1. 在細菌中水平基因轉移的方式主要有哪些
1、接合作用:當細菌與細菌相互接觸時,質粒DNA就可從一個細菌轉移到另一個細菌。
2、轉化作用:由外源性DNA導入宿主細胞,並引起生物類型改變或使宿主細胞獲得新的遺傳表型的過程,稱為轉化作用。
3、轉導作用:當病毒從被感染的細胞釋放出來,再次感染另一細胞時,發生在供體細胞與受體細胞之間的DNA轉移及基因重組稱為轉導作用。
4、轉座(轉位):轉座是指一個或一組基因從一個位置轉到基因組的另一個位置。可分為插入序列轉座和轉座子轉座。
5、基因重組:不同DNA分子間發生的共價連接稱基因重組。有兩種類型:位點特異的重組和同源重組。
(1)微生物檢測方法轉移擴展閱讀:
基因水平轉移的形成因素:
1、由質粒或病毒等介導的水平基因轉移質粒和病毒是在各生物間進行遺傳物質傳遞的重要媒介。
2、基因的「直接」水平轉移水平基因轉移除了通過質粒和病毒為媒介以外,大量發現的是不需要媒介的「直接」轉移。
3、基因組序列分析和水平基因轉移隨著基因工程的深入開展,人類及其它生物基因組測序工作相繼完成,人們發現不同物種之間,甚至親緣關系很遠的生物之間基因組上有大量同源基因存在。
4、水平基因轉移與進化由前可知,水平基因轉移實際上已被引入了分子進化及宏觀進化領域,被認為是推動進化的重要動力。
2. 如何檢測轉基因動,植物及細菌中的目的基因,區別在哪
植物轉基因技術是指把從動物、植物或微生物中分離到的目的基因,通過各種方法轉移到植物的基因組中,使之穩定遺傳並賦予植物新的農藝性狀,如抗蟲、抗病、抗逆、高產、優質等。隨著現代生物技術的迅速發展,植物轉基因技術方興未艾。自從1983年首次獲得轉基因植物後,至今已有35科120多種植物轉基因獲得成功。1986年首批轉基因植物被批准進入田間試驗,至今國際上已有30個國家批准數千例轉基因植物進入田間試驗,涉及的植物種類有40多種。
種植的轉基因植物種類主要有:大豆(佔54%),玉米(佔28%),棉花(佔9%),Canola油菜(佔9%),馬鈴薯、西葫蘆和木瓜的比例都小於1%。按轉基因植物的性狀劃分,抗除草劑佔71%,如抗除草劑的大豆(54%)、Canola油菜(9%)、玉米(4%)和棉花(4%):抗蟲轉基因植物佔22%,主要是抗蟲玉米(19%)和抗蟲棉(3%);抗蟲兼抗除草劑佔7%,主要是抗蟲兼抗除草劑的玉米(5%)和棉花(2%);抗病毒和其它性狀轉基因植物的比例小於1%。
3. 請教病原微生物分型的方法種類及優劣勢比較。謝謝!
病原微生物的分子分型方法
近年來,隨著分子牛物學技術快速發展,新的診斷技術和方法不斷涌現並廣泛應用於臨床微生物的檢測,為病原微牛物的致病性、流行性、變異性以及耐葯性分析等方面提供J,重要的信息。目前,應用分子生物學技術對病原微牛物進行分型的方法包括:脈沖場凝膠電泳(pulsed-field gelelectrophoresis。PFGE)分型、聚合酶鏈反應(polymerase chain reaction,PCR)分型、生物晶元分型、多位點序列分型(muhilocus sequencetyping,MI。ST)、質粒DNA圖譜分型以及限制性片段長度多態性(restriction fragment length polymorphism,RFLP)分型等。
1.脈沖場凝膠電泳分型PFGE技術以其重復性好、分辨力強而被譽為細菌分子分型的「金標准」。它可以用於大分子DNA的分離,其分辨范圍達到10 Mb,而普通瓊脂糖凝膠電泳僅能分離小於500 Kb的DNA。PFGE的基本原理是通過電場的不斷改變,使包埋在凝膠中的DNA分子的泳動方向發
生改變,小分子DNA比大分子DNA泳動快,從『『ii在凝膠上按DNA分子大小呈現出特異的電泳圖譜。病原微生物的基因組DNA經脈沖場凝膠電泳,使大片段DNA有效分離。DNA條帶的密度反映了病原微生物基因組DNA的含量以及分子的大小,最終達到分型的目的。目前,PFGE已被廣泛的應用於病原微牛物的分型,Swaminathan等∽J已經建立了針對大腸桿菌0157:H7、沙門菌屬的Typhimurium血清型、李斯特菌、志賀菌屬等病原微生物分型的標准PFGE操作方法。有研究認
為PFGE的分辨力強於核糖體分型和隨機擴增多態性DNA(random amplified polymorphic DNA,RAPD)分型。當採用1個限製件核酸內切酶的分辨力不強時,可以採用2種限制性核酸內切酶加以提高。當然,PFGE也有一些局限,如耗時長、成本高等。另外,電泳圖譜易受操作人員技術水平等因素的影響,這為不同實驗室問的比較帶米一定困難¨
2.聚合酶鏈反脫分犁PCR技術自1985年發明以來,以其靈敏度高和特異性強受到了人們的高度重視,成為核酸擴增和檢測的一種常規方法H]。用於病原微生物分子分型的PCR方法主要有RAPD分型和重復序列PCR分犁2種。RAPD是建移在PCR基礎卜-的1種可對整個未知序列的基因
組進行多態性分析的分子生物學方法。該方法以基岡組DNA為模板,以單個人T.合成的隨機多態核苷酸序列(通常為10個鹼基)為引物,在熱穩定的DNA聚合酶的作用下進行PCR擴增,擴增產物經瓊脂糖或聚內烯醯胺凝膠電泳後,對其進行多態性分析。反應小同基因組DNA特點,從而對病原微生物進行分型。RAPD可以在物種沒有任何基因組信息的情況下分析其DNA多態性,對模板DNA的純度要求不高。無需DNA探針和分子雜交。重復序列PCR分型足Versalovic於1996
年描述的1種細菌基因組指紋分析方法,即PCR擴增細菌基因組中廣泛分布的短重復序列,經電泳圖譜比較分析揭示基因組間的差異[5]。研究表明重復序列PCR分型與RAPD分型有相同的分辨力[6],但操作相對復雜。然而,重復序列PCR分型的再現性非常好,這是RAPD無法比擬的。此外,多重PCR、巢式PCR等也呵用於病原微生物的分型,雖然各有長處,但也存在分辨力弱、重復性差、結果解析困難等不足,因此,還未廣泛應用於臨床。
3.生物晶元分型 生物晶元技術是將生物大分子,如寡核苷酸、cDNA、基岡組DNA、肽、抗原以及抗體等固定在諸如矽片、玻璃片、塑料片、凝膠和尼龍膜等固相介質上形成生物分子點陣,當待測樣品中的生物分子與生物晶元的探針分子發生雜交或相互作用後,利.}}j激光共聚焦顯微掃描儀對雜交信號進行檢測和分析例。其用於病原微生物分型的基本原理是將代表各個亞型的特異基因製成1張晶元,經反轉錄就可檢測樣本中病原微生物的亞型進行辨別。液態晶元(suspension arraytechnology,SAT),又稱微球蛋白晶元(proteinbeadarrays,PBA),是近年來出現的1種新的晶元技術。其原理是甩2種熒光染料按照不同比例將直徑為5.6 ttm的微球染成100種顏
色,每種顏色的微球共價結合1種牛物探針,可以是抗原、抗體、配體,也可以是核酸或酶,分針對1種待檢物。混合載有100種不同顏色的微球,就可以在1個反應孔里同時完成100種不同的生物反應。隨後微球成單列通過2束激光照射的管道,計算機採集並處理每種顏色微球的熒光強度變化就可以分別對每個待測物進行定性或定量的檢測。該系統口『用於多種微生物抗原、抗體和特定基因的聯合檢測。目前,該方法已應用於臨床HPV的分型檢測。與固態晶元相比,液態晶元在反
應動力學、反應速度、檢測敏感性、穩定性以及自動化程度方面都有較大的優勢,因此,不少學者看好液態晶元的應用前景。
4.多位點序列分型 隨著DNA測序技術的快速發展,分子分型日益趨向於染色體的單一或多個位點的多態性上。MI。ST分型是指測定對多個管家基囡中長度約為470 bp的核心片段的核苷酸序列,對其組合進行索引編號,不同的菌株對應不同的序列型,從而揭示菌株間等位基因的多樣性。Maid—en等[83發現,MI,ST可用於腦膜炎奈瑟球菌的分型。他們認為,多個管家基因的序列分析比較在實驗過程的ⅡI操作性與結果的可靠性之間取得了平衡,且結果准確,所得數據在不同的實驗竄問具有良好的可比性,即MLST對某哆菌株具有較強的種內分辨力【9 J。Chen等no]應用MLST對我國台灣地區12家醫院分離到的51株白色假絲酵母菌進行遺傳特徵分析,結
果發現了7個管家基因序列的83個多態性位點和45個二倍體序列類型。其中,36.1%是同義突變,63.9 oA為非同義突變。他們認為,MI。ST的分辨力較PFGE更強,能分辨某患者所感
染的白色假絲酵母菌隨時間推移『『ii發生的微小種內進化。但MLST的缺點是它的高額費用和操作過程所需的特定儀器。這使得這項技術只能局限在大型的全球性流行病學研究中心
使用,影響其在醫院推廣普及。
5.質粒DNA圖譜分型 細菌質粒分析是較早被使用的病原微牛物分子分型方法。該方法包括萃取質粒DNA和瓊脂糖凝膠電泳。由於不同菌株質粒DNA序列和大小不同,
通過瓊脂糖凝膠電泳分離得到的DNA質粒圖譜也不同,從而可以對不同菌株進行分型。菌株攜帶的質粒越多則質粒DNA圖譜分型方法的特異性越強。質粒網譜分型的優點是操作相對簡單,只需要簡單的設備就可以完成,耗時短,費用低廉。但質粒圖譜分型有一難以克服的缺陷。即質粒可以自發的丟失、獲取以及在同種細菌甚至是在異種細菌之間轉移,這就造成了質粒圖譜的不穩定性。另外,質粒圖譜型方法小能區分那些大小相同而DNA序列不同的質粒¨「。
6.限制性片段長度多態性分型 RFI。P是指基因組DNA經限制性核酸內切酶消化,消化後的片段再通過瓊脂糖凝膠電泳進行分離。用限制性核酸內切酶BglⅡ和EcoRI等消化病原微生物基因組DNA,可以產生大量短的片段,通過電泳後得到的DNA圖譜可用於病原微生物的分型。幾乎所有
的病原微牛物分離株都町以通過這種方法分型,但由於基因組DNA巨大,酶切後產生的片段眾多,且含有大量的鶯疊片段,這使得蔚株間圖譜的一致性分析面I臨諸多用難口「。RFLP分
型分辨力弱於PFGE分型,且操作比較復雜。
4. 微生物計數方法有哪些
測定微生物計數的方法有很多,主要有以下幾種:
1.血細胞計數法
將稀釋的菌液樣品滴在血細胞計數板上,在顯微鏡下計算4~5個中格的細菌數,並求出每個小格所含細菌的平均數,再以此為依據,估算總菌數.
①此法的缺點是不能區分死菌和活菌.
②對壓在小方格界線上的細菌,應當取平均值計數.
③此法可用於測定培養液中酵母菌種群數量的變化
2.稀釋塗布平板法
原理:每個活細菌在適宜的培養基和良好的生長條件下可以通過生長形成菌落.培養基表面生長的一個菌落,來源於樣品稀釋液中的一個活菌.
①這一方法常用來統計樣品中活菌的數目
②統計的菌落數往往比活菌的實際數目低,原因是當兩個活多個細胞連在一起時,平板上觀察到的只是一個菌落.因此統計結果一般用菌落數而不是用活菌數來表示.
③土壤、水、牛奶、食品和其他材料中所含細菌、酵母、芽孢與孢子等的數量均可用此法測定.但不適於測定樣品中絲狀體微生物,例如放線菌或絲狀真菌或絲狀藍細菌等的營養體等.
④此法若不培養成菌落,可通過將一定量的菌液均勻地塗布在玻片上的一定面積上,經固定染色後在顯微鏡下計數,這樣又稱塗片計數法.染色可用台盼藍,台盼藍能使死細胞染成藍色,可分別計數死細胞和活細胞.
3.濾膜法
濾膜法是當樣品中菌數很低時,可將一定體積的湖水、海水或飲用水燈樣品通過膜過濾器.然後將濾膜乾燥、染色,並經處理使膜透明,再在顯微鏡下計算膜上(或一定面積上)的細菌數.
此法也可以通過培養觀察形成的菌落數來推算樣品中的菌數.例如測定飲用水中大腸桿菌的數目:將已知體積的水過濾後,將濾膜放在伊紅美藍培養基上培養.在該培養基上大腸桿菌的菌落呈現黑色,可根據培養基上黑色菌落的數目,計算出水樣中大腸桿菌的數目.
此法也是統計樣品中活菌的數目.
4.比濁法
原理是在一定范圍內,菌是懸液中細胞濃度與混濁度成正比,即與光密度成正比,菌越多,光密度越大.因此可藉助與分光光度計,在一定波長下,測定菌懸液的光密度,以光密度表示菌量.實驗測量時一定要控制在菌濃度與光密度成正比的線性范圍內,否則不準確.
5.顯微鏡直接計數法
在課本生物選修1生物技術實踐P22中「除了上述活菌計數法外,顯微鏡直接計數也是測定微生物數量的常用方法.」這里說的顯微鏡直接計數,我認為應該是在稀釋塗布的基礎上不培養成菌落而通過染色的方法在顯微鏡下直接計數.再如濾膜法也一樣,可以有兩種情況.
另外,微生物計數法發展迅速,多種多樣的快速、簡易、自動化的儀器和裝置等方法可以用來統計微生物的數目.
5. 簡述hiv的微生物學檢測方法有哪些
主要有酶聯免疫吸附試驗(ELlSA)和免疫熒光試驗(lFA)ELISA用去污劑裂解HIV或感染細胞液提取物作抗原IFA用感染細胞塗片作抗原進行抗體檢測 如果發現陽性標本應重復一次 為防止假陽性 可做Western blot(WB 蛋白印跡法)進一步確證
WB法是用聚丙烯醯胺凝膠電泳將HIV蛋白進行分離 再經傳移電泳將不同蛋白條帶轉移於硝酸纖維膜上 加入病人血清孵育後 用抗人球蛋白酶標抗體染色 就能測出針對不同結構蛋白抗體 如抗gp120、gp41、p24抗體 特異性較高
用ELISA檢測p24抗原 在HIV感染早期尚未出現抗體時 血中就有該抗原存在 由於p24量太少 陽性率通常較低 現有用解離免疫復合物法或濃縮p24抗原 來提高敏感性
用PCR法檢測HIV基因 具有快速 高效 敏感和特異等優點醫學教育網搜集l整理 目前該法已被應用於HIV感染早期診斷及艾滋病的研究中
常用方法為共培養法 即用正常人外周血液分離單個核細胞 加PHA刺激並培養後 加人單個核細胞診斷及艾滋病的研究中
6. 土壤微生物數量的測定方法
稱取10g土壤2份,一份置於烘箱中烘至恆重,稱重。另一份置於裝有90ml無菌水和若干玻璃珠的250ml三角瓶中,充分振盪20分鍾,靜置1分鍾,無菌操作取1ml,做10倍梯度稀釋,取連續3個稀釋度的溶液,塗平板或傾注平板(計數放線菌和真菌要用選擇培養基),每個稀釋度2~3個重復,培養後數菌落數,然後乘上稀釋倍數,就可得到1g濕土壤中該微生物的數量,1g干土壤中該微生物的數量再將前面結果除以干土百分比。