方法)。
如果p 值大於0.05,則說明具有正態性特質,反之則說明數據沒有正態性特質。
如果是問卷研究,數據很難滿足正態性特質,而實際研究中卻也很少使用不滿足正態性分析時的分析方法。
SPSSAU認為有以下三點原因:
① 參數檢驗的檢驗效能高於非參數檢驗,比如方差分析為參數檢驗,所以很多時候即使數據不滿足正態性要求也使用方差分析
② 如果使用非參數檢驗,呈現出差異性,則需要對比具體對比差異性(但是非參數檢驗的差異性不能直接用平均值描述,這與實際分析需求相悖,因此有時即使數據不正態,也不使用非參數檢驗,或者Spearman相關系數等)
③ 理想狀態下數據會呈現出正態性特質,但這僅會出現在理想狀態,現實中的數據很難出現正態性特質(尤其是比如問卷數據)【可直接使用「直方圖」直觀展示數據正態性情況】。
二、方差齊檢驗
如果要進行方差分析,需要滿足方差齊性的前提條件,需要進行方差齊檢驗,其用於分析不同定類數據組別對定量數據時的波動情況是否一致。例如研究人員想知道三組學生的智商 波動情況是否一致(通常情況希望波動一致,即方差齊)。
判斷p 值是否呈現出顯著性(p <0.05),如果呈現出顯著性,則說明不同組別數據波動不一致,即說明方差不齊;反之p 值沒有呈現出顯著性(p >0.05)則說明方差齊。
提示: 方差不齊時可使用『非參數檢驗』,或者還可使用welch 方差,或者Brown-Forsythe方差。
三、相關性檢驗
(1)相關分析
相關分析是一種簡單易行的測量定量數據之間的關系情況的分析方法。可以分析包括變數間的關系情況以及關系強弱程度等。相關系數常見有三類,分別是:
1.Pearson相關系數
2.Spearman等級相關系數
3.Kendall相關系數
三種相關系數最常使用的是Pearson相關系數;當數據不滿足正態性時,則使用Spearman相關系數,Kendall相關系數用於判斷數據一致性,比如裁判打分。下圖是詳細使用場景:
如果呈現出顯著性(結果右上角有*號,此時說明有關系;反之則沒有關系)。
有了關系之後,關系的緊密程度直接看相關系數大小即可。(一般0.7以上說明關系非常緊密;0.4~0.7之間說明關系緊密;0.2~0.4說明關系一般。)
如果說相關系數值小於0.2,但是依然呈現出顯著性(右上角有*號,1個*號叫0.05水平顯著,2個*號叫0.01水平顯著;顯著是指相關系數的出現具有統計學意義普遍存在的,而不是偶然出現),說明關系較弱,但依然是有相關關系。
(2)卡方檢驗
卡方檢驗主要用於研究定類與定類數據之間的差異關系。卡方檢驗要求X、Y項均為定類數據,即數字大小代表分類。並且卡方檢驗需要使用卡方值和對應p 值去判斷X與Y之間是否有差異。通常情況下,共有三種卡方值,分別是Pearson卡方,yates校正卡方,Fisher卡方;優先使用Pearson卡方,其次為yates校正卡方,最後為Fisher卡方。
具體應該使用Pearson卡方,yates校正卡方,也或者Fisher卡方;需要結合X和Y的類別個數,校本量,以及期望頻數格子分布情況等,選擇最終應該使用的卡方值。SPSSAU已經智能化處理這一選擇過程。
第一:分析X分別與Y之間是否呈現出顯著性(p值小於0.05或0.01);
第二:如果呈現出顯著性;具體對比選擇百分比(括弧內值),描述具體差異所在;
第三:對分析進行總結。
卡方檢驗,SPSSAU提供兩個按鈕,二者的區別是,後者輸出更多的統計量過程值以及深入指標表格,滿足需要更多分析指標的研究人員,如下各圖。
進行卡方檢驗,上傳數據時需要特別注意數據格式,有兩種格式:常規格式和加權格式。
① 常規格式數據 ,如下圖。則通用方法中的【交叉(卡方)】和實驗/醫學研究中的【卡方檢驗】都可以使用。
② 加權數據: 但在某些情況下,我們得到的不是原始數據,而是經過整理的匯總統計數據。比如下面這樣格式的數據:
類似這樣的格式,不能直接使用的,需要整理成加權數據格式,只能使用實驗/醫學研究中的【卡方檢驗】
這時候點擊實驗/醫學研究面板中的【卡方檢驗】-拖拽三個【分析變數】分別到對應分析框-【開始分析】即可。
四、參數檢驗
(1) 單樣本t檢驗
單樣本T檢驗用於比較樣本數據與一個特定數值之間是否存在差異情況。
首先判斷p 值是否呈現出顯著性,如果呈現出顯著性,則分析項明顯不等於設定數字,具體差異可通過平均值進行對比判斷。
(2)獨立樣本T檢驗(T檢驗)
獨立樣本T檢驗用於分析定類數據(X)與定量數據(Y)之間的差異情況。
獨立樣本T檢驗除了需要服從正態分布、還要求兩組樣本的總體方差相等。當數據不服從正態分布或方差不齊時,則考慮使用非參數檢驗。
首先判斷p 值是否呈現出顯著性,如果呈現出顯著性,則說明兩組數據具有顯著性差異,具體差異可通過平均值進行對比判斷。
(3)配對樣本T檢驗
用於分析配對定量數據之間的差異對比關系。與獨立樣本t檢驗相比,配對樣本T檢驗要求樣本是配對的。兩個樣本的樣本量要相同;樣本先後的順序是一一對應的。
常見的配對研究包括幾種情況:
判斷p 值是否呈現出顯著性,如果呈現出顯著性,,則說明配對數據具有顯著性差異,具體差異可通過平均值進行對比判斷。
(4)方差分析
方差分析(單因素方差分析),用於分析定類數據與定量數據之間的關系情況.例如研究人員想知道三組學生的智商平均值是否有顯著差異。
進行方差分析需要數據滿足以下兩個基本前提:
理論上講,數據必須滿足以上兩個條件才能進行方差分析,如不滿足,則使用非參數檢驗。但現實研究中,數據多數情況下無法到達理想狀態。正態性檢驗要求嚴格通常無法滿足,實際研究中,若峰度絕對值小於10並且偏度絕對值小於3,或正態圖基本上呈現出 鍾形 ,則說明數據雖然不是絕對正態,但基本可接受為正態分布,此時也可使用方差分析進行分析。
第一:分析X與Y之間是否呈現出顯著性(p值小於0.05或0.01)。
第二:如果呈現出顯著性;通過具體對比平均值大小,描述具體差異所在。
第三:如果沒有呈現出顯著性;說明X不同組別下,Y沒有差異。
(5)重復測量方差
在某些實驗研究中,常常需要考慮時間因素對實驗的影響,當需要對同一觀察單位在不同時間重復進行多次測量,每個樣本的測量數據之間存在相關性,因而不能簡單的使用方差分析進行研究,而需要使用重復測量方差分析。
第一、首先進行球形度檢驗,p <0.05說明沒有通過球形度檢驗,p >0.05說明通過球形度檢驗;
第二、如果沒有通過球形度檢驗,並且球形度W值大於0.75,則使用HF校正結果;
第三、如果沒有通過球形度檢驗,並且球形度W值小於0.75,則使用GG校正結果;
第四、如果通過球形度檢驗,組內效應分析結果時使用「滿足球形度檢驗」結果即可;
將數據上傳至SPSSAU分析,選擇【實驗/醫學研究】--【重復測量方差】。
五、非參數檢驗
凡是在分析過程中不涉及總體分布參數的檢驗方法,都可以稱為「非參數檢驗」。因而,與參數檢驗一樣,非參數檢驗包括許多方法。以下是最常見的非參數檢驗及其對應的參數檢驗對應方法:
非參數秩和檢驗研究X不同組別時Y的差異性,針對方差不齊,或者非正態性數據(Y)進行差異性對比(X為兩組時使用mannWhitney檢驗,X超過兩組時使用Kruskal-Wallis檢驗,系統默認進行判斷);
(1)單樣本Wilcoxon檢驗
單樣本Wilcoxon檢驗是單樣本t檢驗的代替方法。該檢驗用於檢驗數據是否與某數字有明顯的區別,如對比調查對象整體態度與滿意程度之間的差異。首先需要判斷數據是否呈現出正態性分析特質,如果數據呈現出正態性特質,此時應該使用單樣本t檢驗進行檢驗;如果數據沒有呈現出正態性特質,此時應該使用單樣本Wilcoxon檢驗
首先判斷p 值是否呈現出顯著性,如果呈現出顯著性,則分析項明顯不等於設定數字,具體差異可通過中位數進行對比判斷。
(2)Mann-Whitney檢驗
Mann-Whitney檢驗是獨立樣本t檢驗的非參數版本。該檢驗主要處理包含等級數據的兩個獨立樣本,SPSSAU中稱為非參數檢驗。
第一:分析X與Y之間是否呈現出顯著性(p值小於0.05或0.01)。
第二:如果呈現出顯著性;通過具體對比中位數大小,描述具體差異情況。
(3)Kruskal-Wallis檢驗
Kruskal-Wallis檢驗是單因素方差分析的非參數替代方法。Kruskal-Wallis檢驗用於比較兩個以上獨立組的等級數據。
在SPSSAU中,與Mann-Whitney檢驗統稱為「非參數檢驗」,分析時SPSSAU會根據自變數組別數自動選擇使用Kruskal-Wallis檢驗或Mann-Whitney檢驗。
(4)配對Wilcoxon檢驗
Wilcoxon符號秩檢驗是配對樣本t檢驗的非參數對應方法。該檢驗將兩個相關樣本與等級數據進行比較。
第一:分析每組配對項之間是否呈現出顯著性差異(p值小於0.05或0.01)。
第二:如果呈現出顯著性;具體對比中位數(或差值)大小,描述具體差異所在。
❸ 計量型判定和計數型有什麼區別
1、指代不同
計量型:是指使用計量器具經檢驗產生的數據,也可稱為「量值」、「計量結果」、「計量數據」等;計數性:被分類用來記錄和分析的定性數據。
2、分類方法不同
計量型:經營管理中各類散裝物料的原材料數量、材料數量、產品數量、能耗、材料消耗等測試數據;產品和可燃原料質量檢驗的各種試驗數據;生產過程的工藝試驗和控制所需的各種試驗數據;生產安全、環境檢測、醫療衛生等各類檢測數據。
計數性:能源計量和測試數據;計量試驗數據的管理;過程式控制制測試數據;產品質量檢驗、測量和試驗數據;安全和環境測量和測試數據。根據數據來源分類,便於統計和區分情況,實施計量數據認證和監督管理。
3、作用不同
計量型:它可以反映能消耗水平,表明生產水平、技術水平、安全和環保水平。做好測量數據的管理工作是十分必要的。計數性:通常以不合格品或不合格的形式收集,通過p、np、c和u控制圖分析。
(3)數字檢測方法有哪三種有什麼區別擴展閱讀
按性質分為
①定位的,如各種坐標數據;
②定性的,如表示事物屬性的數據(居民地、河流、道路等);
③定量的,反映事物數量特徵的數據,如長度、面積、體積等幾何量或重量、速度等物理量;
④定時的,反映事物時間特性的數據,如年、月、日、時、分、秒等。
按表現形式分為
①數字數據,如各種統計或量測數據。數字數據在某個區間內是離散的值;
②模擬數據,由連續函數組成,是指在某個區間連續變化的物理量,又可以分為圖形數據(如點、線、面)、符號數據、文字數據和圖像數據等,如聲音的大小和溫度的變化等。
❹ 數字PCR檢測方法如何選擇
數字PCR即Digital PCR(dPCR),它是一種核酸分子絕對定量技術。相較於qPCR,數字PCR可讓你能夠直接數出DNA分子的個數,是對起始樣品的絕對定量。
在定量PCR時,我們常常糾結一個問題,究竟是相對定量還是絕對定量呢?如今,你無需糾結了,因為數字PCR(digital PCR)來了。盡管這兩種技術有些類似,都是估計起始樣品中的核酸量,但它們有一個重要的區別。定量PCR是依靠標准曲線或參照基因來測定核酸量,而數字PCR則讓你能夠直接數出DNA分子的個數,是對起始樣品的絕對定量。因此特別適用於依靠Ct值不能很好分辨的應用領域:拷貝數變異、突變檢測、基因相對表達研究(如等位基因不平衡表達)、二代測序結果驗證、miRNA表達分析、單細胞基因表達分析等。
原理
PCR實際上是一個在模板DNA、引物(模板片段兩端的已知序列)和四種脫氧核苷酸等存在的情況下,DNA聚合酶依賴的酶促合成反應,擴增的特異性取決於引物與模板DNA的特異結合。
數字PCR可以實現更高准確性、靈敏度和絕對定量
數字PCR是一種核酸檢測和定量分析的新方法,可以作為傳統實時定量PCR的替代方法,以實現絕對定量及稀有等位基因的檢測。數字PCR的工作原理在於將DNA或cDNA樣品分割為許多單獨、平行的PCR反應,部分這些反應包含了靶標分子(陽性),而其他不包含(陰性)。單個分子可以被擴增一百萬倍或更多。在擴增期間,TaqMan化學試劑及染料標記探針可用於檢測特定序列的靶標。當不存在任何靶標序列時,沒有信號累積。PCR分析後,陰性反應片段用於生成樣品中靶標分子的絕對計數,而無需標准品或內標。
納流晶元的使用提供了便捷和直觀的機制來同時平行運行上千個PCR反應。每個孔都加入了樣品、擴增混合物和 TaqMan測定試劑的混合物,然後進行單獨分析以檢測存在(陽性)或不存在(陰性)終點信號。考慮到孔可能接收到多個靶標序列分子,使用泊松模型應用了一個校正因子。
以上來自網路。
❺ 根據被測叄數獲得方式的不同,直接測量有哪幾種方法
維生素C不同的測定方法
目前研究維生素C測定方法的報道較多,有關維生素C的測定方法如熒光法、2,6-二氯靛酚滴定法、2,4-二硝基苯肼法、光度分析法、化學發光法、電化學分析法及色譜法等,各種方法對實際樣品的測定均有滿意的效果.
為了解國內VC含量測定方法及其應用方面的現狀及發展態勢.方法以"維生素C或抗壞血酸和測定"為檢索詞對1994~2002年中國期刊網全文資料庫(CNKI)中的理工A、B和醫衛生專輯進行篇名檢索,對所得有關維生素C含量測定的文獻數據分別以年代、作者區域、載刊等級、樣品類型、測定方法等進行計量分析.結果核心期刊載刊文獻占文獻總量的45.06%,其中光度法佔65.69%,電化法佔18.63%,色譜法佔12.75%;復雜被測樣品文獻占文獻總量的45.06%,其中光度法佔60.92%,色譜法佔19.54%,電化法佔10.34%.結論目前國內維生素C含量測定仍以光度法為主流,但近年來色譜法,特別是HPLC法上升趨勢尤為明顯.
一.熒光法
1.原理
樣品中還原型抗壞血酸經活性炭氧化成脫氫型抗壞血酸後,與鄰苯二胺(OPDA)反應生成具有熒光的喹喔啉(quinoxaline),其熒光強度與脫氫抗壞血酸的濃度在一定條件下成正比,以此測定食物中抗壞血酸和脫氫抗壞血酸的總量。
脫氫抗壞血酸與硼酸可形成復合物而不與OPDA反應,以此排除樣品中熒光雜質所產生的干擾。本方法的最小檢出限為0.022 g/ml。
2.適用范圍
本方法適用於蔬菜、水果及其製品中總抗壞血酸的測定
3. 注意事項
3.1 大多數植物組織內含有一種能破壞抗壞血酸的氧化酶,因此,抗壞血酸的測定應採用新鮮樣品並盡快用偏磷酸-醋酸提取液將樣品製成勻漿以保存維生C。
3.2 某些果膠含量高的樣品不易過濾,可採用抽濾的方法,也可先離心,再取上清液過濾。
3.3活性炭可將抗壞血酸氧化為脫氫抗壞血酸,但它也有吸附抗壞血酸的作用,故活性炭用量應適當與准確,所以,應用天平稱量。我們的實驗結果證明,用2g活性炭能使測定樣品中還原型抗壞血酸完全氧化為脫氫型,其吸附影響不明顯。
二、2,6-二氯靛酚滴定法(還原型VC)
1、原理:
還原型抗壞血酸還原染料2,6-二氯靛酚,該染料在酸性中呈紅色,被還原後紅色消失。還原型抗壞血酸還原2,6-二氯靛酚後,本身被氧化成脫氫抗壞血酸。在沒有雜質干擾時,一定量的樣品提取液還原標准2,6-二氯靛酚的量與樣品中所含維生素C的量成正比。本法用於測定還原型抗壞血酸,總抗壞血酸的量常用2,4-二硝基苯肼法和熒光分光光度法測定。
2、注意事項
⑴ 所有試劑的配製最好都用重蒸餾水;
⑵ 滴定時,可同時吸二個樣品。一個滴定,另一個作為觀察顏色變化的參考;
⑶ 樣品進入實驗室後,應浸泡在已知量的2%草酸液中,以防氧化,損失維生素C;
⑷ 貯存過久的罐頭食品,可能含有大量的低鐵離子(Fe2+),要用8%的醋酸代替2%草酸。這時如用草酸,低鐵離子可以還原2,6-二氯靛酚,使測定數字增高,使用醋酸可以避免這種情況的發生;
⑸ 整個操作過程中要迅速,避免還原型抗壞血酸被氧化;
⑹ 在處理各種樣品時,如遇有泡沫產生,可加入數滴辛醇消除;
⑺ 測定樣液時,需做空白對照,樣液滴定體積扣除空白體積。
3優點:它具有簡便、快速、比較准確等優點,適用於許多不同類型樣品的分析。缺點是不能直接測定樣品中的脫氫抗壞血酸及結合抗壞血酸的含量,易受其他還原物質的干擾。如果樣品中含有色素類物質,將給滴定終點的觀察造成困難。在酸性環境中,抗壞血酸(還原型)能將染料2,6—DCIP還原成無色的還原型2,6—DCIP,而抗壞血酸則被氧化成脫氫抗壞血酸。氧化型2,6—DCIP在中性或鹼性溶液中呈藍色,但在酸性溶液中則呈粉紅色。因此,當用2,6—DICP滴定含有抗壞血酸的酸性溶液時,在抗壞血酸未被全部氧化前,滴下的2,6—DCIP 立即被還原成無色,一旦溶液中的抗壞血酸全部被氧化時,則滴下微量過剩的2,6—DCIP 便立即使溶液顯示淡粉紅色或微紅色,此時即為滴定終點,表示溶液中的抗壞血酸剛剛全部被氧化。依據滴定時2,6—DCIP 標准溶液的消耗量 (ml),可以計算出被測樣品中抗壞血酸的含量。氧化型2,6—DCIP與還原型抗壞血酸常在稀草酸或偏磷酸溶液中進行反應。即先將樣品溶於一定濃度的酸性溶液中或經抽提後,再用2,6—DCIP標准溶液滴定至終點。
食物和生物材料中常含有其他還原物質,其中有些還原物質可使2,6—DCIP還原脫色。為了消除這些還原物質對定量測定的干擾,可用抗壞血酸氧化酶處理,破壞樣品中還原型抗壞血酸後,再用2,6—DCIP 滴定樣品中其他還原物質。然後從滴定未經酶處理樣品時2,6—DCIP標准溶液的總消耗量中,減去滴定非抗壞血酸還原物質2,6—DCIP 標准溶液的消耗量,即為滴定抗壞血酸實際所消耗的2,6—DCIP標准溶液的體積,由此可以計算出樣品中抗壞血酸的含量。另外,還可利用抗壞血酸和其他還原物質與2,6—DCIP反應速度的差別,並通過控制樣品溶液在pH1 — 3 范圍內,進行快速滴定,可以消除或減少其他還原物質的作用,一般在這樣的條件下,干擾物質與2,6—DCIP的反應是很慢的或受到抑制。生物體液(如血液、尿等)中的抗壞血酸的測定比較困難,因為這些樣品中抗壞血酸的含量很低,並且存在許多還原物質的干擾,同時還必須預先進行脫蛋白處理。在生物體液中含有巰其、亞硫酸鹽及硫代硫酸鹽等物質,它們都能與DCIP反應,但反應速度比抗壞血酸慢得多。樣品中巰基物質對定量測定的干擾,通常可以藉加入對—氯汞苯甲酸(簡稱PCMB)而得到消除。
三、2,4-二硝基苯肼法
1.原理
總抗壞血酸包括還原型、脫氫型和二酮古樂糖酸。樣品中還原型抗壞血酸經活性炭氧化為脫氫抗壞血酸,再與2,4-二硝基苯肼作用生成紅色脎,脎的含量與總抗壞血酸含量成正比,進行比色測定。
2.適用范圍
本方法適用於蔬菜、水果及其製品中總抗壞血酸的測定。
這是脎比色法,單獨評價是因為目前它作為Vc測定的國標法之一,是一種全量測定法,它跟以前的苯肼法原理相近。首先將樣品中的還原型V氧化為脫氫型V,然後與2,4—二硝基苯肼作用,生成紅色的脎,將脎溶於硫酸後進行比色。最近國標中該法強調空白,每個樣品及標准系列均需作對應空白,這樣消除色澤、背景不一的誤差。在實際楊梅汁Vc測定中,操作時間長,操作要求較嚴格,試劑較多,就一般實驗室而言是目前可以採用的方法。
四 碘量法
1、維生素C的原理
維生素C包括氧化型、還原型和二酮古樂糖酸三種。當用碘滴定維生素C時,所滴定的碘被維生素C還原為碘離子。隨著滴定過程中維生素C全被氧化,所滴入的碘將以碘分子形式出現。碘分子可以使含指示劑(澱粉)的溶液產生藍色,即為滴定終點。
2、注意事項
(1)看到紅棕色出現時要放慢滴定的速度。
(2)以顯藍色在30s內不褪色為滴定終點。
五L-抗壞血酸(維生素C)測定試劑盒(酶學方法)
應用於食品,飲料及生物製品檢測
2.比色方法
此方法用於檢測水果和蔬菜(如馬鈴薯),水果和蔬菜產品(如西紅柿醬、泡菜、果醬、果汁),嬰兒食品,啤酒,飲料,流食,粉狀和烘烤劑,肉產品,奶製品,葡萄酒,還有動物飼料,醫品(如維生素配製、陣痛、退燒)和生物樣品中的L-抗壞血酸(維生素C),
3.分析物
L-抗壞血酸不定量的分布於動物和植物中。人類不能自身生產L-抗壞血酸,因此必須由外源(vitamin C)提供。一般情況下來源於水果和蔬菜中,出於技術原因,L-抗壞血酸曾被用於食品工業中的抗氧化劑。它是一種相對敏感的物質,L-抗壞血酸的檢測非常適用於從原始水果和蔬菜中加工食品的質量評定。
L-抗壞血酸用於醫品生產中的組成部分,如維生素產品和陣痛,另外,它還用於動物飼料添加劑中。
4.原理
L-抗壞血酸 (x-H2) + MTT+ PMS—> dehydroascorbate (x) + MTT-formazan + H+X
L-抗壞血酸 + ? O2 AAO——> dehydroascorbate + H2OX
5.特異性
在給定的條件下,此方法特別針對於L-抗壞血酸。合成的D-阿拉伯抗壞血酸/阿拉伯糖型抗壞血酸能作為抗氧化劑,也能反應,但反應速度較慢。
6.靈敏度
測定靈敏度為0.005個吸光度單位,樣品體積為1.600ml,此相當於0.1mg/l樣品溶液中的L-抗壞血酸濃度。0.015個吸光度單位的差異能造成0.3 mg/l檢測限,樣品最大體積為1.600 ml.。
7.線性
測定的線性范圍為0.5 ugL-抗壞血酸(0.3mgL-抗壞血酸/l樣品溶液體積為1.600ml)到20 ugL-抗壞血酸(0.2gL-抗壞血酸/l樣品溶液體積為0.100ml)
8.精密度
在用一個樣品做重復實驗時,可能會產生0.005-0.010個吸光度單位的差異。標準的相對偏差(變異系數)大約為1-3%。當分析檢測數據時,要考慮到L-抗壞血酸的水溶液穩定性較差,尤其是重金屬離子或氧存在時。
9.干擾及錯誤來源
糧食的成分不經常干擾實驗。高濃度的酒精和D-山梨酸醇能降低反應速度,大量的亞硫酸鹽必須通過添加甲醛來去除。醋酸抑制酶AAO。金屬和 亞硫酸鹽離子可以導致L-抗壞血酸的自發分解。
10.試劑盒包括內容
磷酸鹽/檸檬酸緩沖液 ———— pH值大約3.5;MTT
2.AAO(坑壞血酸-氧化酶)—— 每板約17 U AAO
3. PMS 溶液
六.磷鉬藍分光光度法測定維生素C
基於在一定的反應條件下,維生素C可以定量地將磷鉬酸錠還原成磷鉬藍,提出了一種新的測定維生素C的分光光度法。該方法很方便、快速地測定生物、物等試樣中的維生素C,准確度和重復性均達到令人滿意的程度。
1 適用范圍
本標准適用於果品、蔬菜及其加工製品中還原型抗壞血酸的測定(不含二價鐵、二價錫、一價銅、二氧化硫、亞硫酸鹽或硫代硫酸鹽),不適用於深色樣品。
2 測定原理
染料2,6-二氯靛酚的顏色反應表現兩種特性,一是取決於其氧化還原狀態,氧化態為深藍色,還原態變為無色;二是受其介質的酸度影響,在鹼性溶液中呈深藍色,在酸性介質中呈淺紅色。
用藍色的鹼性染料標准溶液,對含維生素 C的酸性浸出液進行氧化還原滴定,染料被還原為無色,當到達滴定終點時,多餘的染料在酸性介質中則表現為淺紅色,由染料用量計算樣品中還原型抗壞血酸的含量。
七.二甲苯-二氯靛酚比色法
1 適用范圍
測定深色樣品中還原型抗壞血酸。
2 測定原理
用定量的 2,6-二氯靛酚染料與試樣中的維生素 C進行氧化還原反應,多餘的染料在酸性環境中呈紅色,用二甲苯萃取後比色,在一定范圍內,吸光度與染料濃度呈線性相關,收剩餘染料濃度用差減法計算維生素 C含量。
八.近紅外漫反射光譜分析法(NIRDRSA)
自1965年首次應用於復雜農業樣品分析後,因其具 有樣品處理簡單、分析速度快等優點,逐漸受到分析界的重視。此法已廣泛應用於石油、紡 織、農業、食品、物分析等領域[1,2]。在物分析中,NIRDRSA可以進行定性 鑒別、定量分析等工作。
維生素C是一種不穩定的二烯醇化合物,其典[3]含量測定方法為碘量法。我 們採用近紅外漫反射光譜技術直接測定維生素C含量,樣品無需預處理,方法簡便,結果可 靠。
這是因為,近紅外譜區光的頻率與有機分子中C-H,O-H,N-H等振動的合頻與各級倍頻的 頻率一致,因此通過有機物的近紅外光譜可以取得分子中C-H,O-H,N-H的特徵振動信息 。由於近紅外光譜的譜帶較寬,譜圖重疊嚴重,不能用特徵峰等簡單方法分析,需要運用計 算機技術與化學計量學方法。本實驗應用的是偏最小二乘法(PLS)[4],首先利用 定標集建立預測模型,然後將預測集作為未知樣本,根據預測模型進行預測。
對所選擇的譜區范圍,採用對反射吸光度的MSC(散射校正)預處理,對25個樣品進行交叉 驗證,即選擇一個樣品,從校正集中除去該樣品對應的光譜和濃度數據,並設光譜主成分數 為1,循環迭代樣品數和主成分數,計算預測殘差平方和,確定所需主成分數。若主成分選擇 過小,會丟失樣品信息,過大會造成過度擬合。當主因子為2時,預測殘差平方和值最小, 為2.029,故選擇主因子數為2,建立最佳PLS校正數學模型。
九 電位滴定法
原理:根據滴定過程中電池電動勢的變化來確定反應終點.
Pt為指示電極,甘汞作參比電極
E池=E+-E-+E液接電位=EI2/I-+k(常數)
2.原理(具體來說:)
隨著滴定劑的加入,由於發生化學反應,待測離子濃度將不斷變化;從而指示電極電位發生相應變化;導致電池電動勢發生相應變化;計量點附近離子濃度發生突變;引起電位的突變,因此由測量工作電池電動勢的變化就能確定終點。
3.計算式:(與碘量法相同) Wvc=C(I2)V(I2)M(vc)/m(vc ) *100%
4.優點:
解決了滴定分析中遇到有色或渾濁溶液時無法指示終點的問題
用線性電位滴定法分析抗壞血酸,抗壞血酸回收率為99.80%~101.5%,相對標准偏差為0.61%;分析維生素C片中的抗壞血酸,相當標示量為98.90%~100.5%,相對標准偏差不大於0.48%,說明線性電位滴定法分析維生素C片中的抗壞血酸含量是可行的.
十 .分光光度法
原理:
維生素C在空氣中尤其在鹼性介質中極易被氧化成脫氫抗壞血酸,pH>5,脫氫抗壞血酸內環開裂,形成二酮古洛糖酸。脫氫抗壞血酸,二酮古洛糖酸均能和2,4-二硝基苯肼生成可溶於硫酸的脎
脎在500nm波長有最大吸收
根據樣品溶液吸光度,由工作曲線查出VC的濃度,即可求出VC的含量
十一 庫侖滴定法
原理:庫侖滴定法屬於恆電流庫侖分析。
是在特定的電解液中,以電極反應產物為滴定劑(電生滴定劑,相當於化學滴定中的標准濃液)與待測物質定量作用,藉助指示劑或電位法確定滴定終點。
2.基本依據--法拉第電解定律:電解時,電極上發身化學反應的物質質量與通過電解池的電量Q成正比
即: m=MQ/zF = MI t /zF
3..化學反應:陰極反應: 2H+2e-=H2 陽極反應: 2I-=I2+2e-
4.終點指示:多種方法
(1)化學指示劑--I2
(2)電位法
(3)雙鉑極電流指示法
5.計算式:Wvc=MvcQ/zFm樣式中: F--- 法拉第常數(96487C)
Z---電極反應中轉移的電子數注意:使電解效率100%
6.優點:
1)無需標准化的試劑溶液,免去了大量的標准物質的准備工作(配製,標定)
2)只需要一個高質量的供電器,計時器,小鉑絲電極,且易於實現自動化控制
3)若電流維持一個定值,可大大縮短了電解時間
4)電量容易控制及准確測量;方法靈敏度,准確度較高
5)滴定劑來自電解時的電極產物,可實現容量分析中不易實現的滴定過程,如Cu+,Br2,Cl2產生後立即與待測物反應。
7.缺點(難點):
要求電解過程沒有副反應和漏電現象,即使電解電極上只進行生成滴定劑的反應,且電流的效率是100%
8.註:電流效率=i樣÷i總= i樣÷( i樣+ i容+i雜)
因為:實際電解過程中存在影響電流效率的因素,如,雜質,溶劑,電極自身在電極上的反應等
十二 紫外快速測定法
原理
維生素C的2,6—二氯酚靛酚容量法,操作步驟較繁瑣,而且受其它還原性物質、樣品色素顏色和測定時間的影響。紫外快速測定法,是根據維生素C具有對紫外產生吸收和對鹼不穩定的特性,於243nm處測定樣品液與鹼處理樣品液兩者消光值之差,通過查標准曲線,即可計算樣品中維生素C的含量。
十三 光電比濁法的原理
原理
在酸性介質中,抗壞鐵酸與亞硒酸(H2SeO3)能定量地進行氧化還原反應.1mol的抗鐵酸能將2mol的亞硒酸還原成硒.在一定條件下,生成的元素硒在溶液中形成穩定的懸濁液.當抗鐵酸的濃度在0-4mg/25-50ml的范圍內,該溶液生成的濁度與抗壞鐵酸的含量成正比.將試液置分光光度計上測其濁度可以定量地測定抗壞鐵酸.
十四熒光分析法的原理
原理
用酸洗活性炭將抗壞鐵酸氧化為順式脫氫抗壞鐵酸,然後與鄰苯二胺縮合成一種熒光性化合物.樣品中其它熒光雜質的干擾可以通過向氧化後的樣品中加入硼酸,使脫氫抗壞鐵酸形成 硼酸脫氫抗壞鐵酸的絡合物,它不與鄰二苯胺生成熒光化合物.這樣可以測定其它熒光雜質的空白熒光強度而加以校正
十五 原子吸收間接測定法
原理
這是最近報導的一種Vc測定法,其原理是在酸性介質中還原型Vc可將Cu2+定量地還原為Cu+並與SCN—反應生成CuSCN沉澱,在高速離心機下有效地分離出沉澱,小心洗滌後再經濃硝酸溶解,用原子吸收法測定銅含量,即可推知樣品中維生素C的含量。該法實驗儀器較昂貴,主要問題是操作過程中反應完全與否,沉澱物洗滌、離心反復多次,極容易帶來誤差。該法優點是能不受果蔬自身顏色的干擾,有一定的發展前景。根據試驗,發現此法結果偏低,還有待於進一步優化改善。
十六.金納米微粒分光光度法測定維生素C的方法
本發明公開了一種用金納米微粒分光光度法測定維生素C的方法。於5mL比色管中,依次加入0.1-2.0mL濃度為95.64μg/mL的HAuCl↓[4]溶液,0.02-0.50mL濃度為1%的檸檬酸三鈉溶液,再加入0.001-2.0mL濃度為0.38mg/mL的維生素C溶液,混勻,加二次蒸餾水定容至刻度,再充分混勻,在分光光度計上,於520nm處測定吸收值,同時作空白試驗。本發明測定方法簡單、快捷,所用儀器價廉,試劑易得
十七 L-半胱氨酸修飾電極測定維生素C的方法
研究了L-半胱氨酸修飾電極的制備方法和其電化學行為,並用於維生素C的測定,發現該電極對VC有明顯的電催化作用,在pH=10.0的NH4Cl-NH3·H2O緩沖溶液中,VC在L-半胱氨酸修飾電極上產生一靈敏的氧化峰,峰電流與VC的濃度在1.0×10-3~1.0×10-6mol/L的范圍內呈良好的線形關系,相關系數為0.9962,其最低檢測限可達1.0×10-6mol/L,與紫外光譜法測定的結果一致。
測定維生素C有多種方法,包括採用I2或二氯靛酚(DPI)進行氧化還原滴定。一般來說,滴定法是一種快速、簡便、准確的技術,它通過滴定劑和被滴定物質的等當量反應,精確測定被測物質的含量。DPI對於維生素C具有良好的選擇性,是一種理想的氧化劑。
十八 梅特勒-托利多儀器法
傳統的滴定法是手工滴定,根據指示劑顏色的變化確定終點,通過測量滴定劑的消耗量,計算被測物質的含量。手工滴定有很多不足:手工控制誤差較大,計算復雜,針對不同的反應需要特殊指示劑。梅特勒-托利多的自動電位滴定儀解決了這一問題,通過測量滴定反應中電位的變化確定終點,全自動操作、計算,測量快速,結果准確。梅特勒-托利多的滴定儀配有記憶卡包,存儲有成熟滴定方法,可方便快速解決實際應用問題,並且稍作改動就能作為新的測定的實驗方法。
除此之外,還有雙光束剩餘染料差減比色法,2_6_二氯靛酚鈉動力學分光光度法、聚中性紅修飾電極方法、示波溴量法、流動化學發光抑製法、磷鉬鎢雜多酸作顯色劑快速檢測方法、溶氧測定裝置測定水果蔬菜中抗壞血酸含量的方法等。在此不做介紹。
❻ 血細胞計數法,顯微計數法和抽樣檢測法的區別
血細胞計數法,顯微計數法和抽樣檢測法實際上沒什麼區別:
人教版稱之為抽樣檢測法,北師大版本稱之為顯微計數法,因為實際操作過程中用了血球計數板,所以又叫血球板計數法。
血球計數板的使用原理
顯微鏡直接計數法是將小量待測樣品的懸浮液置於一種特別的具有確定面積和容積的
載玻片上(又稱計菌器),於顯微鏡下直接計數,然後推算出含菌數的一種方法。血球計數板是常用的計菌器之一。
血球計數板是一種專門用於計算較大單細胞微生物的一種儀器,由一塊比普通載玻片
厚的特製玻片製成的玻片中有四條下凹的槽,構成三個平台。中間的平台較寬,其中間又被一短橫槽隔為兩半,每半邊上面刻有一個方格網。方格網上刻有9個大方格,其中只有中間的一個大方格為計數室。這一大方格的長和寬各為1mm,深度為0.1mm,其容積為
0.1mm3,即1mm×1mm×0.1mm方格的計數板;大方格的長和寬各2mm,深度為0.1mm,其容積為0.4mm3,即2mm×2mm×0.1mm方格的計數板。在血球計數板上,刻有一些符號和數字,其含義是:XB-K-25為計數板的型號和規格,表示此計數板分25
個中格;0.1mm為蓋上蓋玻片後計數室的高;1/400mm2表示計數室面積是1mm2,分400個小格,每小格面積是1/400 mm2。
❼ 數據的三種表示方法有哪三種
數據的表示法主要有三種方式:列表法、作圖法和方程式法。現分述其應用及表達時應注意的事項。
數據表達
數據的表示法主要有三種方式:列表法、作圖法和方程式法。現分述其應用及表達時應注意的事項。
中文名
數據表達
外文名
Data expression
公式
y=mx+b
方法
作圖法、列表法
相關學科
數學
列表法
做完實驗後,所獲得的大量數據,應該盡可能整齊地、有規律地列表表達出來,使得全部數據能一目瞭然,便於處理、運算,容易檢查而減少差錯。列表時應注意以下幾點:
(1)每一個表都應有簡明而又完備的名稱;
(2)在表的每一行或每一列的第一欄,要詳細地寫出名稱、單位;
(3)在表中的數據應化為最簡單的形式表示,公共的乘方因子應在第一欄的名稱下註明;
數據表達
(4)在每一行中數字排列要整齊,位數和小數點要對齊; (5)原始數據可與處理的結果並列在一張表上,而把處理方法和運算公式在表下註明。
作圖法
利用圖形表達實驗結果有許多好處:首先它能直接顯示出數據的特點,像極大、極小、轉折點等;其次能夠利用圖形作切線、求面積,可對數據作進一步處理。作圖法用處極為廣泛,其中重要的有:
(1)求內插值。根據實驗所得的數據,作出函數間相互的關系曲線,然後找出與某函數相應的物理量的數值。例如,在溶解熱的測定中,根據不同濃度下的積分溶解熱曲線,可以直接找出該鹽溶解在不同量的水中所放出的熱量。
數據表達
(2)求外推值。在某些情況下,測量數據間的線性關系可外推至測量范圍以外,求某一函數的極限值,此種方法稱為外推法。例如,強電解質無限稀釋溶液的摩爾電導率的值,不能由實驗直接測定,但可直接測定濃度很稀的溶液的摩爾電導率,然後作圖外推至濃度為0,即得無限稀釋溶液的摩爾電導率 (3)作切線,以求函數的微商。從曲線的斜率求函數的微商在數據處理中是經常應用的。例如,利用積分溶解熱的曲線作切線,從其斜率求出某一指定濃度下的微分沖淡熱,就是很好的例子。