① 實驗室怎麼測水中的溶氧量誰會
如果你是中學生,你可以按照以上方法的...
測量水中溶氧量的方法,
一種是使用滴定法(稱Winkler滴定法),系以Mn+2將氧固定成Mn(OH)2之褐色沈澱,再以硫代硫酸鈉之量多寡,來表示水中溶氧量。
另一法則以溶氧量儀器法測試,即以薄膜電極法去測水中溶氧量。
還可以溶氧儀測定水樣BOD5的方法.
水中溶氧量的測定方法和步驟:
一、水樣的採集。必須用采水瓶採集水樣,采水的方法如下:
1、將采水瓶沉入水底,提拉細繩使乳膠管從長玻璃管上端脫離,並輕輕拉直以便排出瓶中空氣,這時,可見有氣泡從水面冒出,到不見氣泡冒出時說明采水瓶內已灌滿池水,將采水瓶提出水面。
2、把乳膠管一端套在長玻璃管上,另一端插入水樣瓶底部(125ml白色細口瓶),用虹吸法將采水瓶中的水倒入水樣瓶中,滿瓶之後要繼續讓水溢出,同時緩緩將乳膠管從水樣瓶中提出,然後將瓶塞蓋緊。
二、水樣分析測定方法步驟。
1、固定溶解氧:打開水樣瓶瓶蓋,滴入鹼性碘化鉀3~4滴、硫酸錳3~4滴。蓋上瓶塞(瓶中不可有氣泡)上下顛倒搖動後靜置片刻,待瓶中沉澱降到中部後加濃硫酸3~4滴,蓋上瓶塞再搖勻即可。
2、滴定分析:用量筒量取25ml酸化後的水樣於三角瓶中,滴入澱粉2~3滴,水樣呈蘭色,用注射器抽取硫代硫酸鈉於三角瓶中滴定,邊滴邊搖動三角瓶,當蘭色變淡時將水樣倒回量筒涮一下再倒回三角瓶繼續滴定,直至蘭色消失立刻停止滴定。此時看一下用掉硫代硫酸鈉的毫升數就是水中溶解氧的毫克/升數。
② 水處理中有哪些指標可以在線監測在線監測儀器有哪些
水質在線監測參數及所用到儀器有:
一、COD/氨氮/總磷/總氮等參數在線監測儀
1、總氮水質在線監測儀:總氮指標的在線監測儀器
2、總磷水質在線監測儀:總磷指標的在線監測儀器
3、氨氮水質在線監測儀:氨氮指標的在線監測儀器
4、COD水質在線監測儀:化學需氧量指標的在線監測儀器
5、在線電導率儀:溶液中電導率值/TDS的連續監測
6、在線式總氯測定儀:余氯/總氯測量和自來水管網的余氯/總氯測量
7、在線式BOD測定儀:在線監測化學需氧量
8、在線式溶解氧儀:檢測溶液中溶解氧儀值
二、重金屬在線監測儀
1、砷在線水質分析儀:砷指標的在線監測儀器
2、六價鉻在線水質分析儀:六價鉻指標的在線監測儀器
3、總鉻在線水質分析儀:總鉻指標的在線監測儀器
4、銅在線水質分析儀:銅指標的在線監測儀器
5、汞在線水質分析儀:汞指標的在線監測儀器
6、錳在線水質分析儀:錳指標的在線監測儀器
7、鋅在線水質分析儀:鋅指標的在線監測儀器
三、微生物在線檢測儀
1、在線總大腸桿菌自動監測儀:糞大腸菌群的測定
2、在線糞大腸桿菌檢測儀:總大腸菌群、耐熱(糞)大腸菌群和大腸埃希氏菌的測定
③ 請問,測定水中溶解氧的國標方法是什麼
水質 溶解氧的測定 碘量法 GB 7489-87
本方法等效採用國際標准 ISO 5813 1983 本方法規定採用碘量法測定水中溶解氧由
於考慮到某些干擾而採用改進的溫克勒(Winkler)法
1 范圍
碘量法是測定水中溶解氧的基準方法 在沒有干擾的情況下此方法適用於各種溶解氧
濃度大於0.2mg/L 和小於氧的飽和濃度兩倍(約20mg/L)的水樣易氧化的有機物如丹寧酸
腐植酸和木質素等會對測定產生干擾可氧化的硫的化合物如硫化物硫脲也如同易於消
耗氧的呼吸系統那樣產生干擾當含有這類物質時宜採用電化學探頭法
亞硝酸鹽濃度不高於 15mg/L 時就不會產生干擾因為它們會被加入的疊氮化鈉破壞掉
如存在氧化物質或還原物質 需改進測定方法見第8 條
如存在能固定或消耗碘的懸浮物 本方法需按附錄A 中敘述的方法改進後方可使用
2 原理
在樣品中溶解氧與剛剛沉澱的二價氫氧化錳(將氫氧化鈉或氫氧化鉀加入到二價硫酸錳
中製得)反應酸化後生成的高價錳化合物將碘化物氧化游離出等當量的碘用硫代硫酸鈉
滴定法測定游離碘量
3 試劑
分折中僅使用分析純試劑和蒸餾水或純度與之相當的水
3.1 硫酸溶液
小心地把 500mL 濃硫酸(ñ 1.84g/mL)在不停攪動下加入到500mL 水
注 若懷疑有三價鐵的存在則採用磷酸(H3PO4 ñ 1.70g/mL)
3.2 硫酸溶液c(1/2H2SO4) 2mol/L
3.3 鹼性碘化物 疊氮化物試劑
注 當試樣中亞硝酸氮含量大於0.05mg/L 而亞鐵含量不超過1mg/L 時為防止亞硝酸氮對測定結果的
干涉需在試樣中加疊氮化物疊氮化鈉是劇毒試劑若已知試樣中的亞硝酸鹽低於0.05mg/L 則可省去
此試劑
a. 操作過程中嚴防中毒
b. 不要使鹼性碘化物疊氮化物試劑(3.3)酸化因為可能產生有毒的疊氮酸霧
將35g的氫氧化鈉(NaOH)[或59g的氫氧化鉀(KOH)]和30g碘化鉀(KI)[或27g碘化鈉(NaI)]
溶解在大約50mL 水中
單獨地將 1g 的疊氮化鈉(NaN3)溶於幾毫升水中
將上述二種溶液混合並稀釋至 100mL
溶液貯存在塞緊的細口棕色瓶子里
經稀釋和酸化後 在有指示劑(3.7)存在下本試劑應無色
3.4 無水二價硫酸錳溶液340g/L(或一水硫酸錳380g/L 溶液)
可用 450g/L 四水二價氯化錳溶液代替
過濾不澄清的溶液
3.5 碘酸鉀c(1/6KIO3) 10mmol/L 標准溶液
在 180 乾燥數克碘酸鉀(KIO3) 稱量3.567 0.003g 溶解在水中並稀釋到1000mL
將上述溶液吸取 100mL 移入1000mL 容量瓶中用水稀釋至標線
3.6 硫代硫酸鈉標准滴定液c(Na2S2O3) 10mmol/L
3.6.1 配製
將 2.5g 五水硫代硫酸鈉溶解於新煮沸並冷卻的水中再加0.4g 的氫氧化鈉(NaOH) 並
稀釋至1000mL
溶液貯存於深色玻璃瓶中
3.6.2 標定
在錐形瓶中用 100~150mL 的水溶解約0.5g 的碘化鉀或碘化鈉(KI 或NaI) 加入5mL
2mol/L 的硫酸溶液(3.2),混合均勻加20.00mL 標准碘酸鉀溶液(3.5) 稀釋至約200mL 立即
用硫代硫酸鈉溶液滴定釋放出的碘當接近滴定終點時溶液呈淺黃色加指示劑(3.7) 再
滴定至完全無色
硫代硫酸鈉濃度(c mmol/L)由式(1)求出
= 6´ 20´1.66¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼ 1
V
c
式中 V 硫代硫酸鈉溶液滴定量mL
每日標定一次溶液
3.7 澱粉新配製10g/L 溶液
注 也可用其他適合的指示劑
3.8 酚酞1g/L 乙醇溶液
3.9 碘約0.005mol/L 溶液
溶解 4~5g 的碘化鉀或碘化鈉於少量水中加約130mg 的碘待碘溶解後稀釋至100mL
3.10 碘化鉀或碘化鈉
4 儀器
除常用試驗室設備外 還有
4.1 細口玻璃瓶容量在250~300mL 之間校準至1mL 具塞溫克勒瓶或任何其他適合的
細口瓶瓶肩最好是直的每一個瓶和蓋要有相同的號碼用稱量法來測定每個細口瓶的體
積
5 操作步驟
5.1 當存在能固定或消耗碘的懸浮物或者懷疑有這類物質存在時按附錄A 敘述的方法測
定或最好採用電化學探頭法測定溶解氧
5.2 檢驗氧化或還原物質是否存在
如果預計氧化或還原劑可能幹擾結果時 取50mL 待測水加2 滴酚酞溶液(3.8)後中
和水樣加0.5mL 硫酸溶液(3.2) 幾粒碘化鉀或碘化鈉(3.10)(質量約0.5g)和幾滴指示劑溶液
(3.7)
如果溶液呈藍色 則有氧化物質存在如果溶液保持無色加0.2mL 碘溶液(3.9) 振盪
放置30s 如果沒有呈藍色則存在還原物質進一步加碘溶液可以估計8.2.3 中次氯酸鈉溶
液的加入量
有氧化物質存在時 按照8.1 中規定處理有還原物質存在時按照8.2 中規定處理沒
有氧化或還原物時按照5.3 5.4 5.5 中規定處理
5.3 樣品的採集
除非還要作其他處理 樣品應採集在細口瓶中(4.1) 測定就在瓶內進行試樣充滿全部
細口瓶
注 在有氧化或還原物的情況下需取二個試樣(見8.1.2.1 和8.2.3.1).
5.3.1 取地表水樣
充滿細口瓶至溢流 小心避免溶解氧濃度的改變對淺水用電化學探頭法更好些
在消除附著在玻璃瓶上的氣泡之後 立即固定溶解氧(見5.4)
5.3. 2 從配水系統管路中取水樣
將一惰性材料管的入口與管道連接 將管子出口插入細口瓶的底部(4.1)
用溢流沖洗的方式充入大約 10 倍細口瓶體積的水最後注滿瓶子在消除附著在玻璃瓶
上的空氣泡之後立即固定溶解氧(見5.4)
5.3.3 不同深度取水樣
用一種特別的取樣器 內盛細口瓶(4.1) 瓶上裝有橡膠入口管並插入到細口瓶的底部
(4.1)
當溶液充滿細口瓶時將瓶中空氣排出 避免溢流某些類型的取樣器可以同時充滿幾個
細口瓶
5.4 溶解氧的固定
取樣之後 最好在現場立即向盛有樣品的細口瓶中加1mL 二價硫酸錳溶液(3.4)和2mL
鹼性試劑(3.3) 使用細尖頭的移液管將試劑加到液面以下小心蓋上塞子避免把空氣泡
帶入
若用其他裝置必須小心保證樣品氧含量不變
將細口瓶上下顛倒轉動幾次 使瓶內的成分充分混合靜置沉澱最少5min 然後再重新
顛倒混合保證混合均勻這時可以將細口瓶運送至實驗室
若避光保存 樣品最長貯藏24h
5.5 游離碘
確保所形成的沉澱物已沉降在細口瓶下三分之一部分
慢速加入 1.5mL 硫酸溶液(3.1)[或相應體積的磷酸溶液(見3.1 注)] 蓋上細口瓶蓋然後
搖動瓶子要求瓶中沉澱物完全溶解並且碘已均勻分布
注 若直接在細口瓶內進行滴定小心地虹吸出上部分相應於所加酸溶液容積的澄清液而不擾動底
部沉澱物
5.6 滴定
將細口瓶內的組分或其部分體積(V1)轉移到錐形瓶內用硫代硫酸鈉(3.6)滴定在接近滴
定終點時加澱粉溶液(3.7)或者加其他合適的指示劑
6 結果計算
溶解氧含量 c1(mg/L)由式(2)求出:
C1=Mr*V2*C*f1/(4V1)
式中 Mr—— 氧的分子量Mr=32
V1 ——滴定時樣品的體積mL 一般取V1 100mL 若滴定細口瓶內試樣則V1=V0
c ——硫代硫酸鈉溶液(3.6)的實際濃度mol/L
f1=V0/(V0-V')
式中 V0—— 細口瓶(4.1)的體積mL
V' ——二價硫酸錳溶液(3.4)(1mL)和鹼性試劑(3.3)(2mL)體積的總和結果取一位小數。
7 精密度
分別在四個實驗室內 自由度為10 對空氣飽合的水(范圍在8.5~9mg/L)進行了重復測定
得到溶解氧的批內標准差在0.03~0.05mg/L 之間
8 特殊情況
8.1 存在氧化性物質
8.1.1 原理
通過滴定第二個試驗樣品來測定除溶解氧以外的氧化性物質的含量以修正第6 條中得
到的結果
8.1.2 步驟
8.1.2.1 按照5.3 中規定取二個試驗樣品
8.1.2.2 按照5.4 5.5 5.6 中規定的步驟測定第一個試樣中的溶解氧。
8.1.2.3 將第二個試樣定量轉移至大小適宜的錐形瓶內加1.5mL 硫酸溶液(3.1)[或相應體積
的磷酸溶液(見3.1 注)] 然後再加2mL 鹼性試劑(3.3)和1mL 二價硫酸錳溶液(3.4) 放置5min
用硫代硫酸鈉(3.6)滴定在滴定快到終點時加澱粉(3.7)或其他合適的指示劑
8.1.3 結果計算
溶解氧含量 c2(mg/L)由式(4)給出:
C2=MrV2*C*f/(4v1)-MrV4C/(4V3)
式中 Mr V1 V2 c 和f1 與第6 條中含義相同
V3 ——盛第二個試樣的細口瓶體積mL
V4 ——滴定第二個試樣用去的硫代硫酸鈉的溶液(3.6)的體積mL
8.2 存在還原性物質
8.2.1 原理
加入過量次氯酸鈉溶液 氧化第一和第二個試樣中的還原性物質測定一個試樣中的溶
解氧含量測定另一個試樣中過剩的次氯酸鈉量
8.2.2 試劑
在第三條中規定的試劑和
8.2.2.1 次氯酸鈉溶液約含游離氯4g/L 用稀釋市售濃次氯酸鈉溶液的辦法制備用碘量
法測定溶液的濃度
8.2.3 操作步驟
8.2.3.1 按照5.3 中規定取二個試樣
8.2.3.2 向這二個試樣中各加入1.00mL(若需要可加入更多的准確體積)的次氯酸鈉溶液
(8.2.2.1)(見5.2 注) 蓋好細口瓶蓋混合均勻
一個試樣按 5.4 5.5 和5.6 中的規定進行處理另一個按照8.1.2.3 的規定進行
8.2.4 結果計算
溶解氧的含量 c3(mg/L)由式(5)給出
C3=Mr*V2*C*f2/(4*V1)-Mr*V4*C/[4(V3-V5)]
式中 Mr V1 V2 和c 與第6 條含義相同
V3 和V4 與8.1.3 含義相同
V5 加入到試樣中次氯酸鈉溶液的體積mL(通常V5 1.00mL);
f2=V0/(V0-V5-V')
式中 V'與第6 條含義相同
V0 ——盛第一個試驗樣品的細口瓶的體積mL
9 試驗報告
試驗報告包括下列內容
a. 參考了本國家標准
b. 對樣品的精確鑒別
c. 結果和所用的表示方法
d. 環境溫度和大氣壓力
e. 測定期間注意到的特殊細節
f. 本方法沒有規定的或考慮可任選的操作細節。
④ 請敘述電極式溶解氧分析儀的校正校正方法
電極式溶解氧分析儀校正方法如下:
1、用校正液校準
在國家環境保護行業標准HJ/T 99-2003《溶解氧(DO)水質自動分析儀技術要求》中,推薦的校準方法和步驟如下。
① 校正液的配製。
零點校正液:將約25g的無水Na2SO3溶於蒸餾水中,加蒸餾水至500mL。使用時配製。
量程校正液:在(25±0. 5 )℃下,以約1L/min的流量將空氣通入蒸餾水[應該把盛蒸餾水的容器放在(25±0. 5)℃的水浴中],並使其中的溶解氧達到飽和,靜置一段時間後使溶解氧達到穩定(通常,200mL水需要5~10min; 500mL水需要10~20min)。
說明:溶解氧的濃度隨大氣壓的變化而不同,所以採用大氣壓補償。另外,在測定高鹽度試樣時,在配製溶解氧飽和水時,應根據試樣中鹽類的摩爾濃度添加NaCl試劑。
②校正。
零點校正:將電極浸入零點校正液,將指示值調整為零點。
量程校正:將電極浸入量程校正液,在用磁攪拌器攪拌的同時,待顯示值穩定後,測定量程校正液的溫度(准確至±1℃),根據飽和溶解氧濃度值調整顯示值。
說明:顯示值一般隨試樣的流速變化而變化,因此攪拌速度應按照生產商規定的方法,使電極表面的液體流速保持恆定。
調節:交替進行零點校正和量程校正操作,調節分析儀直至校正液的測定值與顯示值之差在±0.25mg/L以內為止。
2、 在空氣中校準
這種方法簡便易行,是某些儀表使用說明書中推薦的方法。注意在取出感測器探頭置於空氣中進行校準前,先要用脫鹽水將其清洗干凈,再用濾紙吸干表面水分。
對於μg/L級微量溶解氧分析來說,這種校準方法准確度低,不宜採用。
3、用被測介質來做校準
這種校準方法主要用於生物發酵過程。在消毒完成後,向未接種的介質中充入潔凈的壓縮空氣,使介質中的溶解氧達到飽和狀態,然後用感測器來校準100%濃度,再用百分比濃度來檢測和控制整個發酵過程。
⑤ 水中溶解氧的測定一般用什麼方法
一般有三種方法:碘量法,疊氮化鈉修正法,膜電極法。
⑥ 水中溶氧檢測
摘 要:本文綜述了水體溶解氧的各種檢測方法及原理,諸如碘量法、電流測定法(Clark溶氧電極)、電導測定法、熒光淬滅法等,比較各種方法的優缺點,對熒光淬滅法的應用前景進行了初步探討。
關鍵詞:溶解氧、熒光淬滅、環境監測
0.引言
隨著當今世界工業、農業的迅猛發展,大量的工業廢水、農田排水向江河湖海排放,同時,我國城市生活污水大約有80%未經處理直接排放,小城鎮及廣大農村生活污水大多處於無序排放狀態[1],使得許多地方的水質日益惡化,水污染和水資源短缺日益嚴重,所以迫切需要對污水進行及時監控和有效處理。其中,水中溶解氧含量是進行水質監測時的一項重要指標。
溶解氧(Dissolved Oxygen)是指溶解於水中分子狀態的氧,即水中的O2,用DO表示。溶解氧是水生生物生存不可缺少的條件。溶解氧的一個來源是水中溶解氧未飽和時,大氣中的氧氣向水體滲入;另一個來源是水中植物通過光合作用釋放出的氧。溶解氧隨著溫度、氣壓、鹽分的變化而變化,一般說來,溫度越高,溶解的鹽分越大,水中的溶解氧越低;氣壓越高,水中的溶解氧越高。溶解氧除了被通常水中硫化物、亞硝酸根、亞鐵離子等還原性物質所消耗外,也被水中微生物的呼吸作用以及水中有機物質被好氧微生物的氧化分解所消耗。所以說溶解氧是水體的資本,是水體自凈能力的表示。天然水中溶解氧近於飽和值(9ppm),藻類繁殖旺盛時,溶解氧含量下降。水體受有機物及還原性物質污染可使溶解氧降低,對於水產養殖業來說,水體溶解氧對水中生物如魚類的生存有著至關重要的影響,當溶解氧低於4mg/L時,就會引起魚類窒息死亡,對於人類來說,健康的飲用水中溶解氧含量不得小於6mg/L。當溶解氧(DO)消耗速率大於氧氣向水體中溶入的速率時,溶解氧的含量可趨近於0,此時厭氧菌得以繁殖,使水體惡化,所以溶解氧大小能夠反映出水體受到的污染,特別是有機物污染的程度,它是水體污染程度的重要指標,也是衡量水質的綜合指標[2]。因此,水體溶解氧含量的測量,對於環境監測以及水產養殖業的發展都具有重要意義。
1.水體溶解氧的各種檢測方法及原理
1.1 碘量法(GB7489-87)(Iodometric)
碘量法(等效於國際標准ISO 5813-1983)是測定水中溶解氧的基準方法,使用化學檢測方法,測量准確度高,是最早用於檢測溶解氧的方法。其原理是在水樣中加入硫酸錳和鹼性碘化鉀,生成氫氧化錳沉澱。此時氫氧化錳性質極不穩定,迅速與水中溶解氧化合生成錳酸錳:
4MnSO4+8NaOH = 4Mn(OH)2↓+4Na2SO4 (1)
2Mn(OH)2+O2 = 2H2MnO3↓ (2)
2H2MnO3+2Mn(OH)3 = 2MnMnO3↓+4H2O (3)
加入濃硫酸使已化合的溶解氧(以MnMnO3的形式存在)與溶液中所加入的碘化鉀發生反應而析出碘:
4KI+2H2SO4 = 4HI+2K2SO4 (4)
2MnMnO3+4H2SO4+HI = 4MnSO4+2I2+6H2O (5)
再以澱粉作指示劑,用硫代硫酸鈉滴定釋放出的碘,來計算溶解氧的含量[3],化學方程式為:
2Na2S2O3+I2 = Na2S4O6+4NaI (6)
設V為Na2S2O3溶液的用量(mL),M為Na2S2O3的濃度(mol/L),a為滴定時所取水樣體積(mL),DO可按下式計算[2]:
DO(mol/L)= (7)
在沒有干擾的情況下,此方法適用於各種溶解氧濃度大於0.2mg/L和小於氧的飽和度兩倍(約20mg/L)的水樣。當水中可能含有亞硝酸鹽、鐵離子、游離氯時,可能會對測定產生干擾,此時應採用碘量法的修正法。具體作法是在加硫酸錳和鹼性碘化鉀溶液固定水樣的時候,加入NaN3溶液,或配成鹼性碘化鉀-疊氮化鈉溶液加於水樣中,Fe3+較高時,加入KF絡合掩敝。碘量法適用於水源水,地面水等清潔水。碘量法是一種傳統的溶解氧測量方法,測量准確度高且准確性好,其測量不確定度為0.19mg/L[4]。但該法是一種純化學檢測方法,耗時長,程序繁瑣,無法滿足在線測量的要求[5]。同時易氧化的有機物,如丹寧酸、腐植酸和木質素等會對測定產生干擾。可氧化的硫的化合物,如硫化物硫脲,也如同易於消耗氧的呼吸系統那樣產生干擾。當含有這類物質時,宜採用電化學探頭法[6],包括下面將要介紹的電流測定法以及電導測定法等。
1.2 電流測定法(Clark溶氧電極)
當需要測量受污染的地面水和工業廢水時必須用修正的碘量法或電流測定法。電流測定法根據分子氧透過薄膜的擴散速率來測定水中溶解氧(DO)的含量。溶氧電極的薄膜只能透過氣體,透過氣體中的氧氣擴散到電解液中,立即在陰極(正極)上發生還原反應:
O2+2H2O+4e à 4OH- (8)
在陽極(負極),如銀-氯化銀電極上發生氧化反應:
4Ag+4Cl- à 4AgCl+4e (9)
(8)式和(9)式產生的電流與氧氣的濃度成正比,通過測定此電流就可以得到溶解氧(DO)的濃度。
電流測定法的測量速度比碘量法要快,操作簡便,干擾少(不受水樣色度、濁度及化學滴定法中干擾物質的影響),而且能夠現場自動連續檢測,但是由於它的透氧膜和電極比較容易老化,當水樣中含藻類、硫化物、碳酸鹽、油類等物質時,會使透氧膜堵塞或損壞,需要注意保護和及時更換,又由於它是依靠電極本身在氧的作用下發生氧化還原反應來測定氧濃度的特性,測定過程中需要消耗氧氣,所以在測量過程中樣品要不停地攪拌,一般速度要求至少為0.3m/s,且需要定期更換電解液,致使它的測量精度和響應時間都受到擴散因素的限制。目前市場上的儀器大多都是屬於Clark電極類型,每隔一段時間要活化,透氧膜也要經常更換。張葭冬[7]對膜電極的精密度作了研究,用膜電極法測量溶解氧的標准偏差為0.41mg/L,變異系數5.37%,碘量法測量溶解氧的標准偏差為0.3mg/L,變異系數為4.81%。同碘量法做對比實驗時,每個樣品測定值絕對誤差小於0.21mg/L,相對誤差不超過2.77%,兩種方法相對誤差在-2.52%~2.77%之間。代表產品有美國YSI公司的系列攜帶型溶解氧測量儀,如YSI58型溶解氧測量儀,該儀器可高質量地完成實驗室和野外環境的測試工件,操作簡便攜帶方便。測量范圍為0~20mg/L,精度為±0.03mg/L。
1.3 熒光猝滅法
熒光猝滅法的測定是基於氧分子對熒光物質的猝滅效應原理,根據試樣溶液所發生的熒光的強度來測定試樣溶液中熒光物質的含量。通過利用光纖感測器來實現光信號的傳輸,由於光纖感測器具有體積小、重量輕、電絕緣性好、無電火花、安全、抗電磁干擾、靈敏度高、便於利用現有光通信技術組成遙測網路等優點,對傳統的感測器能起到擴展、提高的作用,在很多情況下能完成傳統的感測器很難甚至不能完成的任務,因此非常適合於熒光的傳輸與檢測。從80年代初起,人們已開始了探索應用於氧探頭的熒光指示劑的工作。早期曾採用四烷基氨基乙烯為化學發光劑,但由於其在應用中對氧氣的響應在12小時內逐漸衰減而很快被淘汰。芘、芘丁酸、氟蒽等是一類很好的氧指示劑〔8〕,如1984年Wolfbeis等報告了一種對氧氣快速響應的熒光感測器,就是以芘丁酸為指示劑,固定於多孔玻璃。這種感測器的優點是響應速度快(可低於50ms),並有很好的穩定性。1989年,Philip等〔9〕將香豆素1、香豆素103、香豆素153三種熒光指示劑分別固定於有機高聚物XAD-4、XAD-8及硅膠三種支持基體中進行實驗。從靈敏度、發射強度和穩定性幾個方面進行比較,得出了香豆素102固定於XAD-4支持基體中是作為一種靈敏可逆的光纖氧感測器的中介的最佳選擇的結論。使用這種熒光指示劑的光纖氧感測器的應用范圍相當廣泛。
後來過渡金屬(Ru、Os、Re、Rh和Ir)的有機化合物以其特殊的性能受到關注,對光和熱以及強酸強鹼或有機溶劑等都非常穩定。一般選用金屬釕鉻合物作為熒光指示劑即分子探針。金屬釕鉻合物的熒光強度與氧分壓存在一一對應的關系,激發態壽命長,不耗氧,自身的化學成份很穩定,在水中基本不溶解。釕鉻合物的基態至激發態的金屬配體電荷轉移(MLCT)過程中,激發態的性質與配體結構有密切關系,通常隨著配體共軛體系的增大,熒光強度增強,熒光壽命增大,例如在熒光指示劑中把苯基插入到釕的配位空軌道上,從而增強絡合物的剛性,在這樣的剛性結構介質中,釕的熒光壽命延長,而氧分子與釕絡合物分子之間的碰撞猝滅機率提高,從而可增強氧感測膜對氧的靈敏度。目前的研究中,釕化合物的配體一般局限於2,2』-聯吡啶、1,10-鄰菲洛啉及其衍生物。Brian[10]在實驗中比較了在不同pH值介質條件下製得的Ru(bpy)2+3與Ru(ph2phen)2+3兩種不同塗料的感測器性能,結果顯示在pH=7時Ru(ph2phen)2+3顯示了更高的靈敏度。為延長敏感膜在水溶液中的工作壽命,較長時間保持其靈敏性,呂太平〔11〕等合成Ru(Ⅱ)與4,7-二苯基-1,10-鄰菲洛啉的親脂性衍生物生成的新的熒光試劑配合物Ru(I)[4,7-雙(4』-丙苯基)-1,10-鄰菲洛啉]2(ClO4)2和Ru(Ⅱ)[4,7-雙(4』-庚苯基)-1,10-鄰菲洛啉]3(ClO4)2。Kerry[12]等合成Ru(Ⅱ)[5-丙烯醯胺基-1,10-鄰菲洛啉]3(ClO4)2。實驗均發現隨著配體碳鏈的增長,熒光試劑的憎水性增大,流失現象減少,可延長膜的使用壽命。Ignacy[13]等研究還發現極化後的[Ru(dpp)3Cl2]氧感測膜對氧具有更高的靈敏度。吸附在硅膠60上的釕(Ⅱ)絡合物在藍光的激發下發出既強烈又穩定的粉紅色熒光,該熒光可以有效地被分子氧淬滅。
其檢測原理是根據Stern-Vlomer的猝滅方程[14]:F0/F=1+Ksv[Q],其中F0為無氧水的熒光強度,F為待檢測水樣的熒光強度,Ksv為方程常數,[Q]為溶解氧濃度,根據實際測得的熒光強度F0、F及已知的Ksv,可計算出溶解氧的濃度[Q]。
實驗證明這種檢測方法克服了碘量法和電流測定法的不足,具有很好的光化學穩定性、重現性,無延遲,精度高,壽命長,可對水中溶解氧進行實時在線監測。其測量范圍一般為0~20mg/L,精度一般≤1%,響應時間≤60s。
1.4 其他檢測方法
電導測定法:用導電的金屬鉈或其他化合物與水中溶解氧(DO)反應生成能導電的鉈離子。通過測定水樣中電導率的增量,就能求得溶解氧(DO)的濃度。實驗表明,每增加0.035S/cm的電導率相當於1mg/L的溶解氧(DO)。此方法是測定溶解氧(DO)最靈敏的方法之一,可連續監測。
陽極溶出伏安法:同樣利用金屬鉈與溶解氧(DO)定量反應生成亞鉈離子:
4Tl+O2+2H2Oà4Tl++4OH- (10)
然後用溶出法測定Tl+離子的濃度,從而間接求得溶解氧(DO)的濃度。使用該方法取樣量少,靈敏度高,而且受溫度影響不大。
2.國內外在水體溶解氧檢測領域研究的現狀
我國目前對水質檢驗的常規程序是取樣後拿到實驗室檢驗分析,中間的工作環節復雜,導致檢測時間長,不能及時得到水質情況。國內目前一些單位和研究機構已經開發研製出一些小型溶解氧檢測儀,一般都基於電流測定法,如上海雷磁儀器廠生產的JPSJ-605型溶解氧分析儀,北京北斗星工業化學研究所研製的H-BD5W手持式水質通用測試儀等,其速度方面同國外同類儀器還有一定的差距;國內對熒光溶解氧感測器也有一些研究[5][15],技術已經達到國外平均水平,但研究實現商品化的較少。國外一般採用新型的基於熒光淬滅效應的溶解氧測量儀[16],代表產品有瑞士DMP公司的MICROXI型的溶解氧測量儀,美國OXYMON氧氣測量系統等等,測量精確,快速,並可以遠程測量等。總的來說,目前市場上大多數商品化溶解氧測量儀都是基於Clark溶氧電極的,基於熒光淬滅法的光纖溶解氧感測器較少。
我國環境監測、監控技術在環境領域的應用等方面的研究與發達國家相比還存在顯著差距。目前國內在水質監測系統上還沒有自己開發的完整的設備,大多數採用國外的設備和技術,如ECOTECH公司的WQMS(水質監測系統),美國SIGMA900系列水質采樣器等等,但是國外的水質檢測設備和系統大多數價格高,體積大,有的不完全符合中國的環境條件。據海關統計,2000年我國進口各類儀器儀表總額70億美元,接近我國儀器儀表工業總產值的50%。全國每年用於儀器儀表進口的費用大大超過用於購買國產儀器的費用,價格昂貴、采購周期長以及各種配件難以獲得等原因,嚴重地約束了我國科學技術的發展[1]。因此我國急需研究開發自行生產的環境水質自動監測儀器。
3.小結
目前國際上發展的主流是基於熒光淬滅原理的光纖溶解氧感測器,儀器的性能一般為:重復性誤差±0.3㎎/L,零點漂移和量程漂移±0.3㎎/L,響應時間(T90)≤2min,溫度補償精度±0.3㎎/L,MTBF≥720h/次。根據上述熒光淬滅的特性,擬使用如下方法實現溶解氧檢測儀:光源發出的光信號經濾光片送到有熒光指示劑的區域,水中溶解氧與熒光指示劑相作用,引起光的強度、波長、頻率、相位、偏振態等光學特徵發生變化後送到光探測器和信號處理裝置,得到溶解氧濃度的信息。為了防止污染物、水體生物的腐蝕、干擾,儀器的抗干擾能力是關鍵。應該從感測膜的化學穩定性,儀器的防腐蝕性能,電路的工作穩定性方面多加以研究。
鑒於基於熒光淬滅法測量儀的光纖感測器具有較高的測量精度和較強的抗干擾能力,以及較好的重復性和穩定性,可以用於農業中水產養殖業水質的測量以及各種農業用水污染程度的測量,因此對此種感測器的研究具有重要的實際應用價值和商品化價值。
⑦ 北京利達科信環境安全有限公司的KS2202型化學需氧量(CODcr)水質在線監測儀的操作手冊
系統概述:
水樣、重鉻酸鉀、硫酸銀和濃硫酸的混合液在消解池中被加熱到175℃,在此期間鉻離子作為氧化劑從VI價被還原成III價而改變了顏色,顏色的改變度與樣品中有機化合物的含量成對應關系,儀器通過比色換算直接將樣品的COD顯示出來。
工作原理:
水樣、重鉻酸鉀消解溶液、硫酸銀及濃硫酸的混合液加熱到175℃,重鉻酸離子氧化溶液中的有機物後顏色會發生變化,分析儀檢測此顏色的變化,並把這種變化換算成COD值。
系統特點:
1.測試前儀器自動抽取新鮮樣品清洗管路、定量池、消解池,確保測試具有代表性。
2.光學定量系統:高精度定量樣品/ 試劑體積,分析結果更加可靠。
3.開放槽式吹氣使樣品與試劑完全混合,反應更加完全。
4.全新的活塞泵技術,避免了傳統蠕動泵的所有弊端:不與試劑和樣品直接接觸,儀器維護。
5.量減少,使用壽命延長,可靠性得到了大幅度的提升。
6.測試完成後儀器自動啟動快速冷卻系統,並迅速排空管路,減小了測試間隔。
7.無易損件,故障率低,運行費用低。
8.多向閥組件:完全國產及自主設計,達到國外多位電磁閥組件功能。
9.計量組件:由紅外光電精確計量,克服蠕動泵泵管因磨損引起的取樣誤差。
10.進樣組件:蠕動泵負壓吸入,避免了泵管與酸鹼的接觸腐蝕。
技術參數:
測試方法:重鉻酸鉀高溫消解,比色測定
測試范圍:量程0(0-2000);量程1(0-5000),量程2(0-50000)其他可以擴展
分 辨 率:<0.1mg/l
准 確 度:不超過±10%
重 復 性:不超過±10%
測試周期:最小測量周期為30分鍾,據實際水樣,可在5~120min任意修改消解時間
校準周期:1~99天任意間隔任意時刻可調
采樣周期:時間間隔(1~9999min任意可調)和整點測量模式
用戶保養:保養間隔>1 個月,每月約1 小時
試劑消耗:約1 個月(試劑和標准液)
自我監測:自我監測泄漏;儀器狀態自我診斷
模擬輸出:2 路0/4~20mA
繼電器控制:2 路24V 1A 繼電器高低點控制
服務介面:RS232
可選配BUS:MODBUS RS485,Profibus DP
顯 示:大屏幕LCD 圖表顯示,240*128
操作菜單:中文/ 英文
數據存儲:2,000 組
典型應用:工業污水、生活廢水
樣 品 PH:1~12
消解溫度:175℃
工作溫度:+ 5℃~+40℃
電 源:AC230±10%V,50±1%Hz,5A