『壹』 ELISA是什麼
1971年瑞典學者Engvail和Perlmann,荷蘭學者Van Weerman和Schuurs分別報道將免疫技術發展為檢測體液中微量物質的固相免疫測定方法,即酶聯免疫吸附測定法 (enzyme-linked immunosorbent assay , ELISA) 。ELISA已成為分析化學領域中的前沿課題 ,它是一種特殊的試劑分析方法,是在免疫酶技術( immunoenzymatic techniques ) 的基礎上發展起來的一種新型的免疫測定技術 。
它採用抗原與抗體的特異反應將待測物與酶連接,然後通過酶與底物產生顏色反應,用於定量測定。測定的對象可以是抗體也可以是抗原。
在這種測定方法中有3種必要的試劑:①固相的抗原或抗體(免疫吸附劑) ②酶標記的抗原或抗體(標記物)③酶作用的底物(顯色劑)
測量時,抗原(抗體)先結合在固相載體上,但仍保留其免疫活性,然後加一種抗體(抗原)與酶結合成的偶聯物(標記物),此偶聯物仍保留其原免疫活性與酶活性,當偶聯物與固相載體上的抗原(抗體)反應結合後,再加上酶的相應底物,即起催化水解或氧化還原反應而呈顏色。
其所生成的顏色深淺與欲測的抗原(抗體)含量成正比。 這種有色產物可用肉眼、光學顯微鏡、電子顯微鏡觀察,也可以用分光光度計(酶標儀)加以測定。其方法簡單,方便迅速,特異性強
『貳』 臨床免疫檢驗常用的分析技術
臨床免疫檢驗常用的分析技術
臨床免疫檢驗常用的分析技術有哪些你知道嗎?下面是我為大家帶來的臨床免疫檢驗常用的分析技術的知識,歡迎閱讀。
一、免疫標記技術:2種分類
1.(1) 免疫組化技術(immunohistochemical technique): 用於組織切片或其他標本中抗原抗體的定位(2)免疫測定(immunoassay): 用於液體標本中抗原或抗體的測定.
2.(1) 免疫熒光技術 (2) 酶免疫技術 (3) 放射免疫技術(4) 金標技術(5)化學發光技術
酶免疫技術—固相酶免疫技術―酶聯免疫吸附測定(ELISA)
ELISA方法類型與操作步驟
雙抗體夾心法:檢測抗原最常用的方法
原理(操作步驟): (1) 特異性抗體包被載體形成固相抗體. (2) 洗去未結合的抗體和雜質. (3) 加入待測樣品,使其中相應抗原和固相抗體呈特異性結合成復合物. (4) 再洗滌除去未結合的物質.(5) 加酶標抗體,使之與固相上的抗原呈特異性結合.(6) 經充分洗滌後除去未結合的游離酶標記抗體.(7) 加入相應酶的底物,固相化的酶催化底物變成有色產物,顏色反應的程
度與固相上抗原的量有關.
適用范圍:檢測抗原的最常用方法 ,用此方法檢測的`抗原,應至少有2個以上結合位點,故不能用以測定半抗原物質。
2、競爭法:(可用於測定抗原或抗體)
原理(操作步驟):以測定抗原為例(1) 將特異性抗體包被載體,使形成固相抗體,(2) 洗去雜質,待測孔中同時加待測標本和酶標記抗原,使之與固相抗體反應。如待測標本中含有抗原,則與酶標記抗原共同競爭結合固相抗體。待測標本中抗原量越多,酶標記抗原結合量越少(3) 洗滌除去游離酶標記物後,加底物顯色(4) 結果是不含受檢抗原的對照孔,其結合的酶標記抗原最多,顯色最深。對照孔與待測孔顏色深度之差代表受檢標本中的抗原量。待測孔越淡, 標本中抗原量越多。
3、間接法:(可檢測各種相應抗體)
原理(操作步驟):(1) 將特異性抗原包被載體,使形成固相抗原; (2) 洗去未結合的物質,加入待測樣品,使其中待測的特異性抗體與固相抗原相結合形成固相抗原抗原復合物;(4)再經洗滌後,固相上僅留下特異性抗體; (5) 加酶標抗人球蛋白(酶標抗抗體),使與固相復合物中抗體結合,從而使待測抗體間接標記上酶;(6) 洗滌除去多餘的酶標抗體,固相結合酶量就代表待測抗體的量; (7) 最後加入底物顯色,其顏色深淺可代表待測抗體量。
免疫熒光法---抗核抗體的檢測
二、沉澱反應
可溶性抗原與相應抗體特異性結合所出現的反應。反應分為兩個階段:(1) 抗原抗體特異性結合;(2) 形成可見的免疫復合物。
三、凝集反應
細菌和紅細胞等顆粒性抗原與相應抗體結合後,出現肉眼可見的凝集(agglutination)現象。
凝集反應的發生分為兩個階段:(1)抗原抗體的特異結合;(2)出現可見的顆粒凝聚。
;『叄』 細胞免疫功能檢測常用有哪幾種方法
細胞免疫(CMⅠ)是由多種細胞相互作用的結果。免疫細胞間相互作用導致多種細胞因子的釋放。因此細胞功能測定不僅涉及T細胞的數量和功能與包括各類因子活性測定,因此評價機體的細胞免疫功能不僅程序復雜,且很難標准化。
一、遲發型過敏反應的體外檢測方法
皮膚試驗和接觸性過敏的誘發是檢測遲發型過敏反應(DTH)的兩種常用方法。皮膚試驗中誘發對曾經使病人致敏的抗原的再次應答,而接觸性過敏是測試受者對從未接觸過的物質發生致敏的能力。
1.皮膚試驗 用皮膚試驗診斷DTH,常用的抗原有結核菌純蛋白衍生物(PPD)、腮腺炎病毒、念珠菌素等,在人類試驗時在前臂皮內注射少量可溶性抗原,24~48小後,測量紅腫硬結的大小,硬結直徑大於10mm即被看作為陽性。表明受試者對該病原菌有了一定的細胞免疫能力,若皮試無反應,可用更高濃度的抗原重復試驗,若仍無反應即為陰性,需排除皮試技術誤差,也可能受試者從未接觸過此抗原,也可能由於細胞免疫功能缺損,或由於細胞免疫功能缺損,或由於嚴重感染(麻疹、慢性播散性結核)造成的無反應性。
2.接觸性過敏常應用低分子量化合物如二硝基氯苯(DNCB)誘生接觸性過敏。化合物與皮膚蛋白質結合而導至DTH反應。在動物試驗時,初次皮膚上塗抹DNCB後間隔7~10天再激發刺激,則皮膚出現即為陽性。此試驗人類已不使用。
二、細胞免疫的體外檢測方法
體外檢測淋巴細胞的數量和功能,最易採集的是血標本,首先需分離或純化淋巴細胞,一般使用萄聚糖-泛影葡胺配成比重為1.077的淋巴細胞分層液,當將血液重疊於淋巴細胞分層液之上離心時,由於紅細胞(1.092)、多形核白細胞(1.090)、淋巴細胞(1.070)的比重不同而相互分開。淋巴細胞和單核細胞在血漿和分層液交界處形成一薄層。仔細分出這一薄層的細胞,其中淋巴細胞佔80%,單核細胞佔20%,淋巴細胞中T細胞佔80%,B細胞佔4%~10%,其作為非DT、非B細胞。
1.T細胞計數
(1)E花環法:人類T細胞表面有SRBC受體(CD2)能與SRBC結合形成玫瑰花環樣結構,將經分層液分離現的RBM懸液與SRBC在含有血清的平衡鹽水中混合,經37℃培養5~10分鍾放4℃過夜,取細胞懸計數,外周血淋巴細胞中約70%~80%淋巴細胞結成花環即為T細胞。目前此方法已用來分離T細胞,而不用做T細胞計數。
(2)用單克隆抗體計數T細胞:將人的PBM分成三等份,分別用小鼠抗人CD3、CD4和CD8的單克隆抗體作第一抗體與細胞結合,再用FITC標記的兔抗小鼠IgG抗體作第二抗體進行間接免疫熒光染色,在熒光顯微鏡下或流式細胞儀檢測結果,在PBM中被CD3抗體染上熒光的細胞稱為CD3 細胞即總T細胞。正常人在PBM中T細胞佔70%~80%。正常人的CD4 細胞和CD8 細胞之和應與CD3 細胞數一致。CD4 細胞與CD8 細胞的比值正常人約為2/1而艾滋病患者則比值小於1.7。
2.T細胞活化試驗 T細胞能被非特異的物質稱為有絲分裂原所激活而向淋巴母細胞轉化。T細胞轉化過程可伴隨有DNA、RNA、蛋白質的合成增加,最圖導致細胞分裂。在光學顯微鏡下可計數轉化後的淋巴細胞數,也可用氚標記的胸腺嘧啶核苷(3HTdR)摻入正在分裂的淋巴細胞,用液閃測定儀檢查摻入正在分裂的淋巴細胞,用液測量儀檢查摻入的3H-TdR的多少確定淋巴細胞轉化率。最近有一種不用同位素,又可用儀器測量的淋巴細胞增殖反應的檢查法,稱為MTT檢測法,MTT是一種甲氮唑鹽,它是細胞線粒體脫氫酶的底物,細胞內的酶可將MTT分解產生藍黑色甲(fromazan)產物。該產物的多少與活性細胞數正相關。結果可用酶標檢測儀(595mm)測量匯豐銀行密度,做為MTT法的檢查指標。此法的結果與3H-TdR摻入法平行,並能反應試驗中的活細胞數。
3.細胞毒試驗 TC細胞、NK細胞、LAK細胞、TIL細胞對其靶細胞有直接的細胞毒(殺傷)作用。常用的栓測細胞毒效應的方法是51Cr-Na2Cro4鹽水溶液與靶細胞胞混合,於37℃培養1小時左右,51Cr即可進入靶細胞,與胞漿蛋白結合,洗去游離的51Cr後,即可得到51Cr標記的靶細胞,將待檢細胞毒性的細胞與51Cr標記的靶細胞混合(比例約為50:1或100:1)靶細胞被殺傷越多,釋放到上清液中的液游離的51Cr越多,且不能被其他細胞吸收。用γ射線測量儀檢測上清液中的cpm值,即可計算出待檢細胞殺傷活性的高低。
細胞毒試驗檢測Tc細胞效應功能是否健全,及經IgG介導的ADCC效應,或NK細胞在抗腫瘤免疫中的作用是有意義的。
4.混合淋巴細胞的反應(MIR) 是體外研究T細胞的較好的方法,雙向MLR常被用來篩選骨髓移植的供體。來自不同供體的淋巴細胞分別與病人的淋巴細胞混合培養4~5天,在最後8小時摻入51TdR摻入法測T細胞的反應性。或用細胞毒法觀察受刺激的T細胞與活的靶細胞混合(靶細胞來自與刺激細胞相同的個體)如果T細胞受刺激後產生了細胞毒T細胞,可殺死活的細胞,根據靶細胞釋放51Cr的多少算出T細胞移動抑制因子)和LIF(白細胞移動抑制因子)來評估細胞免疫功能。近年來應用測定IL-2的免疫酶技術,操作簡單,並能定量以取代了MIF和LIF的測定。單個核細胞與分裂原一起培養24小時,然後測定清液中的IL-2活性。在細胞免疫功能缺損時,特別是AIDS病人,IL-2分泌明顯降低。而有些疾病,如多發性硬化、類風濕關節炎、移植排斥反應等病人體內血清中IL-2水平升高,表明病人T細胞活性增高。發生移植排斥反應的病人尿中IL-2也可升高。
也可用酶聯免疫吸附試驗測定各種體液中活化的T細胞脫落的IL-2受體(CD25),一般來說IL-2的水平和IL-2受體水平是平行的,IL-2和IL-2受體的檢測可用於對某些疾病的監測,如移桿排斥、自身免疫病以及接受免疫抑制治療的病人。
對體外培養的細胞進行細胞因子產生能力檢測是檢查細胞培養上清液中細胞因子的生物活性或抗原性。現已可用核酸雜交技術,即從組織中或細胞中提取RNA,與同位素或酶標記的該種細胞因子的cDNA探針作分子雜交試驗,即印跡(dot blotting)或Northern印跡,若查出有某種因子的mRNA存在,即說明該細胞在所處培養條件下有產生某種細胞因子的能力。
『肆』 酶聯免疫法的檢測方法
雙抗體夾心法是檢測抗原最常用的方法,操作步驟如下:
一、將特異性抗體與固相載體連接,形成固相抗體:洗滌除去未結合的抗體及雜質。
二、加受檢標本:使之與固相抗體接觸反應一段時間,讓標本中的抗原與固相載體上的抗體結合,形成固相抗原復合物。洗滌除去其他未結合的物質。
三、加酶標抗體:使固相免疫復合物上的抗原與酶標抗體結合。徹底洗滌未結合的酶標抗體。此時固相載體上帶有的酶量與標本中受檢物質的量正相關。
四、加底物:夾心式復合物中的酶催化底物成為有色產物。根據顏色反應的程度進行該抗原的定性或定量。
根據同樣原理,將大分子抗原分別制備固相抗原和酶標抗原結合物,即可用雙抗原夾心法測定標本中的抗體。
在臨床檢驗中,此法適用於檢驗各種蛋白質等大分子抗原,例如HBsAg、HBeAg、AFP、hCG等。只要獲得針對受檢抗原的異性抗體,就可用於包被固相載體和制備酶結合物而建立此法。如抗體的來源為抗血清,包被和酶標用的抗體最好分別取自不同種屬的動物。如應用單克隆抗體,一般選擇兩個針對抗原上不同決定簇的單抗,分別用於包被固相載體和制備酶結合物。這種雙位點夾心法具有很高的特異性,而且可以將受檢標本和酶標抗體一起保溫反應,作一步法檢測。
在一步法測定中,當標本中受檢抗原的含量很高時,過量抗原分別和固相抗體及酶標抗體結合,而不再形成夾心復合物。類同於沉澱反應中抗原過剩的後帶現象,此時反應後顯色的吸光值(位於抗原過剩帶上)與標准曲線(位於抗體過剩帶上)某一抗原濃度的吸光值相同,如按常法測讀,所得結果將低於實際的含量,這種現象被稱為鉤狀效應(hook effect),因為標准曲線到達高峰後呈鉤狀彎落。鉤狀效應嚴重時,反應甚至可不顯色而出現假陰性結果。因此在使用一步法試劑測定標本中含量可異常增高的物質(例如血清中HBsAg、AFP和尿液hCG等)時,應注意可測范圍的最高值。用高親和力的單克隆抗體制備此類試劑可削弱鉤狀效應。
假使在被測分子的不同位點上含有多個相同的決定簇,例如HBsAg的a決定簇,也可用針對此決定的同一單抗分別包被固相和制備酶結合物。但在HBsAg的檢測中應注意亞型問題,HBsAg有adr、adw、ayr、ayw4個亞型,顯然每種亞型均有相同的a決定簇的反應性,這也是用單抗作夾心法應注意的問題。
雙抗體夾心法測抗原的另一注意點是類風濕因子(RF)的干擾。RF是一種自身抗體,多為IgM型,能和多種動物IgG的Fc段結合。用作雙抗體夾心法檢測的血清標本中如含有RF,它可充當抗原成份,同時與固相抗體和酶標抗體結合,表現出假陽性反應。採用F(ab')或Fab片段作酶結合物的試劑,由於去除了Fc段,從而可消除RF的干擾。雙抗體夾心法ELISA試劑是否受RF的影響,已被列為這類試劑的一項考核指標(參見6.2)。
雙抗體夾心法適用於測定二價或二價以上的大分子抗原,但不適用於測定半抗原及小分子單價抗原,因其不能形成兩位點夾心。
雙抗原夾心法測抗體
反應模式與雙抗體夾心法類似。用特異性抗原進行包被和制備酶結合物,以檢測相應的抗體。與間接法測抗體的不同之處為以酶標抗原代替酶標抗抗體。此法中受檢標本不需稀釋,可直接用於測定,因此其敏感度相對高於間接法。乙肝標志物中抗HBs的檢測常採用本法。本法關鍵在於酶標抗原的制備,應根據抗原結構的不同,尋找合適的標記方法。 在雙抗體夾心法測定抗原時,如應用針對抗原分子上兩個不同抗原決定簇的單克隆抗體分別作為固相抗體和酶標抗體,則在測定時可使標本的加入和酶標抗體的加入兩步並作一步。這種雙位點一步不但簡化了操作,縮短了反應時間,如應用高親和力的單克隆抗體,測定的敏感性和特異性也顯著提高。單克隆抗體的應用使測定抗原的ELISA提高到新水平。
在一步法測定中,應注意鉤狀效應(hookeffect),類同於沉澱反應中抗原過剩的後帶現象。當標本中待測抗原濃度相當高時,過量抗原分別和固相抗體及酶標抗體結合,而不再形成夾心復合物,所得結果將低於實際含量。鉤狀效應嚴重時甚至可出現假陰性結果。 間接法是檢測抗體最常用的方法,其原理為利用酶標記的抗體以檢測已與固相結合的受檢抗體,故稱為間接法。操作步驟如下:
⑴將特異性抗原與固相載體連接,形成固相抗原:洗滌除去未結合的抗原及雜質。
⑵加稀釋的受檢血清:其中的特異抗體與抗原結合,形成固相抗原抗體復合物。經洗滌後,固相載體上只留下特異性抗體。其他抗體及血清中的雜質由於不能與固相抗原結合,在洗滌過程中被洗去。
⑶加酶標抗抗體:與固相復合物中的抗體結合,從而使該抗體間接地標記上酶。洗滌後,固相載體上的酶量就代表特異性抗體的量。例如欲測人對某種疾病的抗體,可用酶標羊抗人IgG抗體。
⑷加底物顯色:顏色深度代表標本中受檢抗體的量。
本法主要用於對病原體抗體的檢測而進行傳染病的診斷。間接法的優點是只要變換包被抗原就可利用同一酶標抗抗體建立檢測相應抗體的方法。
間接法成功的關鍵在於抗原的純度。雖然有時用粗提抗原包被也能取得實際有效的結果,但應盡可能予以純化,以提高試驗的特異性。特別應注意除去能與一般健康人血清發生反應的雜質,例如以E.Coli為工程酶的重組抗原,如其中含有E.Coli成份,很可能與受過E.Coli感染者血清中的抗E.Coli抗體發生反應。抗原中也不能含有與酶標抗人Ig反應的物質,例如來自人血漿或人體組織的抗原,如不將其中的Ig去除,試驗中也發生假陽性反應。另外如抗原中含有無關蛋白,也會因競爭吸附而影響包被效果。
間接法中另一種干擾因素為正常血清中所含的高濃度的非特異性抗體。病人血清中受檢的特異性IgG只佔總IgG中的一小部分。IgG的吸附性很強,非特異IgG可直接吸附到固相載體上,有時也可吸附到包被抗原的表面。因此在間接法中,抗原包被後一般用無關蛋白質(例如牛血清蛋白)再包被一次,以封閉(blocking)固相上的空餘間隙。另外,在檢測過程中標本須先行稀釋(1:40~1:200),以避免過高的陰性本底影響結果的判斷。 競爭法可用於測定抗原,也可用於測定抗體。以測定抗原為例,受檢抗原和酶標抗原競爭與固相抗體結合,因此結合於固相的酶標抗原量與受檢抗原的量呈反比。操作步驟如下:
⑴將特異抗體與固相載體連接,形成固相抗體。洗滌。
⑵待測管中加受檢標本和一定量酶標抗原的混合溶液,使之與固相抗體反應。如受檢標本中無抗原,則酶標抗原能順利地與固相抗體結合。如受檢標本中含有抗原,則與酶標抗原以同樣的機會與固相抗體結合,競爭性地佔去了酶標抗原與固相載體結合的機會,使酶標抗原與固相載體的結合量減少。參考管中只加酶標抗原,保溫後,酶標抗原與固相抗體的結合可達最充分的量。洗滌。
⑶加底物顯色:參考管中由於結合的酶標抗原最多,故顏色最深。參考管顏色深度與待測管顏色深度之差,代表受檢標本抗原的量。待測管顏色越淡,表示標本中抗原含量越多。一般情況,是通過方波伏安法,檢測培養體系的峰電流,通過峰電流與抗原抗體的線性關系來最終確定體系的最終檢測目標的濃度。
當抗原材料中的干擾物質不易除去,或不易得到足夠的純化抗原時,可用此法檢測特異性抗體。其原理為標本中的抗體和一定量的酶標抗體競爭與固相抗原結合。標本中抗體量越多,結合在固相上的酶標抗體愈少,因此陽性反應呈色淺於陰性反應。如抗原為高純度的,可直接包被固相。如抗原中會有干擾物質,直接包被不易成功,可採用捕獲包被法,即先包被與固相抗原相應的抗體,然後加入抗原,形成固相抗原。洗滌除去抗原中的雜質,然後再加標本和酶標抗體進行競爭結合反應。競爭法測抗體有多種模式,可將標本和酶標抗體與固相抗原競爭結合,抗HBc ELISA一般採用此法。另一種模式為將標本與抗原一起加入到固相抗體中進行競爭結合,洗滌後再加入酶標抗體,與結合在固相上的抗原反應。抗HBe的檢測一般採用此法。 血清中針對某些抗原的特異性IgM常和特異性IgG同時存在,後者會干擾IgM抗體的測定。因此測定IgM抗體多用捕獲法,先將所有血清IgM(包括異性IgM和非特異性IgM)固定在固相上,在去除IgG後再測定特異性IgM。操作步驟如下:
⑴將抗人IgM抗體連接在固相載體上,形成固相抗人IgM。洗滌。
⑵加入稀釋的血清標本:保溫反應後血清中的IgM抗體被固相抗體捕獲。洗滌除去其他免疫球蛋白和血清中的雜質成分。
⑶加入特異性抗原試劑:它只與固相上的特異性IgM結合。洗滌。
⑷加入針對特異性的酶標抗體:使之與結合在固相上的抗原反應結合。洗滌。
⑸加底物顯色:如有顏色顯示,則表示血清標本中的特異性IgM抗體存在,是為陽性反應。 親和素是一種糖蛋白,可由蛋清中提取。分子量60kD,每個分子由4個亞基組成,可以和4個生物素分子親密結合。維生素H,分子量244.31,存在於蛋黃中。用化學方法製成的衍生物,生物素-羥基琥珀亞胺酯(biotin-hydroxysuccinimide,BNHS)可與蛋白質、糖類和酶等多種類型的大小分子形成生物素化的產物。親和素與生物素的結合,雖不屬免疫反應,但特異性強,親和力大,兩者一經結合就極為穩定。由於1個親和素分子有4個生物素分子的結合位置,可以連接更多的生物素化的分子,形成一種類似晶格的復合體。因此把親和素和生物素與ELISA偶聯起來,就可大提高ELISA的敏感度。
親和素-生物素系統在ELISA中的應用有多種形式,可用於間接包被,亦可用於終反應放大。可以在固相上先預包被親和素,原用吸附法包被固相的抗體或抗原與生物素結合,通過親和素-生物素反應而使生物素化的抗體或抗在相化。這種包被法不僅可增加吸附的抗體或抗原量,而且使其結合點充分暴露。另外,在常規ELISA中的酶標抗體也可用生物素化的抗體替代,然後連接親和素-酶結合物,以放大反應信號。 在臨床檢驗中一般採用商品試劑盒進行測定。ELISA中有三個必要的試劑:免疫吸附劑、結合物和酶的底物等。完整的ELISA試劑盒包含以下各組分:
⑴已包被抗原或抗體的固相載體(免疫吸附劑);⑵酶標記的抗原或抗體(結合物);
⑶酶的底物;
⑷陰性對照品和陽性對照品(定性測定中),參考標准品和控制血清(定量測定中);
⑸酶聯物(結合物)及標本的稀釋液;
⑹洗滌液;
⑺酶反應終止液。
『伍』 免疫測定方法是怎樣的
農葯殘留免疫分析方法(Immunoassay,IA)是以抗原與抗體的特異性、可逆性結合反應為基礎,把抗體作為生物化學檢測器對化合物、酶或蛋白質等物質進行定性和定量分析的一門技術。免疫反應涉及抗原與抗體分子間的立體化學、電荷、氫鍵和偶極間的綜合應用,具有常規理化分析技術無可比擬的選擇性和高靈敏度,常適宜於復雜基質中痕量組分的分析。自20世紀80年代初,Hammock等(1980)首先將免疫分析應用於農葯殘留分析以來,該法得到不斷改進和發展,並涌現出諸多各具特色的免疫分析方法。如放射免疫分析法(RIA)、酶免疫分析法(EIA)、熒光免疫分析法(FIA)、化學發光免疫分析法(CLIA)、免疫金沉析法等。由於免疫化學分析技術具有簡單、快速、靈敏及價廉的特點,能在野外和實驗室內進行大批量的篩選試驗等優點,已經成為農葯殘留分析領域中最有發展和應用潛力的痕量分析技術之一。
1.半抗原的設計與合成
農葯相對分子質量一般小於1000,不具備刺激機體產生針對農葯抗原決定簇的特異性,需與大分子物質連接後才能刺激機體產生抗體。在對某一農葯進行免疫分析前,一般要對農葯分子進行結構修飾或重新設計、合成出相應的半抗原。半抗原的結構對方法的檢出限和選擇性至關重要。Jung等認為半抗原的設計與合成一般要符合幾個原則1:
1免疫競爭性反應的總體原則
(1)半抗原結構中應具備適當末端活性基團。如-NH2、-COOH、-OH、-SH等,可直接與載體(一般為蛋白質)耦聯。
(2)理想的半抗原。與載體連接後應保證該特徵結構能最大程度地為免疫活性細胞識別和結合,以制備出具有預期選擇性和親和性的抗體。因此,活性基團與載體之間應具備一定長度的間隔臂,一般為4~6個碳鏈長度(0.5~0.8nm),太短則載體的空間位阻影響免疫系統對半抗原的識別,過長則可能因氫鍵(某些極性間隔臂)或疏水交互作用(非極性間隔臂)使半抗原發生「折疊」。同時,間隔臂一般為非極性,且除供耦聯的活性基團外,不應有其他高免疫活性的結構,如苯環、雜環等,以降低抗體對間隔臂的識別和間隔臂對待測物結構特徵的影響;間隔臂還應遠離待測物的特徵結構部分和官能團,有利高選擇性和高親和性抗體的產生。
(3)半抗原應能最大限度模擬待測分子結構,特別是立體結構:半抗原設計還應考慮結構中盡量保留芳香環。據統計,半抗原結構中有芳香環形成的抗原具有較強的免疫原性,可使機體產生較強的免疫應答,平均成功率大約為1/3,而未含芳香環的半抗原成功率僅佔1/11。
(4)半抗原的設計應考慮到有毒理學意義的代謝產物,以及待測物是單一品種或者某一類農葯。設計時需相應地突出特定農葯的結構或者一類農葯中共有的結構特徵。對應的抗體稱為單一特異性抗體或者簇特異性抗體,而簇特異性抗體可用於多殘留分析。
『陸』 酶聯免疫檢測的幾種方法及其原理
(1)酶聯免疫吸附試驗(enzyme linked immunosorbent assay,ELISA):是將抗原或抗體吸附在固相載體表面。使抗原抗體反應在固相載體表面進行。可用間接法、雙抗體夾心法或競爭法測定抗原或抗體。
(2)夾心法(sandwich assay):將已知的特異抗體包裝在固相載體(塑料板凹孔或紙片上),加入待檢標本,標本中的抗原即可與載體上的抗原結合,洗去未結合的材料後加入該抗原的酶標記抗體,洗去未結合的酶標抗體,加底物顯色,用酶免疫檢測儀測量顏色的光密度,可定量測定抗原。
間接法(indirecr ELISA)常用於檢查特異抗體。先將已知特異抗原包被固相載體,加入待檢標本(可能含有相應抗體),再加入酶標抗Ig的抗全(即第二抗體),經加底物顯色後,根據顏色的光密度計算出標本中抗體的含量。
(3)BAS-ELISA:近年來對酶免設分析法的改進是使用生物素-親合素-過氧化物酶復合物作為指示劑,組成一新的生物放大系統進一步提高檢測的敏感度。可用來檢測多種抗原抗體系統如細菌、病毒、腫瘤細胞表面抗原等。一個親合素(avidin)分子可以結合4個生物素分子(biotin)。結合非常穩定。親合素和生物素都可與抗全、酶、熒光素等分子結合,而不影響後者的生物活性。一個抗體分子可偶聯90個生物素分子,通過生物素又可連接多個親合素。因此大提高檢測的敏感度。目前應用生物-酶標親合素系統(biotinavidin system- ELISA,BAS-ELISA),它是通過生物素標記抗體連接免疫反應系統,同時藉助生物素化酶或酶標親合素引入酶與底物反應系統。
『柒』 免疫學檢驗常用技術有哪些
以下是幾種常用的免疫學技術:
1.免疫熒光技術
免疫熒光技術是利用熒光素標記的抗體(或抗原)檢測組織、細胞或血清 中的相應抗原(或抗體)的方法。由於熒光抗體具有安全、靈敏的特點,因此已 廣泛應用在免疫熒光檢測和流式細胞計數領域。根據熒光素標記的方式不同,可 分為直標熒光抗體和間標熒光抗體。間標熒光抗體中一抗並不直接連接熒光素, 而是先將一抗結合到蛋白,然後帶有熒光素的二抗再結合至一抗。通過二抗的結 合,能將信號進行放大,因此能在一定程度上提高檢測的靈敏度,但是隨之帶來 的高背景也降低了檢測的特異性。近年來,隨著熒光素和熒光檢測技術的不斷進 步,熒光檢測的靈敏度已經接近同位素檢測的水平,直接標記的熒光抗體逐漸取 代間接標記抗體。這些標記了熒光素的抗體直接結合至抗原,大大提高了檢測的 特異性,使檢測的結果更加准確可靠。熒光檢測技術的發展,使得免疫熒光技術 在傳染病診斷上有廣泛的用途,如在細菌、病毒、螺旋體感染的疾病,檢查IgM 抗體,做為近期接觸抗原的標志。利用單克隆熒光直接標記抗體鑒定淋巴細胞的 亞類。通過流式細胞儀,針對細胞表面不同抗原,可以同時使用多種不同的熒光 抗體,對同一細胞進行多標記染色。
2.放射免疫檢測
放射免疫檢測技術是目前靈敏度最高的檢測技術,利用放射性同素標記抗 原(或抗體),與相應抗體(或抗原)結合後,通過測定抗原抗體結合物的放射 性檢測結果。放射性同位素具有pg 級的靈敏度,且利用反復曝光的方法可對痕 量物質進行定量檢測。但放射性同位素對人體的損傷也限制了該方法的使用。
3.酶聯免疫吸附試驗(ELISA)
酶聯免疫檢測是目前應用最廣泛的免疫檢測方法。該方法是將二抗標記上 酶,抗原抗體反應的特異性與酶催化底物的作用結合起來,根據酶作用底物後的 顯色顏色變化來判斷試驗結果,其敏感度可達ng 水平。常見用於標記的酶有辣 根過氧化物酶(HRP)、鹼性磷酸酶(AP)等。由於酶聯免疫法無需特殊的儀器, 檢測簡單,因此被廣泛應用於疾病檢測。常用的方法有間接法、夾心法以及BAS -ELISA。間接法是先將待測的蛋白抱被在孔板內,然後依次加入一抗、標記了 酶的二抗和底物顯色,通過儀器(例如酶標儀)定量檢測抗原。這種方法操作簡 單但由於高背景而特異性較差。目前已逐漸被夾心法取代。夾心法利用二種一抗 對目標抗原進行捕獲和固定,在確保靈敏度的同時大大提高了反應的特異性。近 年來,抗原的定量檢測技術也不斷推陳出新。近年來,在夾心法ELISA 的基礎上, 開發了多抗原檢測試劑盒,能同時檢測微量液相樣本中多個抗原含量。這項技術 的應用大大縮短了診斷的時間,提高診斷的可靠性和及時性。
4.免疫金膠體技術
膠體金技術經過30 多年的發展到現在已日趨成熟,該方法是將二抗標記上 膠體金顆粒,利用抗原抗體間的特異性反應,最終將膠體金標記的二抗吸附於滲 濾膜上,此方法簡單,快速,廣泛應用於臨床篩查。
『捌』 請問;檢測 衣原體 抗原(ELISA)法是什麼
酶聯免疫吸附劑測定
enzyme linked immunosorbent assay,ELISA。指將可溶性的抗原或抗體吸附到聚苯乙烯等固相載體上,進行免疫反應的定性和定量方法。
基本原理
1971年Engvall和Perlmann發表了酶聯免疫吸附劑測定(enzyme linked immunosorbent assay,ELISA)用於IgG定量測定的文章,使得1966年開始用於抗原定位的酶標抗體技術發展成液體標本中微量物質的測定方法。這一方法的基本原理是:①使抗原或抗體結合到某種固相載體表面,並保持其免疫活性。②使抗原或抗體與某種酶連接成酶標抗原或抗體,這種酶標抗原或抗體既保留其免疫活性,又保留酶的活性。在測定時,把受檢標本(測定其中的抗體或抗原)和酶標抗原或抗體按不同的步驟與固相載體表面的抗原或抗體起反應。用洗滌的方法使固相載體上形成的抗原抗體復合物與其他物質分開,最後結合在固相載體上的酶量與標本中受檢物質的量成一定的比例。加入酶反應的底物後,底物被酶催化變為有色產物,產物的量與標本中受檢物質的量直接相關,故可根據顏色反應的深淺刊物定性或定量分析。由於酶的催化頻率很高,故可極大地地放大反應效果,從而使測定方法達到很高的敏感度。
方法類型和操作步驟
ELISA可用於測定抗原,也可用於測定抗體。在這種測定方法中有3種必要的試劑:①固相的抗原或抗體,②酶標記的抗原或抗體,③酶作用的底物。根據試劑的來源和標本的性狀以及檢測的具備條件,可設計出各種不同類型的檢測方法。
(一)雙抗體夾心法
雙抗體夾心法是檢測抗原最常用的方法,操作步驟如下:
(1)將特異性抗體與固相載體連接,形成固相抗體:洗滌除去未結合的抗體及雜質。
(2)加受檢標本:使之與固相抗體接觸反應一段時間,讓標本中的抗原與固相載體上的抗體結合,形成固相抗原復合物。洗滌除去其他未結合的物質。
(3)加酶標抗體:使固相免疫復合物上的抗原與酶標抗體結合。徹底洗滌未結合的酶標抗體。此時固相載體上帶有的酶量與標本中受檢物質的量正相關。
(4)加底物:夾心式復合物中的酶催化底物成為有色產物。根據顏色反應的程度進行該抗原的定性或定量。
根據同樣原理,將大分子抗原分別制備固相抗原和酶標抗原結合物,即可用雙抗原夾心法測定標本中的抗體。
(二)雙位點一步法
在雙抗體夾心法測定抗原時,如應用針對抗原分子上兩個不同抗原決定簇的單克隆抗體分別作為固相抗體和酶標抗體,則在測定時可使標本的加入和酶標抗體的加入兩步並作一步(圖15-5)。這種雙位點一步不但簡化了操作,縮短了反應時間,如應用高親和力的單克隆抗體,測定的敏感性和特異性也顯著提高。單克隆抗體的應用使測定抗原的ELISA提高到新水平。
在一步法測定中,應注意鉤狀效應(hookeffect),類同於沉澱反應中抗原過剩的後帶現象。當標本中待測抗原濃度相當高時,過量抗原分別和固相抗體及酶標抗體結合,而不再形成夾心復合物,所得結果將低於實際含量。鉤狀效應嚴重時甚至可出現假陰性結果。
(三)間接法測抗體
間接法是檢測抗體最常用的方法,其原理為利用酶標記的抗抗體以檢測已與固相結合的受檢抗體,故稱為間接法。操作步驟如下:
(1)將特異性抗原與固相載體連接,形成固相抗原:洗滌除去未結合的抗原及雜質。
(2)加稀釋的受檢血清:其中的特異抗體與抗原結合,形成固相抗原抗體復合物。經洗滌後,固相載體上只留下特異性抗體。其他免疫球蛋白及血清中的雜質由於不能與固相抗原結合,在洗滌過程中被洗去。
(3)加酶標抗抗體:與固相復合物中的抗體結合,從而使該抗體間接地標記上酶。洗滌後,固相載體上的酶量就代表特異性抗體的量。例如欲測人對某種疾病的抗體,可用酶標羊抗人IgG抗體。
(4)加底物顯色:顏色深度代表標本中受檢抗體的量。
本法只要更換不同的固相抗原,可以用一種酶標抗抗體檢測各種與抗原相應的抗體。
(四)競爭法
競爭法可用於測定抗原,也可用於測定抗體。以測定抗原為例,受檢抗原和酶標抗原競爭與固相抗體結合,因此結合於固相的酶標抗原量與受檢抗原的量呈反比。操作步驟如下:
(1)將特異抗體與固相載體連接,形成固相抗體。洗滌。
(2)待測管中加受檢標本和一定量酶標抗原的混合溶液,使之與固相抗體反應。如受檢標本中無抗原,則酶標抗原能順利地與固相抗體結合。如受檢標本中含有抗原,則與酶標抗原以同樣的機會與固相抗體結合,競爭性地佔去了酶標抗原與固相載體結合的機會,使酶標抗原與固相載體的結合量減少。參考管中只加酶標抗原,保溫後,酶標抗原與固相抗體的結合可達最充分的量。洗滌。 (3)加底物顯色:參考管中由於結合的酶標抗原最多,故顏色最深。參考管顏色深度與待測管顏色深度之差,代表受檢標本抗原的量。待測管顏色越淡,表示標本中抗原含量越多。
(五)捕獲法測IgM抗體
血清中針對某些抗原的特異性IgM常和特異性IgG同時存在,後者會干擾IgM抗體的測定。因此測定IgM抗本多用捕獲法,先將所有血清IgM(包括異性IgM和非特異性IgM)固定在固相上,在去除IgG後再測定特異性IgM。操作步驟如下:
(1)將抗人IgM抗體連接在固相載體上,形成固相抗人IgM。洗滌。
(2)加入稀釋的血清標本:保溫反應後血清中的IgM抗體被固相抗體捕獲。洗滌除去其他免疫球蛋白和血清中的雜質成分。
(3)加入特異性抗原試劑:它只與固相上的特異性IgM結合。洗滌。
(4)加入針對特異性的酶標抗體:使之與結合在固相上的抗原反應結合。洗滌。
(5)加底物顯色:如有顏色顯示,則表示血清標本中的特異性IgM抗體存在,是為陽性反應。
(六)應用親和素和生物素的ELISA
親和素是一種糖蛋白,可由蛋清中提取。分子量60kD,每個分子由4個亞基組成,可以和4個生物素分子親密結合。現在使用更多的是從鏈黴菌中提取的鏈霉和素(strepavidin)。生物素(biotin)又稱維生素H,分子量244.31,存在於蛋黃中。用化學方法製成的衍生物,生物素-羥基琥珀亞胺酯(biotin-hydroxysuccinimide,BNHS)可與蛋白質、糖類和酶等多種類型的大小分子形成生物素化的產物。親和素與生物素的結合,雖不屬免疫反應,但特異性強,親和力大,兩者一經結合就極為穩定。由於1個親和素分子有4個生物素分子的結合位置,可以連接更多的生物素化的分子,形成一種類似晶格的復合體。因此把親和素和生物素與ELIS偶聯起來,就可大提高ELISA的敏感度。
親和素-生物素系統在ELISA中的應用有多種形式,可用於間接包被,亦可用於終反應放大。可以在固相上先預包被親和素,原用吸附法包被固相的抗體或抗原與生物素結合,通過親和素-生物素反應而使生物素化的抗體或抗在相化。這種包被法不僅可增加吸附的抗體或抗原量,而且使其結合點充分暴露。另外,在常規ELISA中的酶標抗體也可用生物素化的抗體替代,然後連接親和素-酶結合物,以放大反應信號。
ELISA 普遍用作非放射性同位素的成鍵化驗. 在這種方法中, 通常標准配體是固定的, 通過加入溶液相受體或蛋白質來使之成鍵. 通過加入與受體特異性反應的抗體來定量成鍵的受體, 而且最初抗體的量以加入第二種能顯色的抗體測量. 第二種抗體能識別抗體的末端, 在其末端的鹼性磷酸酯或過氧化物酶等與酶發生反應, 從而使溶液顯色.
『玖』 抗原或抗體的體外檢測方法有哪些
抗原抗體檢測有凝集反映、沉澱反應、放免技術、熒光技術、酶聯免疫,化學發光、生物親和,固相免疫、免疫組化等技術
『拾』 免疫分析方法有哪些
(1)放射免疫分析法(radioimmunoassay,RIA)。RIA技術是使用以放射性同位素(如125I、32P、3H等)作標記的抗原或抗體,用γ-射線探測儀或液體閃爍計數器測定γ-射線或β-射線的放射性強度,來測定抗體或抗原量的技術。它包括以標記抗原為特點的放射免疫分析和以標記抗體為特點的免疫放射分析(immunoradiometricassay,IRMA)。前者以液相競爭結合法居多,既測大分子抗原又測小分子抗原;後者以固相法測大分子抗原為主。
RIA在早期建立的農葯免疫分析方法中佔了很大比重,建立了狄氏劑、艾氏劑、2,4-D和2,4,5-T、對硫磷和百草枯等農葯的放射免疫分析法。盡管該方法靈敏度非常敏銳(RIA通常為10-9g、10-12g,甚至10-15g),應用范圍廣,但進行RIA需使用昂貴的計數器,也存在放射線輻射和污染等問題,因此在農葯殘留檢測領域的應用和發展受到了一定的限制,並逐步為其他免疫分析方法所取代。
(2)酶免疫分析法(enzymeimmunoassay,EIA)。EIA是繼RIA之後發展起來的一項免疫分析技術。其檢測原理與放射免疫法類似,但所用的標記物為酶,它將抗原、抗體的特異性免疫反應和酶的高效催化作用有機結合起來,通過測定結合於固相的酶的活力來測定被測定物的量。用做標記物的酶有辣根過氧化物酶(horseradishperoxidase,HRP)和鹼性磷酸酶(alkalinephosphatase,AKP)、葡萄糖氧化酶(glucoseoxidase,GO)、脲酶(urease)等。酶標記反應的固相支持物有聚苯乙烯塑料管、膜等。目前大多數採用96孔酶標板(MTP)作為固相支持物。這種板的檢測容量大,樣本數量多,只需有台簡單的酶標儀就可得出准確的檢測數據。也有學者採用磁珠作為固相材料進行EIA研究,其原理是將高分子材料(聚苯乙烯、聚氯乙烯等)包裹到金屬小顆粒(Fe2O3,Fe3O4)外面,再通過化學方法鍵合上氨基(-NH2)、羧基(-COOH)、羥基(-OH)等活性基團,再與抗體或抗原耦聯,製成免疫性微珠。該方法的優點是微珠比表面積大,吸附能力強,能懸浮在液相中快速均勻的捕獲樣品中的待測物,通過外加磁場後能夠實現微珠與樣品液的快速分離,從而減少檢測時間、提高檢測靈敏度。
由於酶標試劑制備容易、穩定、價廉,酶免疫分析的靈敏度接近放射免疫技術,故近年來EIA技術發展很快,已開發了多種EIA方法。其中酶聯免疫法(,ELISA)是目前農葯殘留檢測中應用最廣泛的酶免疫分析技術。
(3)熒光免疫分析法(fluorescenceimmunoassay,FIA)。FIA檢測的基本原理是將抗原抗體的高度特異性與熒光的敏感可測性有機地結合,以熒光物質作為示蹤劑標記抗體、抗原或半抗原分子,制備高質量的特異性熒光試劑。當抗原抗體結合物中的熒光物質受到紫外光或藍光照射時,能夠吸收光能進入激發態。當其從激發態回復基態時,能以電磁輻射形式放射出所吸收的光能,產生熒光。繪制農葯濃度-熒光強度曲線,可以定性、定量檢測樣品中的農葯殘留量。
適用於抗體、抗原或半抗原分子標記的熒光素須符合要求:①應具有能與蛋白質分子形成穩定共價鍵的化學基團,或易轉變成這類反應形式而不破壞其熒光結構;②標記後,熒光素與抗體或抗原各自的化學結構和性質均不發生改變;③熒光效率高,與蛋白質結合的需要量很少;④熒光素與蛋白質結合的過程簡單、快速,游離的熒光素及其降解產物容易除去;⑤結合物在一般儲存條件下性能穩定,可保存使用較長時間。
(4)化學發光免疫分析法(luminescentimmunoassay,LCIA)。LCIA又可分為化學發光免疫測定(chemiluminescentimmunoassay,CLCIA)和生物發光免疫測定(bio-luminescentImmunoassay,BLCIA)。
1976年,Shroeder首先用生物素(B)-親和素(A)系統建立了均相化學發光免疫測定技術,爾後Halman和Velan又將其引伸到非均相體系,現已滲入到生物學研究的各個領域。其原理是以發光指示抗原與抗體的結合,當發游標記物與相應的抗體或抗原結合後,底物與酶作用,或與發光劑產生氧化還原反應,或使熒光物質(例如紅熒烯等)激發,釋放光能。最後用光度計測定其發光強度,進行定量分析。常用發游標記物有辣根過氧化物酶(HRP)、魯米諾(luminol)、異魯米諾(isoluminol)、咯粉鹼(lophine)、光澤精(lucigen)、雙(2、4、6-三氯苯)草酸酯、聯苯三酚和6[N-(4-二氨基丁基)-N-乙基]-氨基-2,3-二氫吩嗪-1,4-二酮(ABEI)等。用上述發游標記物標記的抗體(或抗原)在一定的pH緩沖溶液中與相應的抗原(或抗體)結合時,在協同因子(例如H2O2等)的作用下發光,其發光強度與被測物的濃度成正比,故可以用於定量分析。
發光免疫測定具有特異性強、靈敏度高(檢測限量達10-15mol/L)、快速(1~3h)、發光材料易得等優點。但其發光過程和強度常受到發光物質本身的化學結構、介質的pH、協同發光物質和金屬離子雜質等影響。
(5)金免疫層析分析法(goldimmuno-chromatographyassay,GICA)。GICA檢測原理是將配體(抗體或抗原)以線狀包被固化於硝酸纖維素膜等微孔薄膜上,膠體金標記另以配體或其他物質並以干態固定在吸水材料上,通過毛細作用,使樣品溶液在層析條上泳動,當泳動至膠體金標記物處時,如樣品中含有待檢受體,則發生第一步高度特異性的免疫反應,形成的免疫復合物繼續泳動至線狀包被區時,發生第二步高度特異性的免疫反應,形成的免疫復合物被截留在包被的線狀區,通過標記的膠體金而顯紅色條帶(檢測帶),而游離的標記物則越過檢測帶,與結合的標記物自動分離。通過檢測帶上顏色的有無或色澤深淺來實現定性或定量測定2。
2金標試紙條檢測
GICA法具有快速(5~20min)、廉價、結果明確、無需復雜操作技巧和特殊設備、攜帶方便等優點。但相對於其他免疫分析方法,該方法檢測靈敏度稍低,主要適合現場快速定性或半定量測定。目前該方法已被應用於醫學和生物學等眾多研究領域,尤其在發達國家已經得到了廣泛的應用。
(6)免疫分析與儀器分析技術的聯用技術。使用單一的IA技術進行農葯殘留分析獲得的信息量少,而理化分析方法的選擇性又比較差。Kramer等人將免疫分析法和液相色譜法(LC)聯合起來使用,從而簡化了分析方法,提高了檢測效率。LC-IA的聯用,將LC的高分離能力和IA的高靈敏性和高特異性融為一體。該分析法尤其適合多組分殘留分析和微量分析。免疫分析與氣相色譜/質譜(GC/MS)的聯用可減少結構相似的農葯或代謝產物分析中的交叉反應,以降低假陽性。