導航:首頁 > 解決方法 > 蛋白定量檢測方法

蛋白定量檢測方法

發布時間:2023-02-19 03:41:19

❶ 蛋白質定量測量方法除雙縮脲法外,還有哪些測定方法

蛋白質的定量定主要有直接紫外吸收法、Bradford法和Lorry法三種。

蛋白質中存在著含有共軛雙鍵的酪氨酸和色氨酸,所以任何一個蛋白質都具有280nm附近的紫外吸收峰,在此波長范圍內,蛋白質溶液的光密度OD280nm與其濃度呈正比關系。

改良的Bradford法,蛋白質與染料考馬斯亮藍G-250結合,在一定的線性范圍內,反應液595nm處吸光度的變化量與反應蛋白量成正比,測定595nm處吸光度的增加即可進行蛋白定量。

Lorry法。蛋白質與鹼性銅溶液中的Cu2+絡和使得肽鍵伸展,從而使暴露出的酪氨酸和色氨酸在鹼性銅條件下與福林試劑反應,產生藍色,在一定濃度范圍內,其顏色的深淺與蛋白質中的酪氨酸和色氨酸的含量成正比,由於各種蛋白質中的酪氨酸和色氨酸的含量各不相同,因此在測定時需使用同種蛋白質作標准。

中國葯典推薦的方法是Lorry法。蛋白質與鹼性銅溶液中的Cu2+絡和使得肽鍵伸展,從而使暴露出的酪氨酸和色氨酸在鹼性銅條件下與福林試劑反應,產生藍色,在一定濃度范圍內,其顏色的深淺與蛋白質中的酪氨酸和色氨酸的含量成正比,由於各種蛋白質中的酪氨酸和色氨酸的含量各不相同,因此在測定時需使用同種蛋白質作標准。
美國fda葯典推薦的是Bradford法,蛋白質與染料考馬斯亮藍G-250結合,在一定的線性范圍內,反應液595nm處吸光度的變化量與反應蛋白量成正比,測定595nm處吸光度的增加即可進行蛋白定量。
兩者大多數情況下是都能給較為精確的對蛋白質定量。

❷ 蛋白質含量測定

應該是問蛋白質含量測定的方法吧。方法有以下幾種:
1、直接測定UV法。
2、凱氏定氮法。
3、雙縮脲法。
4、酚試劑法。
5、紫外吸收法。
6、BCA法。
7、Lowry法。
8、考馬斯亮藍法。
9、Bradford法測定試劑盒。
蛋白質含量增高,常見於多發性骨髓瘤患者,主要是異常球蛋白增加;血漿濃縮也可使蛋白質含量增加,如急性脫水、外傷性休克、腎病等。

如何做24小時尿蛋白定量檢查

醫生回答24小時尿蛋白定量的問題:
在正常情況下,腎小球只能通過分子量較小的物質。健康兒童每天尿中排出的蛋白質少於40毫克,這一含量用蛋白質定性試驗的方法一般不能檢出。患某些疾病時,蛋白質漏出增加,則可被檢出。所以尿蛋白定性報告的結果是粗略的,如要精確地測出患兒小便中排出的蛋白量,便需採用24小時尿蛋白定量檢驗。
24小時尿蛋白定量如何收集:
要採集做這項檢驗的小便標本,必須在當日上午8時把膀胱排空,然後計時,將至次日8時為止的全部尿液都收集起來,准確測量尿液的總量,記錄下來,然後攪拌均勻,取100~200毫升送檢。為防小便變質,可在集尿時於便盆中加入防腐劑(如40%甲醛液1毫升)。還須注意,收集尿的容器要清潔,不能將大便、女孩陰道分泌物等混入尿液。
臨床上經過24小時尿蛋白定量檢查發現增高則常見於以下一些疾病:
①腎臟疾病。急性腎炎、慢性腎炎、腎病綜合征、腎盂腎炎、紅斑狼瘡、腎結核、腎結石、腎動脈硬化等。
②腎循環障礙。如充血、貧血、心功能不全等。
③其他疾病。如休克、失水、感染、中毒、白血病及腎臟移植等。
此外,還有一種生理性蛋白尿,又稱功能性蛋白尿,系指泌尿系統並無器質性病變,尿內暫時出現蛋白而言。如劇烈運動、長期的直立或仰卧,過於激動、高熱、高溫與受冷等。此種蛋白尿定量不超過每日500毫克,且為一過性。
從以上的分析中可以得出,24小時尿蛋白定量增高在衡量是否是腎病有著重要的作用,您兒子出現尿蛋白、尿潛血陽性,提示發生腎病的可能性機會較大,24小時尿蛋白定量經過檢查出現增高現象則確診腎病的機會加大,但為了更明確診斷建議您做紅細胞形態檢測、腎功能檢查,有條件做腎穿刺活檢,明確診斷,判斷預後。

❹ 常用來測定蛋白質含量的方法有哪些優缺點是什麼

1、凱氏定氮法

凱氏定氮法是測定化合物或混合物中總氮量的一種方法。即在有催化劑的條件下,用濃硫酸消化樣品將有機氮都轉變成無機銨鹽,然後在鹼性條件下將銨鹽轉化為氨,隨水蒸氣蒸餾出來並為過量的硼酸液吸收,再以標准鹽酸滴定,就可計算出樣品中的氮量。

由於蛋白質含氮量比較恆定,可由其氮量計算蛋白質含量,故此法是經典的蛋白質定量方法。

優點:可用於所有食品的蛋白質分析中;操作相對比較簡單;實驗費用較低;結果准確,是一種測定蛋白質的經典方法;用改進方法(微量凱氏定氮法)可測定樣品中微量的蛋白質。

缺點:凱氏定氮法只是一個氧化還原反應,把低價氮氧化並轉為氨鹽來測定,而不能把高價氮還原為氮鹽的形式,所以不可以測出物質中所有價態的氮含量。

2、雙縮脲法

雙縮脲法是一個用於鑒定蛋白質的分析方法。雙縮脲試劑是一個鹼性的含銅試液,呈藍色,由1%氫氧化鉀、幾滴1%硫酸銅和酒石酸鉀鈉配製。

當底物中含有肽鍵時(多肽),試液中的銅與多肽配位,配合物呈紫色。可通過比色法分析濃度,在紫外可見光譜中的波長為540nm。鑒定反應的靈敏度為5-160mg/ml。鑒定反應蛋白質單位1-10mg。

優點:測定速度較快,干擾物質少,不同蛋白質產生的顏色深淺相近。

缺點:①靈敏度差; ② 三羥甲基氨基甲烷、一些氨基酸和EDTA等會干擾該反應。

3、酚試劑法

取6支試管分別標號,前5支試管分別加入不同濃度的標准蛋白溶液,最後一支試管加待測蛋白質溶液,不加標准蛋白溶液,在室溫下放置30分鍾,以未加蛋白質溶液的第一支試管作為空白對照,於650nm波長處測定各管中溶液的吸光度值。

優點:靈敏度高,對水溶性蛋白質含量的測定很有效。

缺點:①費時,要精確控制操作時間;②酚法試劑的配製比較繁瑣。

4、紫外吸收法

大多數蛋白質在280nm波長處有特徵的最大吸收,這是由於蛋白質中有酪氨酸,色氨酸和苯丙氨酸存在,可用於測定0.1~0.5mg/mL含量的蛋白質溶液。

取9支試管分別標號,前8支試管分別加入不同濃度的標准蛋白溶液,1號試管不加標准蛋白溶液,最後一支試管加待測蛋白質溶液,而不加標准蛋白溶液,每支試管液體總量通過加入蒸餾水補足而保持一致,將液體混合均勻,在280nm波長處進行比色,記錄吸光度值。

優點:簡便、靈敏、快速,不消耗樣品,測定後能回收。 

缺點:①測定蛋白質含量的准確度較差,專一性差; ②干擾物質多,若樣品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物質,會出現較大的干擾。

5、考馬斯亮藍法

考馬斯亮藍顯色法的基本原理是根據蛋白質可與考馬斯亮藍G-250 定量結合。當考馬斯亮藍 G-250 與蛋白質結合後,其對可見光的最大吸收峰從 465nm 變為 595nm。

在考馬斯亮藍 G-250 過量且濃度恆定的情況下,當溶液中的蛋白質濃度不同時,就會有不同量的考馬斯亮藍 G-250 從吸收峰為 465nm 的形式轉變成吸收峰為 595nm 的形式,而且這種轉變有一定的數量關系。

一般情況,當溶液中的蛋白質濃度增加時,顯色液在 595nm 處的吸光度基本能保持線性增加,因此可以用考馬斯亮藍 G-250 顯色法來測定溶液中蛋白質的含量。

優點:靈敏度高,測定快速、簡便,干擾物質少,不受酚類、游離氨基酸和緩沖劑、絡合劑的影響,適合大量樣品的測定。

缺點:由於各種蛋白質中的精氨酸和芳香族氨基酸的含量不同,因此用於不同蛋白質測定時有較大的偏差。

❺ 蛋白質的定量測定方法

一、微量凱氏(kjeldahl)定氮法

樣品與濃硫酸共熱。含氮有機物即分解產生氨(消化),氨又與硫酸作用,變成硫酸氨。經強鹼鹼化使之分解放出氨,借蒸汽將氨蒸至酸液中,根據此酸液被中和的程度可計算得樣品之氮含量。若以甘氨酸為例,其反應式如下:

NH2 CH2 COOH+3H2 SO4 ――2CO2 +3SO2 +4H2O+NH3 (1)

2NH3 +H2 SO4 ――(NH4 )2 SO4 (2)

(NH4 )2 SO4 +2NaOH――2H2 O+Na2 SO4 +2NH3 (3)

反應(1)、(2)在凱氏瓶內完成,反應(3)在凱氏蒸餾裝置中進行。

為了加速消化,可以加入CuSO4作催化劑,K2SO4以提高溶液的沸點。收集氨可用硼酸溶液,滴定則用強酸。實驗和計算方法這里從略。

計算所得結果為樣品總氮量,如欲求得樣品中蛋白含量,應將總氮量減去非蛋白

氮即得。如欲進一步求得樣品中蛋白質的含量,即用樣品中蛋白氮乘以6.25即得。

二、雙縮脲法(biuret法)

(一)實驗原理

雙縮脲(NH3CONHCONH3)是兩個分子脲經180℃左右加熱,放出一個分子氨後得到的產物。在強鹼性溶液中,雙縮脲與CuSO4形成紫色絡合物,稱為雙縮脲反應。凡具有兩個醯胺基或兩個直接連接的肽鍵,或能過一個中間碳原子相連的肽鍵,這類化合物都有雙縮脲反應。

紫色絡合物顏色的深淺與蛋白質濃度成正比,而與蛋白質分子量及氨基酸成分無關,故可用來測定蛋白質含量。測定范圍為1-10mg蛋白質。干擾這一測定的物質主要有:硫酸銨、tris緩沖液和某些氨基酸等。

此法的優點是較快速,不同的蛋白質產生顏色的深淺相近,以及干擾物質少。主要的缺點是靈敏度差。因此雙縮脲法常用於需要快速,但並不需要十分精確的蛋白質測定。

(二)試劑與器材

1.試劑:

(1)標准蛋白質溶液:用標準的結晶牛血清清蛋白(bsa)或標准酪蛋白,配製成10mg/ml的標准蛋白溶液,可用bsa濃度1mg/ml的a280為0.66來校正其純度。如有需要,標准蛋白質還可預先用微量凱氏定氮法測定蛋白氮含量,計算出其純度,再根據其純度,稱量配製成標准蛋白質溶液。牛血清清蛋白用H2O 或0.9%NaCl配製,酪蛋白用0.05NaOH配製。

(2)雙縮脲試劑:稱以1.50克硫酸銅(CuSO4•5H2O)和6.0克酒石酸鉀鈉(KNaC4H4O6•4H2O),用500毫升水溶解,在攪拌下加入300毫升10% NaOH溶液,用水稀釋到1升,貯存於塑料瓶中(或內壁塗以石蠟的瓶中)。此試劑可長期保存。若貯存瓶中有黑色沉澱出現,則需要重新配製。

2.器材:

可見光分光光度計、大試管15支、旋渦混合器等。

(三)操作方法

1.標准曲線的測定:取12支試管分兩組,分別加入0,0.2,0.4,0.6,0.8,1.0毫升的標准蛋白質溶液,用水補足到1毫升,然後加入4毫升雙縮脲試劑。充分搖勻後,在室溫(20~25℃)下放置30分鍾,於540nm處進行比色測定。用未加蛋白質溶液的第一支試管作為空白對照液。取兩組測定的平均值,以蛋白質的含量為橫座標,光吸收值為縱座標繪制標准曲線。

2、樣品的測定:取2~3個試管,用上述同樣的方法,測定未知樣品的蛋白質濃度。注意樣品濃度不要超過10mg/ml。

三、folin―酚試劑法(lowry法)

(一)實驗原理

這種蛋白質測定法是最靈敏的方法之一。過去此法是應用最廣泛的一種方法,由於其試劑乙的配製較為困難(現在已可以訂購),近年來逐漸被考馬斯亮蘭法所取代。此法的顯色原理與雙縮脲方法是相同的,只是加入了第二種試劑,即folin―酚試劑,以增加顯色量,從而提高了檢測蛋白質的靈敏度。這兩種顯色反應產生深蘭色的原因是:在鹼性條件下,蛋白質中的肽鍵與銅結合生成復合物。folin―酚試劑中的磷鉬酸鹽―磷鎢酸鹽被蛋白質中的酪氨酸和苯丙氨酸殘基還原,產生深蘭色(鉬蘭和鎢蘭的混合物)。在一定的條件下,蘭色深度與蛋白的量成正比。

folin―酚試劑法最早由lowry確定了蛋白質濃度測定的基本步驟。以後在生物化學領域得到廣泛的應用。這個測定法的優點是靈敏度高,比雙縮脲法靈敏得多,缺點是費時間較長,要精確控制操作時間,標准曲線也不是嚴格的直線形式,且專一性較差,干擾物質較多。對雙縮脲反應發生干擾的離子,同樣容易干擾lowry反應。而且對後者的影響還要大得多。酚類、檸檬酸、硫酸銨、tris緩沖液、甘氨酸、糖類、甘油等均有干擾作用。濃度較低的尿素(0.5%),硫酸納(1%),硝酸納(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液對顯色無影響,但這些物質濃度高時,必須作校正曲線。含硫酸銨的溶液,只須加濃碳酸鈉―氫氧化鈉溶液,即可顯色測定。若樣品酸度較高,顯色後會色淺,則必須提高碳酸鈉―氫氧化鈉溶液的濃度1~2倍。

進行測定時,加folin―酚試劑時要特別小心,因為該試劑僅在酸性ph條件下穩定,但上述還原反應只在ph=10的情況下發生,故當folin一酚試劑加到鹼性的銅―蛋白質溶液中時,必須立即混勻,以便在磷鉬酸―磷鎢酸試劑被破壞之前,還原反應即能發生。

此法也適用於酪氨酸和色氨酸的定量測定。

此法可檢測的最低蛋白質量達5mg。通常測定范圍是20~250mg。

❻ 測定蛋白質的定量的方法有哪些及其原理各是什麼

常用的蛋白質純化方法有離子交換色譜、親和色譜、電泳、疏水色譜等等
離子交換色譜:蛋白質和氨基酸一樣會兩性解離,所帶電荷決定於溶液ph。ph小於pi時蛋白質帶正電,ph大於pi時蛋白質帶負電。不同蛋白質等電點的蛋白質在同一個溶液中,表面電荷情況不同。離子交換就是利用不同蛋白質在同一溶液中表面電荷的差異來實現分離的。
親和色譜:生物大分子有一個特性,某些分子或基因對它們有特異性很強的吸附作用。如鎳柱中ni可以與his標簽的蛋白結合,這種只針對一種或一類物質的吸附就是親和色譜的原理。
電泳:sds-聚丙烯醯胺凝膠電泳,sds能斷裂分子內和分子間氫鍵,破壞蛋白質的二級和三級結構,強還原劑能使半胱氨酸之間的二硫鍵斷裂,蛋白質在一定濃度的含有強還原劑的sds溶液中,
與sds分子按比例結合,形成帶負電荷的sds-蛋白質復合物,這種復合物由於結合大量的sds,使蛋白質喪失了原有的電荷狀態形成僅保持原有分子大小為特徵的負離子團塊,從而降低或消除了各種蛋白質分子之間天然的電荷差異,由於sds與蛋白質的結合是按重量成比例的,因此在進行電泳時,蛋白質分子的遷移速度取決於分子大小。
疏水色譜:疏水色譜基於蛋白質表面的疏水區與介質疏水配體間的相互作用,在高濃度鹽作用下,蛋白質的疏水區表面上有序排列的水分子通過鹽離子的破壞被釋放,裸露的疏水區與疏水配體相互作用而被吸附。疏水色譜就是利用樣品中各組分在色譜填料上配基相互作用的差異,在洗脫時各組分移動速度不同而達到分離的目的。隨著鹽離子濃度的降低,疏水作用降低,蛋白質的水化層又形成,蛋白質被解吸附。

❼ 蛋白質含量的測定方法有哪些

蛋白質含量測定的方法有微量凱氏定氮法、雙縮脲法、folin―酚試劑法、考馬斯亮蘭法、紫外吸收法等。

1、微量凱氏定氮法:含氮有機物即分解產生氨(消化),氨又與硫酸作用,變成硫酸銨。經強鹼鹼化使之分解放出氨,借蒸汽將氨蒸至酸液中,根據此酸液被中和的程度可計算得樣品之氮含量。

2、雙縮脲法:雙縮脲是兩個分子脲經180℃左右加熱,放出一個分子氨後得到的產物。在強鹼性溶液中,雙縮脲與CuSO4形成紫色絡合物,稱為雙縮脲反應。

3、folin―酚試劑法:這種蛋白質測定法是最靈敏的方法之一。過去此法是應用最廣泛的一種方法,由於其試劑乙的配製較為困難,近年來逐漸被考馬斯亮蘭法所取代。

4、考馬斯亮蘭法:1976年由bradford建立的考馬斯亮蘭法,是根據蛋白質與染料相結合的原理設計的。這一方法是目前靈敏度最高的蛋白質測定法。

5、紫外吸收法:蛋白質分子中,酪氨酸、苯丙氨酸和色氨酸殘基的苯環含有共軛雙鍵,使蛋白質具有吸收紫外光的性質。吸收高峰在280nm處,其吸光度(即光密度值)與蛋白質含量成正比。

❽ 蛋白質定量測定的方法有哪些

定氮法,雙縮尿法(Biuret法)、Folin-酚試劑法(Lowry法)和紫外吸收法。考馬斯亮藍法(Bradford法)。
凱氏定氮 靈敏度低,適用於0.2~ 1.0mg氮,誤差為 ±2% 費時
8~10小時 將蛋白氮轉化為氨,用酸吸收後滴定 非蛋白氮(可用三氯乙酸沉澱蛋白質而分離) 用於標准蛋白質含量的准確測定;干擾少;費時太長
雙縮脲法(Biuret法) 靈敏度低 1~20mg 中速 20~30分鍾 多肽鍵+鹼性Cu2+®紫色絡合物 硫酸銨;Tris緩沖液;某些氨基酸 用於快速測定,但不太靈敏;不同蛋白質顯色相似
紫外吸收法 較為靈敏 50~100mg 快速 5~10分鍾 蛋白質中的酪氨酸和色氨酸殘基在280nm處的光吸收 各種嘌吟和嘧啶;
Folin-酚試劑法(Lowry法) 靈敏度高 ~5mg 慢速 40~60分鍾 雙縮脲反應;磷鉬酸-磷鎢酸試劑被Tyr和Phe還原 硫酸銨;Tris緩沖液;甘氨酸;
各種硫醇 耗費時間長;操作要嚴格計時;顏色深淺隨不同蛋白質變化
考馬斯亮藍法(Bradford法) 靈敏度最高 1~5mg 快速5~15分鍾 考馬斯亮藍染料與蛋白質結合時,其lmax由465nm變為595nm 強鹼性緩沖液;
SDS 最好的方法;干擾物質少;顏色穩定; 顏色深淺隨不同蛋白質變化

❾ 蛋白質含量的測定方法

蛋白質含量的十種測定方法如下:

三、雙縮脲法:

實驗原理:雙縮脲(NH3CONHCONH3)是兩個分子脲經180℃左右加熱,放出一個分子氨後得到的產物。在強鹼性溶液中,雙縮脲與CuSO4形成紫色絡合物,稱為雙縮脲反應。凡具有兩個醯胺基或兩個直接連接的肽鍵,或能過一個中間碳原子相連的肽鍵,這類化合物都有雙縮脲反應。

紫色絡合物顏色的深淺與蛋白質濃度成正比,而與蛋白質分子量及氨基酸成分無關,故可用來測定蛋白質含量。測定范圍為1~10mg蛋白質。干擾這一測定的物質主要有:硫酸銨、Tris緩沖液和某些氨基酸等。

四、BCA法:

實驗原理:BCA檢測法是Lowry測定法的一種改進方法。與Lowry方法相比,BCA法的操作更簡單,試劑更加穩定,幾乎沒有干擾物質的影響,靈敏度更高(微量檢測可達到0.5μg/ml),應用更加靈活。蛋白質分子中的肽鍵在鹼性條件下能與Cu2+絡合生成絡合物,同時將Cu2+還原成Cu+。

二喹啉甲酸及其鈉鹽是一種溶於水的化合物,在鹼性條件下,可以和Cu+結合生成深紫色的化合物,這種穩定的化合物在562nm處具有強吸收值,並且化合物顏色的深淺與蛋白質的濃度成正比。故可用比色的方法確定蛋白質的含量。

五、Lowry法:

實驗原理:蛋白質在鹼性溶液中其肽鍵與Cu2+螯合,形成蛋白質一銅復合物,此復合物使酚試劑的磷鉬酸還原,產生藍色化合物,在一定條件下,利用藍色深淺與蛋白質濃度的線性關系作標准曲線並測定樣品中蛋白質的濃度。

六、考馬斯亮藍法:

實驗原理:考馬斯亮藍法測定蛋白質濃度,是利用蛋白質―染料結合的原理,定量的測定微量蛋白濃度的快速、靈敏的方法。考馬斯亮藍G―250存在著兩種不同的顏色形式,紅色和藍色。它和蛋白質通過范德華力結合,在一定蛋白質濃度范圍內,蛋白質和染料結合符合比爾定律。

此染料與蛋白質結合後顏色有紅色形式和藍色形式,最大光吸收由465nm變成595nm,通過測定595nm處光吸收的增加量可知與其結合蛋白質的量。蛋白質和染料結合是一個很快的過程,約2min即可反應完全,呈現最大光吸收,並可穩定1h,之後,蛋白質―染料復合物發生聚合並沉澱出來。

七、凱氏定氮法:

實驗原理:凱氏定氮法用於測定有機物的含氮量,若蛋白質的含氮量已知時,則可用此法測定樣品中蛋白質的含量。當蛋白質與濃硫酸共熱時,其中的碳、氫兩元素被氧化成二氧化碳和水,而氮則轉變成氨,並進一步與硫酸作用生成硫酸銨。此過程通常稱為「消化」。

但是,這個反應進行得比較緩慢,通常需要加入硫酸鉀或硫酸鈉以提高反應液的沸點,並加入硫酸銅作為催化劑,以促進反應的進行。

八、Lowry法測定試劑盒:

Folin酚試劑法包括兩步反應:第一步是在鹼性條件下,蛋白質與銅作用生成蛋白質-銅絡合物;第二步是此絡合物將Folin試劑還原,產生深藍色,顏色深淺與蛋白質含量成正比。定量范圍為5~100μg/ml蛋白質。Folin試劑顯色反應由酪氨酸、色氨酸和半胱氨酸引起,因此樣品中若含有酚類、檸檬酸和巰基化合物均有干擾作用。

此外,不同蛋白質因酪氨酸、色氨酸含量不同而使顯色強度稍有不同。

九、BCA法測定試劑盒:

鹼性條件下,蛋白將Cu2+還原為Cu+,Cu+與BCA試劑形成紫顏色的絡合物,測定其在562nm處的吸收值,並與標准曲線對比,即可計算待測蛋白的濃度。常用濃度的去垢劑SDS,TritonX-100,Tween不影響檢測結果,但受螯合劑(EDTA,EGTA)、還原劑(DTT,巰基乙醇)和脂類的影響。

實驗中,若發現樣品稀釋液或裂解液本身背景值較高,可試用Bradford蛋白濃度測定試劑盒。

十、分光光度計法。

1、取八支(或者更多)干凈的10ml離心管,標記上號。

2、取100ulBSA,加PBS2.4ml稀釋至終濃度為0.2mg/ml。

3、5×G250染色液使用前請顛倒3-5次混勻,取10ml5×G250染色液,加入40ml雙蒸水,混勻成1×G250染色液,此1×G250染色液可在4℃保存一周。

4、按下表加入試劑(以每孔5ml計,多餘的用來清洗比色皿)。

閱讀全文

與蛋白定量檢測方法相關的資料

熱點內容
分式化簡做題步驟與方法 瀏覽:775
檢測dna有什麼方法 瀏覽:96
腰背肌肉鍛煉方法圖解動態 瀏覽:802
Led功率計算方法 瀏覽:643
查手機漏電10毫安方法 瀏覽:306
如何獲得夜凱的方法 瀏覽:644
哺乳期積奶快速疏通方法 瀏覽:648
手錶連接藍牙設備方法 瀏覽:222
5s默認地圖設置在哪裡設置方法 瀏覽:674
九八年上班退休金計算方法 瀏覽:424
如何將字變成花的方法 瀏覽:332
教學方法手段是啥 瀏覽:683
菠蘿蜜怎麼種植方法 瀏覽:443
快樂帶娃的技巧和方法 瀏覽:612
集成牆吊頂方法與技巧 瀏覽:447
影視大全侵權解決方法 瀏覽:160
金魚選題技巧和方法 瀏覽:198
以聚類分析為基礎的統計分析方法 瀏覽:553
游樂園封頂的方法有哪些 瀏覽:369
原料葯鑒別的方法有 瀏覽:999