雙雜交技術 原理基於真核細胞轉錄因子的結構特殊性,這些轉錄因子通常需要兩個或以上相互獨立的結構域組成。分別使結合域和激活域同誘餌蛋白和獵物蛋白形成融合蛋白,在真核細胞中表達,如果兩種蛋白可以發生相互作用,則可使結合域和激活域在空間上充分接近,從而激活報告基因。 缺點:自身有轉錄功能的蛋白會造成假陽性。融合蛋白會影響蛋白的真實結構和功能。不利於核外蛋白研究,會導致假隱性。
熒光共振能量轉移技術 指兩個熒光法色基團在足夠近(<100埃)時,它們之間可發生能量轉移的現象。熒光共振能量轉移技術可以研究分子內部對某些刺激發生的構象變化,也能研究分子間的相互作用。它可以在活體中檢測,非常靈敏,分辯率高,能夠檢測大分子的構象變化,能夠定性定量的檢測相互作用的強度。 缺點 此項技術要求發色基團的距離小於100埃。另外設備昂貴,還需要融合GFP給蛋白標記。http://doc.bio1000.com/list-81.html 生化標記技術文檔,生化標記技術文檔下載,生物幫上面有介紹的。
⑵ 蛋白質的定量測定方法
一、微量凱氏(kjeldahl)定氮法
樣品與濃硫酸共熱。含氮有機物即分解產生氨(消化),氨又與硫酸作用,變成硫酸氨。經強鹼鹼化使之分解放出氨,借蒸汽將氨蒸至酸液中,根據此酸液被中和的程度可計算得樣品之氮含量。若以甘氨酸為例,其反應式如下:
NH2 CH2 COOH+3H2 SO4 ――2CO2 +3SO2 +4H2O+NH3 (1)
2NH3 +H2 SO4 ――(NH4 )2 SO4 (2)
(NH4 )2 SO4 +2NaOH――2H2 O+Na2 SO4 +2NH3 (3)
反應(1)、(2)在凱氏瓶內完成,反應(3)在凱氏蒸餾裝置中進行。
為了加速消化,可以加入CuSO4作催化劑,K2SO4以提高溶液的沸點。收集氨可用硼酸溶液,滴定則用強酸。實驗和計算方法這里從略。
計算所得結果為樣品總氮量,如欲求得樣品中蛋白含量,應將總氮量減去非蛋白
氮即得。如欲進一步求得樣品中蛋白質的含量,即用樣品中蛋白氮乘以6.25即得。
二、雙縮脲法(biuret法)
(一)實驗原理
雙縮脲(NH3CONHCONH3)是兩個分子脲經180℃左右加熱,放出一個分子氨後得到的產物。在強鹼性溶液中,雙縮脲與CuSO4形成紫色絡合物,稱為雙縮脲反應。凡具有兩個醯胺基或兩個直接連接的肽鍵,或能過一個中間碳原子相連的肽鍵,這類化合物都有雙縮脲反應。
紫色絡合物顏色的深淺與蛋白質濃度成正比,而與蛋白質分子量及氨基酸成分無關,故可用來測定蛋白質含量。測定范圍為1-10mg蛋白質。干擾這一測定的物質主要有:硫酸銨、tris緩沖液和某些氨基酸等。
此法的優點是較快速,不同的蛋白質產生顏色的深淺相近,以及干擾物質少。主要的缺點是靈敏度差。因此雙縮脲法常用於需要快速,但並不需要十分精確的蛋白質測定。
(二)試劑與器材
1.試劑:
(1)標准蛋白質溶液:用標準的結晶牛血清清蛋白(bsa)或標准酪蛋白,配製成10mg/ml的標准蛋白溶液,可用bsa濃度1mg/ml的a280為0.66來校正其純度。如有需要,標准蛋白質還可預先用微量凱氏定氮法測定蛋白氮含量,計算出其純度,再根據其純度,稱量配製成標准蛋白質溶液。牛血清清蛋白用H2O 或0.9%NaCl配製,酪蛋白用0.05NaOH配製。
(2)雙縮脲試劑:稱以1.50克硫酸銅(CuSO4•5H2O)和6.0克酒石酸鉀鈉(KNaC4H4O6•4H2O),用500毫升水溶解,在攪拌下加入300毫升10% NaOH溶液,用水稀釋到1升,貯存於塑料瓶中(或內壁塗以石蠟的瓶中)。此試劑可長期保存。若貯存瓶中有黑色沉澱出現,則需要重新配製。
2.器材:
可見光分光光度計、大試管15支、旋渦混合器等。
(三)操作方法
1.標准曲線的測定:取12支試管分兩組,分別加入0,0.2,0.4,0.6,0.8,1.0毫升的標准蛋白質溶液,用水補足到1毫升,然後加入4毫升雙縮脲試劑。充分搖勻後,在室溫(20~25℃)下放置30分鍾,於540nm處進行比色測定。用未加蛋白質溶液的第一支試管作為空白對照液。取兩組測定的平均值,以蛋白質的含量為橫座標,光吸收值為縱座標繪制標准曲線。
2、樣品的測定:取2~3個試管,用上述同樣的方法,測定未知樣品的蛋白質濃度。注意樣品濃度不要超過10mg/ml。
三、folin―酚試劑法(lowry法)
(一)實驗原理
這種蛋白質測定法是最靈敏的方法之一。過去此法是應用最廣泛的一種方法,由於其試劑乙的配製較為困難(現在已可以訂購),近年來逐漸被考馬斯亮蘭法所取代。此法的顯色原理與雙縮脲方法是相同的,只是加入了第二種試劑,即folin―酚試劑,以增加顯色量,從而提高了檢測蛋白質的靈敏度。這兩種顯色反應產生深蘭色的原因是:在鹼性條件下,蛋白質中的肽鍵與銅結合生成復合物。folin―酚試劑中的磷鉬酸鹽―磷鎢酸鹽被蛋白質中的酪氨酸和苯丙氨酸殘基還原,產生深蘭色(鉬蘭和鎢蘭的混合物)。在一定的條件下,蘭色深度與蛋白的量成正比。
folin―酚試劑法最早由lowry確定了蛋白質濃度測定的基本步驟。以後在生物化學領域得到廣泛的應用。這個測定法的優點是靈敏度高,比雙縮脲法靈敏得多,缺點是費時間較長,要精確控制操作時間,標准曲線也不是嚴格的直線形式,且專一性較差,干擾物質較多。對雙縮脲反應發生干擾的離子,同樣容易干擾lowry反應。而且對後者的影響還要大得多。酚類、檸檬酸、硫酸銨、tris緩沖液、甘氨酸、糖類、甘油等均有干擾作用。濃度較低的尿素(0.5%),硫酸納(1%),硝酸納(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液對顯色無影響,但這些物質濃度高時,必須作校正曲線。含硫酸銨的溶液,只須加濃碳酸鈉―氫氧化鈉溶液,即可顯色測定。若樣品酸度較高,顯色後會色淺,則必須提高碳酸鈉―氫氧化鈉溶液的濃度1~2倍。
進行測定時,加folin―酚試劑時要特別小心,因為該試劑僅在酸性ph條件下穩定,但上述還原反應只在ph=10的情況下發生,故當folin一酚試劑加到鹼性的銅―蛋白質溶液中時,必須立即混勻,以便在磷鉬酸―磷鎢酸試劑被破壞之前,還原反應即能發生。
此法也適用於酪氨酸和色氨酸的定量測定。
此法可檢測的最低蛋白質量達5mg。通常測定范圍是20~250mg。
⑶ DNA與蛋白質相互作用的研究方法有哪些
研究蛋白質與DNA相互作用的主要方法
一、引言
在許多的細胞生命活動中,例如DNA復制、mRNA轉錄與修飾以及病毒的感染等都涉及到DNA與蛋白質之間的相互作用的問題.
重組DNA技術的發展,人們已分離到了許多重要的基因.現在的關鍵問題是需要揭示環境因子及發育信號究竟是如何控制基因的轉錄活性.為此需要:
a、鑒定分析參與基因表達調控的DNA元件;
b、分離並鑒定這些順式元件特異性結合的蛋白質因子;
這些問題的研究都涉及到DNA與蛋白質之間的相互作用.
研究DNA-蛋白質相互作用的實驗方法主要包括:
a、凝膠阻滯實驗; b、DNase 1 足跡實驗;
c、甲基化干擾實驗; d、體內足跡實驗; f、拉下實驗.
二、凝膠阻滯實驗
1、概念:
凝膠阻滯實驗(Gel retardation assay),要叫做DNA遷移率變動試驗(DNA mobility shift assay)或條帶阻滯實驗(Band retardation assay)是在八十年代初期出現的用於在體外研究DNA與蛋白質相互作用的一種特殊的凝膠電泳技術.
2、原理:
在凝膠電泳中,由於電場的作用,裸露的DNA分子向正電極移動距離的大小是同其分子量的對數成反比.如果某種DNA分子結合上一種特殊的蛋白質,那麼由於分子量的加大它在凝膠中的遷移作用便會受到阻滯,於是朝正極移動的距離也就相應的縮短,因而在凝膠中出現滯後的條帶,這就是凝膠阻滯實驗的基本原理.
3、過程:
1)\x09首先制備細胞蛋白質提取物(理論上其中含有某種特殊的轉錄因子)
2)\x09用放射性同位素標記待檢測的DNA片段(含有轉錄因子的結合位點)
3)\x09這種被標記的探針DNA同細胞蛋白質提取物一起進行溫育,於是產生DNA-蛋白質復合物
4)\x09在控制使DNA-蛋白質保持結合狀態的條件下,進行非變性聚丙烯醯胺凝膠電泳
5)\x09最後進行放射自顯影,分析電泳結果
4、實驗結果的分析:
a、如果有放射性標記的條帶都集中於凝膠的底部,這就表明在細胞提取物中不存在可以同探針DNA相互結合的轉錄因子蛋白質;
b、如果在凝膠的頂部出現放射性標記的條帶,這就表明細胞提取物存在可與探針DNA結合的轉錄因子蛋白質.
5、DNA競爭實驗:
DNA競爭實驗(DNA competitive assay)的具體做法如下:
在DNA-蛋白質結合的反應體系中加入了超量的非標記的競爭DNA(competitor DNA),如果它同探針DNA結合的是同一種轉錄因子蛋白質,那麼由於競爭DNA與探針DNA相比是極大超量的,這樣絕大部分轉錄因子蛋白質都會被競爭結合掉,而使探針DNA仍然處於自由的非結合狀態,可以在電泳凝膠的放射自顯影圖片上就不會出現阻滯的條帶;
如果反應體系中加入的競爭DNA並不能同探針DNA競爭結合同一種轉錄因子,結果在電泳凝膠中的放射自顯影圖片上就會出現阻滯的條帶.
6、應用:
a、凝膠阻滯實驗可以用於鑒定在特殊類型細胞蛋白質提取物中,是否存在能同某一特定的DNA(含有轉錄因子結合位點)結合的轉錄因子蛋白質;
b、DNA競爭實驗可以用來檢測轉錄因子蛋白質同DNA結合的精確序列部位;
c、通過競爭DNA中轉錄因子結合位點的鹼基突變可以研究此種突變競爭性能及其轉錄因子結合作用的影響;
d、也可以利用DNA同特定轉錄因子的結合作用通過親和層析來分離特定的轉錄因子.
三、足跡實驗
1、定義:
足跡實驗(foot-printing assay),是一種用來檢測被特定轉錄因子蛋白質特異性結合的DNA序列的位置及其核苷酸序列結構的專門實驗方法.
2、原理:
當DNA分子中的某一區段同特異的轉錄因子結合之後便可以得到保護而免受DNaseI 酶的切割作用,而不會產生出相應的切割分子,結果在凝膠電泳放射性自顯影圖片上便出現了一個空白區,俗稱為「足跡」.
3過程:
將待檢測的雙鏈DNA分子在體外用32P作5『末端標記,並用適當的限制性內切酶切出其中的一個末端,於是便得到了一條單鏈末端標記的雙鏈DNA
在體外同細胞蛋白質提取物(細胞核提取物也可以)混合,形成DNA-蛋白質復合體
在反應混合物中加入少量的DNase I,並控制用量使之達到平均每條DNA鏈,只發生一次磷酸二酯鍵的斷裂:
a、如果蛋白質提取物中不存在與DNA結合的特定蛋白質,使DNase I消化之後,便會產生出距離放射性標記末端1個核苷酸,2個核苷酸,3個核苷酸------等等一系列前後長度均相差一個核苷酸的不間斷的連續的DNA片段梯度群體;
b、如果DNA分子同蛋白質提取物中的某種轉錄因子結合,被結合部位的DNA就可以得到保護免受DNase I酶的降解作用;
除去蛋白,加樣在20%序列膠上進行電泳分離,實驗分兩組:
a、實驗組:DNA+蛋白質混合物
b、對照組:只有DNA,未與蛋白質提取物進行溫育
最後進行放射性自顯影,分析實驗結果.
4、結果判斷:
實驗組凝膠電泳顯示的序列,出現空白的區域表明是轉錄因子蛋白質結合部;與對照組序列比較,便可以得出蛋白質結合部位的DNA區段相應的核苷酸序列.
5、其他的足跡實驗方法:
除了DNase1足跡試驗之外,目前還發展出了若干種其他類型的足跡實驗,例如:
a、\x09自由羥基足跡實驗;b、菲咯啉銅足跡實驗;c、DMS(硫酸二甲酯)足跡實驗
DMS(硫酸二甲酯)足跡實驗的原理
DMS能夠使DNA分子中裸露的鳥嘌呤(G)殘基甲基化,而六氫吡啶又會對甲基化的G殘基作特異性的化學切割.如果DNA分子中某一區段同轉錄因子結合,就可以避免發生G殘基的甲基化而免受六氫吡啶的切割作用.
四、甲基化干擾實驗
1、概念:
甲基化干擾實驗(Methylation interference assay)是根據DMS(硫酸二甲酯)能夠使DNA分子中裸露的鳥嘌呤(G)殘基甲基化,而六氫吡啶又會對甲基化的G殘基作特異性的化學切割這一原理設計的另一種研究蛋白質同DNA相互作用的實驗方法.
應用這種技術可以檢測靶DNA中G殘基的優先甲基化,對爾後的蛋白質結合作用究竟會有什麼效應,從而更加詳細的揭示出DNA與蛋白質相互作用的模式.
2、實驗步驟:
用DMS處理靶DNA使之局部甲基化(平均每條DNA只發生一個G鹼基甲基化作用)
同細胞蛋白質提取物一起進行溫育,促進使DNA與蛋白質的結合
進行凝膠電泳形成兩種靶DNA條帶:
a、\x09其一沒有同蛋白質結合的DNA正常電泳條帶
b、其二同特異蛋白質結合而呈現滯後的DNA電泳條帶
將這兩種DNA電泳條帶分別從凝膠中切出,並用六氫吡啶進行切割,結果為:
a、甲基化的G殘基被切割:因為轉錄因子蛋白質只能夠同未發生甲基化的正常的結合位點結合,所以在轉錄因子DNA結合位點序列中的G殘基如果被DMS甲基化之後,轉錄因子就無法同其結合位點(順式元件)發生結合作用,從而使得結合位點中的G殘基同樣也要被六氫吡啶切割;
b、不具有甲基化G殘基的靶DNA 序列則不會被切割
將結合蛋白質的DNA條帶和不結合蛋白質的DNA條帶,經六氫吡啶切割作用之後,再進行凝膠電泳
作放射自顯影,讀片並分析結果
3、結果判斷:
a、同轉錄因子蛋白質結合的靶DNA序列,經六氫吡啶切割之後,電泳分離呈現兩條帶,有一個空白區
b、不同轉錄因子蛋白質結合的靶DNA序列,經六氫吡啶切割後,電泳分離呈現三條帶,沒有空白區域的出現.
4、應用:
a、甲基化干擾實驗可以用來研究轉錄因子與DNA結合位點中的G殘基之間的聯系;
b、是足跡實驗的一種有效的補充手段,可以鑒定足跡實驗中DNA與蛋白質相互作用的精確位置
5、缺點:
DMS只能使DNA序列中的G和A殘基甲基化,而不能使T和C殘基甲基化.
五、體內足跡實驗
上面討論的三種研究轉錄因子與DNA相互作用的方法,有一個共同的不足之處在於它們是在體外進行的實驗,因此人們就會考慮這些實驗結果是否能夠反映細胞內發生的真實生命過程,即細胞內發生的真實的DNA與蛋白質的相互作用情況.
為了解答這個問題,科學家就設計出了一種體內足跡試驗(in vivo foot-printing assay),該方法可以看做是體外DMS足跡實驗的一個變種.
1、原理:
體內足跡試驗的原理原則上同體外DMS足跡實驗無本質差別,即
a、DMS能夠使G殘基甲基化;
b、六氫吡啶能特異的切割甲基化的G殘基;
c、同特異轉錄因子蛋白質結合的識別序列中的G殘基由於受到蛋白質的保護而不會被DMS甲基化,於是不會被六氫吡啶切割;
d、同對照的裸露的DNA形成的序列梯作比較,就會發現活細胞DNA形成的序列梯中缺少G殘基沒有被切割的相應條帶.
2、過程:
用有限數量的化學試劑DMS處理完整的游離細胞,使滲透到胞內的DMS濃度恰好導致天然染色體DNA的G殘基發生甲基化
對這些經過DMS處理的細胞提取DNA,並在體外加入六氫吡啶作消化反應
PCR擴增後作凝膠電泳分析,因為在體外實驗中用的是克隆的DNA片段其數量足夠,而在體內足跡實驗中用的是從染色體DNA中分離獲得的任何一種特異的DNA,其數量是微不足道的,所以需要經PCR擴增以獲得足夠數量的特異DNA
放射自顯影,讀片並記錄讀片的結果
3、結果判斷:
a、能夠同轉錄因子蛋白質結合的DNA區段其中G殘基受到保護因而不會被DMS甲基化避免了六氫吡啶的切割作用;
b、體外裸露的DNA分子上,G殘基被DMS甲基化而被六氫吡啶切割.
六、拉下實驗(Pull-down assay)
拉下實驗又叫做蛋白質體外結合實驗(binding assay in vitro),是一種在試管中檢測蛋白質之間相互作用的方法.其基本原理是將某種小肽(例如生物素、6-His標簽以及谷胱甘肽轉移酶等)的編碼基因與誘餌蛋白的編碼基因重組,表達為融合蛋白.分離純化融合蛋白並與磁珠結合,使之固相化之後,再與表達目的蛋白的細胞提取物混合保溫適當時間,例如在4℃下保溫過夜,使目標蛋白同已經固定在磁珠表面的融合蛋白中的誘餌蛋白充分的結合.離心收集與固定化的融合蛋白(即與磁珠相互結合的融合蛋白)中的誘餌蛋白相結合的目的蛋白,經過煮沸處理使目的蛋白與誘餌蛋白相脫離從而從固相支持物(例如磁珠)上脫離下來,收集樣品,再與目標蛋白的抗體作Western blotting分析,以檢測出與誘餌蛋白的目標的目標蛋白.
染色質免疫共沉澱技術(ChIP) 真核生物的基因組DNA以染色質的形式存在.因此,研究蛋白質與DNA在染色質環境下的相互作用是闡明真核生物基因表達機制的基本途徑.染色質免疫沉澱技術(chromatin immunoprecipitation assay, CHIP)是目前唯一研究體內DNA與蛋白質相互作用的方法.它的基本原理是在活細胞狀態下固定蛋白質-DNA復合物,並將其隨機切斷為一定長度范圍內的染色質小片段,然後通過免疫學方法沉澱此復合體,特異性地富集目的蛋白結合的DNA片段,通過對目的片斷的純化與檢測,從而獲得蛋白質與DNA相互作用的信息.CHIP不僅可以檢測體內反式因子與DNA的動態作用,還可以用來研究組蛋白的各種共價修飾與基因表達的關系.而且,CHIP與其他方法的結合,擴大了其應用范圍:CHIP與基因晶元相結合建立的CHIP-on-chip方法已廣泛用於特定反式因子靶基因的高通量篩選;CHIP與體內足跡法相結合,用於尋找反式因子的體內結合位點;RNA-CHIP用於研究RNA在基因表達調控中的作用.由此可見,隨著CHIP的進一步完善,它必將會在基因表達調控研究中發揮越來越重要的作用. 染色體免疫共沉澱(Chromatin Immunoprecipitation,ChIP)是基於體內分析發展起來的方法,也稱結合位點分析法,在過去十年已經成為表觀遺傳信息研究的主要方法.這項技術幫助研究者判斷在細胞核中基因組的某一特定位置會出現何種組蛋白修飾.ChIP不僅可以檢測體內反式因子與DNA的動態作用,還可以用來研究組蛋白的各種共價修飾與基因表達的關系.近年來,這種技術得到不斷的發展和完善.採用結合微陣列技術在染色體基因表達調控區域檢查染色體活性,是深入分析癌症、心血管疾病以及中央神經系統紊亂等疾病的主要代謝通路的一種非常有效的工具. 它的原理是在保持組蛋白和DNA聯合的同時,通過運用對應於一個特定組蛋白標記的生物抗體,染色質被切成很小的片斷,並沉澱下來.IP是利用抗原蛋白質和抗體的特異性結合以及細菌蛋白質的「prorein A」特異性地結合到免疫球蛋白的FC片段的現象活用開發出來的方法.目前多用精製的prorein A預先結合固化在argarose的beads上,使之與含有抗原的溶液及抗體反應後,beads上的prorein A就能吸附抗原達到精製的目的.實驗最需要注意點就是抗體的性質.抗體不同和抗原結合能力也不同,免染能結合未必能用在IP反應.建議仔細檢查抗體的說明書.特別是多抗的特異性是問題.其次,要注意溶解抗原的緩沖液的性質.多數的抗原是細胞構成的蛋白,特別是骨架蛋白,緩沖液必須要使其溶解.為此,必須使用含有強界面活性劑的緩沖液,盡管它有可能影響一部分抗原抗體的結合.另一面,如用弱界面活性劑溶解細胞,就不能充分溶解細胞蛋白.即便溶解也產生與其它的蛋白結合的結果,抗原決定族被封閉,影響與抗體的結合,即使IP成功,也是很多蛋白與抗體共沉的悲慘結果.再次,為防止蛋白的分解,修飾,溶解抗原的緩沖液必須加蛋白每抑制劑,低溫下進行實驗.每次實驗之前,首先考慮抗體/緩沖液的比例.抗體過少就不能檢出抗原,過多則就不能沉降在beads上,殘存在上清.緩沖劑太少則不能溶解抗原,過多則抗原被稀釋. ChIP的一般流程: 甲醛處理細胞---收集細胞,超聲破碎---加入目的蛋白的抗體,與靶蛋白-DNA復合物相互結合---加入ProteinA,結合抗體-靶蛋白-DNA復合物,並沉澱---對沉澱下來的復合物進行清洗,除去一些非特異性結合---洗脫,得到富集的靶蛋白-DNA復合物---解交聯,純化富集的DNA-片斷---PCR分析. 在PCR分析這一塊,比較傳統的做法是半定量-PCR.但是現在隨著熒光定量PCR的普及,大家也越來越傾向於Q-PCR了.此外還有一些由ChIP衍生出來的方法.例如RIP(其實就是用ChIP的方法研究細胞內蛋白與RNA的相互結合,具體方法和ChIP差不多,只是實驗過程中要注意防止RNase,最後分析的時候需要先將RNA逆轉錄成為cDNA);還有ChIP-chip(其實就是ChIP富集得到的DNA-片段,拿去做晶元分析,做法在ChIP的基礎上有所改變,不同的公司有不同的做法,要根據公司的要求來准備樣品).
GST沉澱實驗(GST-pull down實驗)(細胞外蛋白質相互作用)5-11
上面提到,用酵母雙雜交方法篩選到的蛋白需要作進一步的鑒定.鑒定方法之一就是 GST
沉澱實驗.GST 沉澱實驗主要是用來證明蛋白質胞外的相互作用.蛋白質在胞外的相互作用排除了酵母細胞內復雜體系的干擾,比較直接地檢驗蛋白質分子之間存在的物理的相互作用.同酵母雙雜交實驗一樣,運用此法也可以證明相互作用的蛋白分子中是否有參與調節作用的結構域或 motif.GST\x09沉澱實驗原理就是,把你要研究的蛋白基因亞克隆到帶有GST(谷胱甘肽轉移酶)基因的原核表達載體中,並在細菌中表達 GST 融合蛋白(GST-X).把 GST 融合蛋白掛到帶有 GST 地物的 Sepharose beads 上,然後把另一種蛋(Y)白加入其中.由於蛋白質之間的結合作用,形成了這樣的復合物:GST-X----Y.這一復合物與固體支持物(Sepharose beads)又
結合在一起,可以被沉澱下來.此法又有在不同情況下的具體應用,以下一一作介紹.
(1)\x09GST 融合蛋白與重組蛋白的相互作用
GST 融合蛋白是在原核表達的,所以沒有經過過多的象真核細胞內具有的蛋白修飾作用.
所以另一種用來檢驗相互作用的蛋白也可以用原核表達出來,也就是所謂的重組蛋白.當 GST融合蛋白把重組蛋白沉澱下來,然後用重組蛋白的抗體作 Western blotting 檢測.
(2) GST 融合蛋白與體外 TNT 系統合成的多肽或蛋白的相互作用
用來檢驗與GST融合蛋白相互作用的蛋白或多肽也可以用TNT體外蛋白合成體系進行合
成,並且還可以在要合成的蛋白或多肽N端或C端加上便於檢測的標簽.GST融合蛋白沉澱下來的蛋白或多肽可以用該蛋白或多肽的抗體或標簽抗體進行Western blotting檢測.如果蛋白之間結合力非常弱,用Western blotting檢測方法難以檢測到,你可以在TNT體外合成時給蛋白進行同位素(S32)標記.這樣沉澱下來的蛋白進行放射自顯影,檢測靈敏度將極大提高.
(3) GST 融合蛋白與細胞內源性蛋白質的相互作用
GST融合蛋白還可以把細胞提取物中有相互作用的內源性蛋白質沉澱下來.如果內源性蛋
白含量低或結合力弱,可以採用脈沖法使細胞在某一段時間內合成的所有蛋白質都標記上放射性同位素(S32),然後提取細胞總蛋白與GST融合蛋白溫育.GST融合蛋白沉澱下的帶有放射性標記的蛋白跑電泳,進行放射自顯影.
(4) GST 融合蛋白與細胞內瞬時表達的蛋白質的相互作用
當內源性蛋白質含量低,並且有可能影響蛋白質的相互作用,也可以把該蛋白的基因轉染
到靶細胞內進行過表達,然後檢驗蛋白質相互作用.
(5) GST 融合蛋白與待測蛋白的相互作用有可能與待測蛋白的磷酸化狀態有關在進行 GST 沉澱實驗時,有時也會遇到比較復雜的情況,具體情況具體分析,分別對待.比如,兩個蛋白質之間發生相互作用時有可能與蛋白磷酸化狀態有關.或者蛋白首先被磷酸化後方能產生相互作用,或者磷酸化的蛋白必需脫磷酸化後才能產生相互作用.如果你確實在你
的實驗中發現了其中一種情況,這將是一個非常有意義的結果.
3,\x09免疫共沉澱(co-immunoprecipitation )(細胞內蛋白質相互作用)9-16
免疫共沉澱技術用來證明蛋白質在胞內是否有相互作用.一般來說,兩種蛋白在細胞內發
生相互作用時會形成兩種蛋白的復合物,這樣就可以先用一種蛋白的抗體把免疫復合物沉澱下來,然後用另一種蛋白的抗體進行 Western blotting 檢測,看兩種蛋白之間是否確實形成免疫復合物,並能與 protein A/G agarose 一起沉澱下來.免疫共沉澱原理簡單,但技術極為復雜.因為細胞內蛋白種類繁多,制約因素多.如果兩種蛋白之間可以發生相互作用,並不是這兩種蛋白所有分子都參與結合作用,也可能只有極少部分蛋白分子結合在一起(足以滿足細胞功能需要).在提取細胞蛋白時,如果條件不當就會破壞兩種相互作用蛋白形成的復合物的穩定性,使得免疫共沉澱實驗失敗.如果兩種蛋白在細胞內的結合力確實非常弱,那麼免疫共沉澱也難以成功.如果知道發生相互作用的兩個蛋白都是胞核蛋白,那麼可以通過提取核蛋白,再進行免疫共沉澱實驗,這樣會大大減低背景的干擾.關於兩種蛋白質之間胞內的相互作用,有時確實無法用免疫共沉澱實驗證明.
(1) 細胞內過表達蛋白的免疫共沉澱
證明蛋白質胞內相互作用時,可以選擇一個高效瞬時過表達系統(至於這一系統是否有內
源性靶蛋白無關緊要).一般採取 COS 細胞作為真核表達株.把兩種蛋白基因共轉染到 COS 細胞內進行表達.由於人為進行大量表達,所以在胞內兩種蛋白形成相互作用的復合物的量也相應增多.如果你手頭沒有這兩種蛋白的抗體,可以把這兩種蛋白的一端分別加上標簽以融合蛋白形式表達,然後用商業化的抗標簽抗體進行免疫共沉澱和 Western blotting 檢測.
(2) 細胞內源性蛋白的免疫共沉澱
把兩種蛋白共轉染到 COS 細胞內進行過表達,進行免疫共沉澱實驗,相對容易成功,但是
這一結果畢竟具有人工性,不能代表生理條件下真實的蛋白質相互作用.要想克服這一弱點,
可以做內源性的免疫共沉澱實驗.這一技術要求極高,難度極大,但也最有說服力.因為細胞內內源性蛋白含量低,結合在一起形成復合物的量更低,難以檢測.首先要證明所選擇的細胞系是否具有這兩種內源性的蛋白.另外,用於免疫沉澱和 Western blotting 檢測的抗體要好.細胞裂解、收集以及免疫沉澱時時條件要溫和,以保持蛋白復合物的天然結構.
(3) 組織內蛋白的免疫共沉澱
在體外可以大量培養細胞,然後制備細胞提取物,做內源性免疫共沉澱.由此可以推廣到做
組織內免疫共沉澱.取動物組織(腦、肝、脾等),切碎,勻漿,提取組織蛋白,進行免疫共沉澱實驗.這一結果代表活體中蛋白質相互作用.
4,\x09蛋白質細胞內定位實驗17-22
另一種經常用來檢驗蛋白質相互作用的方法是蛋白質細胞內定位技術.此法較為直觀,可
以看到兩種有相互作用的蛋白質在細胞內的分布(膜上、胞漿、胞核或其它細胞器等等)以及共定位的部位(在膜上共定位、在胞漿中某一部位或核內共定位等等).有時相互作用的蛋白由於細胞內某種功能的需要結合在一起時,使得兩種蛋白的分布發生變化.比如,某種蛋白也許在核內,當它與另一種具有穿梭功能的蛋白結合時,有可能被轉運到胞漿中.這種情況的共定位則較為典型.在進行蛋白質共定位
(1) 利用有色熒光蛋白標記技術進行蛋白定位研究
此法也可稱為活細胞定位.把兩種具有相互作用的蛋白分別克隆到帶有兩種不同顏色熒光
蛋白(綠色熒光蛋白或紅色熒光蛋白)的載體中,共轉染到功能細胞中(一般選用 COS7 細胞)表達帶有熒光的融合蛋白.這樣,相互作用的兩種蛋白就被標上不同的熒光,可以在細胞內用熒光顯微鏡直接觀測.在進行精確細胞定位或共定位時,必須用共聚焦熒光顯微鏡觀測.因為共聚焦熒光顯微鏡(相當於醫院給病人診斷的 CT)觀測的是細胞內一個切面上的顏色.如果在一個切面上在同一區域看到兩種顏色,就提示這兩種蛋白在該區域內有相互作用.普通熒光顯微鏡看到的是一個立體圖象,無法確定蛋白質共定位現象.在進行定位或共定位同時,也可以對細胞核進行染色.這樣,在細胞中就有三種顏色.細胞核的顯色幫助你確定共定位發生的位置.上面介紹的活細胞定位,其優點是表達的熒光蛋白熒光強,沒有背景,觀測方便.但缺點
是相互作用的蛋白由於標上熒光蛋白,實際上是兩個融合蛋白.融合蛋白的定位結果或共定位結果是否與天然蛋白分布一致,有待於進一步確定.而利用免疫熒游標記技術可以避免這一缺點.
(2) 利用雙色或多色染色的免疫熒光技術進行蛋白定位研究
免疫熒光的原理是,首先把細胞進行固定,然後用待檢測靶蛋白的抗體(一抗)與細胞內
靶蛋白進行免疫反應,再用熒光素(如 FITC 和 TRITC 等)標記的二抗與一抗進行反應.這樣就在細胞內形成免疫復合物(靶蛋白----一抗---二抗),結果靶蛋白被標上顏色,然後可用共聚焦熒光顯微鏡觀測定位與共定位結果.
免疫熒光技術最大優點就是可用來檢測細胞內源性蛋白的定位及相互作用.當然也可以對
靶細胞進行轉染表達目的蛋白,然後標記目的蛋白進行觀測.免疫熒光技術的缺點是熒光相對較弱並且背景較高,結果受到干擾,所以這項技術不好掌握.為了結果的可靠性,要求嚴格設計陽性對照與陰性對照.
(3) 細胞內蛋白動態定位
有時細胞在正常狀態下,有相互作用的蛋白在胞內可能暫時分開,沒有共定位現象發生.
但是在某一個特定情況下,如細胞受到外界刺激時,細胞本身會產生應急反應,這時暫時分離的蛋白有可能發生相互作用,並產生共定位現象.所以在進行共定位研究時,可根據具體情況具體分析,必要時觀測細胞內蛋白動態定位結果.
【TSD、M】
⑷ 一般採用什麼方法檢驗蛋白質即鑒定
一般用雙縮脲試劑鑒定,雙縮脲試劑可以和蛋白質發生紫色反應。
⑸ 檢測蛋白質的方法有哪些 檢測蛋白質的方法介紹
1、凱氏定氮法
凱氏定氮法是測定化合物或混合物中總氮量的一種方法。即在有催化劑的條件下,用濃硫酸消化樣品將有機氮都轉變成無機銨鹽,然後在鹼性條件下將銨鹽轉化為氨,隨水蒸氣蒸餾出來並為過量的硼酸液吸收,再以標准鹽酸滴定,就可計算出樣品中的氮量。
由於蛋白質含氮量比較恆定,可由其氮量計算蛋白質含量,故此法是經典的蛋白質定量方法。
2、雙縮脲法
雙縮脲法是一個用於鑒定蛋白質的分析方法。雙縮脲試劑是一個鹼性的含銅試液,呈藍色,由1%氫氧化鉀、幾滴1%硫酸銅和酒石酸鉀鈉配製。
當底物中含有肽鍵時(多肽),試液中的銅與多肽配位,配合物呈紫色。可通過比色法分析濃度,在紫外可見光譜中的波長為540nm。鑒定反應的靈敏度為5-160mg/ml。鑒定反應蛋白質單位1-10mg。
3、酚試劑法
取6支試管分別標號,前5支試管分別加入不同濃度的標准蛋白溶液,最後一支試管加待測蛋白質溶液,不加標准蛋白溶液,在室溫下放置30分鍾,以未加蛋白質溶液的第一支試管作為空白對照,於650nm波長處測定各管中溶液的吸光度值。
4、紫外吸收法
大多數蛋白質在280nm波長處有特徵的最大吸收,這是由於蛋白質中有酪氨酸,色氨酸和苯丙氨酸存在,可用於測定0.1~0.5mg/mL含量的蛋白質溶液。
取9支試管分別標號,前8支試管分別加入不同濃度的標准蛋白溶液,1號試管不加標准蛋白溶液,最後一支試管加待測蛋白質溶液,而不加標准蛋白溶液,每支試管液體總量通過加入蒸餾水補足而保持一致,將液體混合均勻,在280nm波長處進行比色,記錄吸光度值。
5、考馬斯亮藍法
考馬斯亮藍顯色法的基本原理是根據蛋白質可與考馬斯亮藍G-250 定量結合。當考馬斯亮藍 G-250 與蛋白質結合後,其對可見光的最大吸收峰從 465nm 變為 595nm。
在考馬斯亮藍 G-250 過量且濃度恆定的情況下,當溶液中的蛋白質濃度不同時,就會有不同量的考馬斯亮藍 G-250 從吸收峰為 465nm 的形式轉變成吸收峰為 595nm 的形式,而且這種轉變有一定的數量關系。
一般情況,當溶液中的蛋白質濃度增加時,顯色液在 595nm 處的吸光度基本能保持線性增加,因此可以用考馬斯亮藍 G-250 顯色法來測定溶液中蛋白質的含量。
⑹ 蛋白質之間相互作用的研究方法有哪些
研究DNA-蛋白質相互作用的實驗方法主要包括:a、凝膠阻滯實驗; b、DNase 1 足跡實驗;c、甲基化干擾實驗; d、體內足跡實驗; f、拉下實驗。研究蛋白質/ 核酸相互作用近期採用的新技術有:核酸適體技術、生物信息學方法、蛋白質晶元技術以及納米技術等。
蛋白(綠色熒光蛋白或紅色熒光蛋白)的載體中,共轉染到功能細胞中(一般選用 COS7 細胞)表達帶有熒光的融合蛋白.這樣,相互作用的兩種蛋白就被標上不同的熒光,可以在細胞內用熒光顯微鏡直接觀測.在進行精確細胞定位或共定位時,必須用共聚焦熒光顯微鏡觀測.因為共聚焦熒光顯微鏡(相當於醫院給病人診斷的 CT)觀測的是細胞內一個切面上的顏色.如果在一個切面上在同一區域看到兩種顏色,就提示這兩種蛋白在該區域內有相互作用.普通熒光顯微鏡看到的是一個立體圖象,無法確定蛋白質共定位現象.在進行定位或共定位同時,也可以對細胞核進行染色.這樣,在細胞中就有三種顏色.細胞核的顯色幫助你確定共定位發生的位置.上面介紹的活細胞定位,其優點是表達的熒光蛋白熒光強,沒有背景,觀測方便.