① 小升初數學知識點歸納
一、算術
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有餘數的除法:被除數=商×除數+余數
二、方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
代數:代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c
三、體積和表面積
三角形的面積=底×高÷2。公式S= a×h÷2
正方形的面積=邊長×邊長公式S= a2
長方形的面積=長×寬公式S= a×b
平行四邊形的面積=底×高公式S= a×h
梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高) ×2公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6公式:S=6a2
長方體的體積=長×寬×高公式:V = abh
長方體(或正方體)的體積=底面積×高公式:V = abh
正方體的體積=棱長×棱長×棱長公式:V = a3
圓的周長=直徑×π公式:L=πd=2πr
圓的面積=半徑×半徑×π公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
四、分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的'積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
一.整數和小數
1.最小的一位數是1,最小的自然數是0
2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。
3.小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……
4.小數的分類:小數 有限小數
無限循環小數
無限小數
無限不循環小數
5.整數和小數都是按照十進制計數法寫出的數。
6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
7.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……
二.數的整除
1.整除:整數a除以整數b(b≠0),除得的商正好是整數而且沒有餘數,我們就說a能被b整除,或者說b能整除a。
2.約數、倍數:如果數a能被數b整除,a就叫做b的倍數,b就叫做a的約數。
3.一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
一個數約數的個數是有限的,最小的約數是1,最大的約數是它本身。
4.按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
5.按一個數約數的個數,非0自然數可分為1、質數、合數三類。
質數:一個數,如果只有1和它本身兩個約數,這樣的數叫做質數。質數都有2個約數。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。合數至少有3個約數。
最小的質數是2,最小的合數是4
1~20以內的質數有:2、3、5、7、11、13、17、19
1~20以內的合數有「4、6、8、9、10、12、14、15、16、18
6.能被2整除的數的特徵:個位上是0、2、4、6、8的數,都能被2整除。
能被5整除的數的特徵:個位上是0或者5的數,都能被5整除。
一、數列求和
等差數列:在一列數中,任意相鄰兩個數的差是一定的,這樣的一列數,就叫做等差數列。
基本概念:首項:等差數列的第一個數,一般用a1表示;
項數:等差數列的所有數的個數,一般用n表示;
公差:數列中任意相鄰兩個數的差,一般用d表示;
通項:表示數列中每一個數的公式,一般用an表示;
數列的和:這一數列全部數字的和,一般用Sn表示.
基本思路:等差數列中涉及五個量:a1 ,an,d, n, sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。
基本公式:通項公式:an = a1+(n-1)d;
通項=首項+(項數一1) ×公差;
數列和公式:sn,= (a1+ an)×n÷2;
數列和=(首項+末項)×項數÷2;
項數公式:n= (an- a1)÷d+1;
項數=(末項-首項)÷公差+1;
公差公式:d =(an-a1))÷(n-1);
公差=(末項-首項)÷(項數-1);
關鍵問題:確定已知量和未知量,確定使用的公式。
二、加法乘法原理和幾何計數
加法原理:如果完成一件任務有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那麼完成這件任務共有:m1+ m2....... +mn種不同的方法。
關鍵問題:確定工作的分類方法。
基本特徵:每一種方法都可完成任務。
乘法原理:如果完成一件任務需要分成n個步驟進行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那麼完成這件任務共有:m1×m2....... ×mn種不同的方法。
關鍵問題:確定工作的完成步驟
基本特徵:每一步只能完成任務的一部分。
直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。
直線特點:沒有端點,沒有長度。
線段:直線上任意兩點間的距離。這兩點叫端點。
線段特點:有兩個端點,有長度。
射線:把直線的一端無限延長。
射線特點:只有一個端點;沒有長度
①數線段規律:總數=1+2+3+…+(點數一1);
②數角規律=1+2+3+…+(射線數一1);
③數長方形規律:個數=長的線段數×寬的線段數:
④數長方形規律:個數=1×1+2×2+3×3+…+行數×列數。
小升初數學知識點:加法乘法原理和幾何計數
三、質數與合數
質數:一個數除了1和它本身之外,沒有別的約數,這個數叫做質數,也叫做素數。
合數:一個數除了1和它本身之外,還有別的約數,這個數叫做合數。
質因數:如果某個質數是某個數的約數,那麼這個質數叫做這個數的質因數。
分解質因數:把一個數用質數相乘的形式表示出來,叫做分解質因數。通常用短除法分解質因數。任何一個合數分解質因數的結果是唯一的。
分解質因數的標准表示形式:N= ,其中a1、a2、a3……an都是合數N的質因數,且a1……。
求約數個數的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互質數:如果兩個數的最大公約數是1,這兩個數叫做互質數。
四、約數與倍數
約數和倍數:若整數a能夠被b整除,a叫做b的倍數,b就叫做a的約數。
公約數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。
最大公約數的性質:
1、幾個數都除以它們的最大公約數,所得的幾個商是互質數
2、幾個數的最大公約數都是這幾個數的約數
3、幾個數的公約數,都是這幾個數的最大公約數的約數。
4、幾個數都乘以一個自然數m,所得的積的最大公約數等於這幾個數的最大公約數乘以m。
例如:12的約數有1、2、3、4、6、12;
18的約數有:1、2、3、6、9、18;
那麼12和18的公約數有:1、2、3、6;
那麼12和18最大的公約數是:6,記作(12,18)=6;
求最大公約數基本方法:
1、分解質因數法:先分解質因數,然後把相同的因數連乘起來。
2、短除法:先找公有的約數,然後相乘。
3、輾轉相除法:每一次都用除數和余數相除,能夠整除的那個余數,就是所求的最大公約數。
公倍數:幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
12的倍數有:12、24、36、48……;
18的倍數有:18、36、54、72……;
那麼12和18的公倍數有:36、72、108……;
那麼12和18最小的公倍數是36,記作[12,18]=36;
最小公倍數的性質:
1、兩個數的任意公倍數都是它們最小公倍數的倍數。
2、兩個數最大公約數與最小公倍數的乘積等於這兩個數的乘積。
求最小公倍數基本方法:1、短除法求最小公倍數;2、分解質因數的方法。
20172017小升初數學復習重點大全 :約數與倍數
五、數的整除
一、基本概念和符號:
1、整除:如果一個整數a,除以一個自然數b,得到一個整數商c,而且沒有餘數,那麼叫做a能被b整除或b能整除a,記作b|a。
2、常用符號:整除符號「|」,不能整除符號「 」;因為符號「∵」,所以的符號「∴」;
二、整除判斷方法:
1. 能被2、5整除:末位上的數字能被2、5整除。
2. 能被4、25整除:末兩位的數字所組成的數能被4、25整除。
3. 能被8、125整除:末三位的數字所組成的數能被8、125整除。
4. 能被3、9整除:各個數位上數字的和能被3、9整除。
5. 能被7整除:
①末三位上數字所組成的數與末三位以前的數字所組成數之差能被7整除
②逐次去掉最後一位數字並減去末位數字的2倍後能被7整除。
6. 能被11整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被11整除。
②奇數位上的數字和與偶數位數的數字和的差能被11整除。
③逐次去掉最後一位數字並減去末位數字後能被11整除。
7. 能被13整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。
②逐次去掉最後一位數字並減去末位數字的9倍後能被13整除
三、整除的性質:
1. 如果a、b能被c整除,那麼(a+b)與(a-b)也能被c整除。
2. 如果a能被b整除,c是整數,那麼a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那麼a也能被c整除。
4. 如果a能被b、c整除,那麼a也能被b和c的最小公倍數整除。
20172017小升初數學復習重點大全 :數的整除
六、余數問題
余數的性質:
①余數小於除數。
②若a、b除以c的余數相同,則c|a-b或c|b-a。
③a與b的和除以c的余數等於a除以c的余數加上b除以c的余數的和除以c的余數。
④a與b的積除以c的余數等於a除以c的余數與b除以c的余數的積除以c的余數
余數、同餘與周期
一、同餘的定義:
①若兩個整數a、b除以m的余數相同,則稱a、b對於模m同餘。
②已知三個整數a、b、m,如果m|a-b,就稱a、b對於模m同餘,記作a≡b(mod m),讀作a同餘於b模m
二、同餘的性質:
①自身性:a≡a(mod m);
②對稱性:若a≡b(mod m),則b≡a(mod m);
③傳遞性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),則an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整數c,則a×c≡ b×c(mod m×c);
三、關於乘方的預備知識:
①若A=a×b,則MA=Ma×b=(Ma)b
②若B=c+d則MB=Mc+d=Mc×Md
四、被3、9、11除後的余數特徵:
①一個自然數M,n表示M的各個數位上數字的和,則M≡n(mod 9)或(mod 3);
②一個自然數M,X表示M的各個奇數位上數字的和,Y表示M的各個偶數數位上數字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);
五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則ap-1(mod p)。
數學是小升初考試中的一個重要科目,所以我們在小升初總復習的時候,都會把數學作為一個重點。因為相對於其他科目來說,數學是拉分比較大的一個科目。為了使大家能夠更好的復習,我們為大家整理了2017年小升初數學常見知識點,僅供參考。
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或小數+差=大數)
植樹問題
1非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
② 小升初數學簡便計算
小升初數學簡便計算
現在,越來越多的家長希望孩子進入民校。數學是每年民校小升初測評的核心,簡便運算又是考試的重要題型,我整理了小學簡便運算的方法技巧,相信一定可以幫到各位家長。
提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
拆 分 法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
加法結合律
注意對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
拆分法和乘法分配律結
這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的`時候,要首先考慮拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再現: 57×101=?
利用公式法
01
加法:
交換律,a+b=b+a,
結合律,(a+b)+c=a+(b+c).
02
減法運算性質:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
03
乘法:
交換律,a*b=b*a,
結合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
04
除法運算性質:
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前邊的運算定律、性質公式很多是由於去掉或加上括弧而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括弧,後面數值的運算符號不變。
例1:
283+52+117+148
=(283+117)+(52+48)
(運用加法交換律和結合律)
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律)
例3:
195-(95+24)
=195-95-24
=100-24
(運用減法性質)
例4:
150-(100-42)
=150-100+42
(運用減法性質)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (運用乘法分配律)
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(運用乘法分配律)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
(運用除法性質)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(運用除法性質)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(運用除法性質)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(運用乘法交換律和結合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(運用加法性質和結合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(運用除法性質, 相當加法性質)
裂 項 法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.
常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
分數裂項的三大關鍵特徵:
①分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
②分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」
③分母上幾個因數間的差是一個定值。
公式:
③ 分數拆分法巧算
分數計算是小學計算部分的重要部分,也是小升初競賽的常考內容。對於分數的運算,除了掌握常規的運演算法則外,還應該掌握一些特殊的運算技巧,才能提高運算速度,解答較難的問題。因此,關於詳細的方法與技巧如下:
分數運算的技巧主要表現在兩方面:一是,所有的整數、小數計算技巧全都可以在分數的巧算上加以應用,例如乘法的運算定律、提取公因式、字母替換等常用方法;二是,分數簡算中獨有的方法,包括分數裂項、整體約分法等。
湊整法
與整數運算中的「湊整法」相同,在分數運算中,充分利用四則運演算法則和運算律(如交換律、結合律、分配律),使部分的和、差、積、商成為整數、整十數...從而使運算得到簡化。
改順序
通過改變分數式中的先後順序,使運算算簡便。常見有以下幾種方法:
01加括弧性質
在一個只有加減法運算的算式中,給算式的一部分添上括弧,如果括弧前面是加號,那麼括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:
a+b-c=a+(b-c)
a-b+c=a-(b-c)
a-b-c=a-(b+c)
02去括弧性質
在一個有括弧的加減法運算的算式中,將算式中的括弧去掉,如果括弧前面是加號,那麼去掉括弧後,括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:
a+(b-c)=a+b-c
a-(b+c)=a-b-c
a-(b-c)=a-b+c
03分數搬家
在連減或加減混合運算中,如果算式中沒有括弧,那麼計算時,可以帶著符號「搬家」,用「字母」表示:
a-b-c=a-c-b
a-b+c=a+c-b
提取公因式
當幾個乘積相加減,而這些乘積中又有相同的因數時,我們可以採用提取公因數的方法進行巧算。如果乘積中另外幾個因數相加減的結果正好湊成整十、整百、整千、整萬的數,或是是一些比較簡單的數,那麼計算就更為簡便。這種方法叫「提取公因數法」。
01簡單提取法
02創造條件法
對於復雜的分數算式,要根據算式特點,進行一定的轉化,創造條件後再運用提取公因數的方法來簡算。
拆數
一組分數混合運算時,為了能夠「湊整」或湊成比較簡單的數,常常需要先把分數中分子或分母進行拆分,再來進行分組運算。這種巧算方法叫「拆分法」,也叫「分解分組法」。
代數法
在相同數字較多的分數式中,用字母表示式子中的一部分,使運算更加方便。這就是分數式中的代數法。
易錯點糾正
異分母分數相加減:要先通分,化成相同的分母,再加減,計算結果能約分的要約分。
在計算過程中要注意統一分數單位。
在比較分數與小數大小時,要先統一他們的表現形式。將分數轉化為小數或者將小數轉化為分數。只有表現形式統一了,才有可能比較大小。分數化成小數的方法:用分子除以分母所得的商即可,除不盡時通常保留三位小數。
溫馨提示:
計算類的題目一定要多練習才能提高計算速度和准確率