導航:首頁 > 解決方法 > 小升初分數拆分最簡單的方法

小升初分數拆分最簡單的方法

發布時間:2023-01-20 17:48:11

① 小升初數學知識點歸納

小升初數學知識點歸納1

一、算術

1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:a + b = b + a

3、乘法交換律:a × b = b × a

4、乘法結合律:a × b × c = a ×(b × c)

5、乘法分配律:a × b + a × c = a × b + c

6、除法的性質:a ÷ b ÷ c = a ÷(b × c)

7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

8、有餘數的除法:被除數=商×除數+余數

二、方程、代數與等式

等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

方程式:含有未知數的等式叫方程式。

一元一次方程式:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。

代數:代數就是用字母代替數。

代數式:用字母表示的式子叫做代數式。如:3x =ab+c

三、體積和表面積

三角形的面積=底×高÷2。公式S= a×h÷2

正方形的面積=邊長×邊長公式S= a2

長方形的面積=長×寬公式S= a×b

平行四邊形的面積=底×高公式S= a×h

梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2

內角和:三角形的內角和=180度。

長方體的表面積=(長×寬+長×高+寬×高) ×2公式:S=(a×b+a×c+b×c)×2

正方體的表面積=棱長×棱長×6公式:S=6a2

長方體的體積=長×寬×高公式:V = abh

長方體(或正方體)的體積=底面積×高公式:V = abh

正方體的體積=棱長×棱長×棱長公式:V = a3

圓的周長=直徑×π公式:L=πd=2πr

圓的面積=半徑×半徑×π公式:S=πr2

圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

圓錐的體積=1/3底面×積高。公式:V=1/3Sh

四、分數

分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。

分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

分數乘分數,用分子相乘的積作分子,分母相乘的'積作為分母。

分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。

分數除以整數(0除外),等於分數乘以這個整數的倒數。

分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小

分數的除法則:除以一個數(0除外),等於乘這個數的倒數。

真分數:分子比分母小的分數叫做真分數。

假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。

帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。

小升初數學知識點歸納2

一.整數和小數

1.最小的一位數是1,最小的自然數是0

2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。

3.小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……

4.小數的分類:小數 有限小數

無限循環小數

無限小數

無限不循環小數

5.整數和小數都是按照十進制計數法寫出的數。

6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。

7.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……

小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……

二.數的整除

1.整除:整數a除以整數b(b≠0),除得的商正好是整數而且沒有餘數,我們就說a能被b整除,或者說b能整除a。

2.約數、倍數:如果數a能被數b整除,a就叫做b的倍數,b就叫做a的約數。

3.一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。

一個數約數的個數是有限的,最小的約數是1,最大的約數是它本身。

4.按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。

5.按一個數約數的個數,非0自然數可分為1、質數、合數三類。

質數:一個數,如果只有1和它本身兩個約數,這樣的數叫做質數。質數都有2個約數。

合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。合數至少有3個約數。

最小的質數是2,最小的合數是4

1~20以內的質數有:2、3、5、7、11、13、17、19

1~20以內的合數有「4、6、8、9、10、12、14、15、16、18

6.能被2整除的數的特徵:個位上是0、2、4、6、8的數,都能被2整除。

能被5整除的數的特徵:個位上是0或者5的數,都能被5整除。

小升初數學知識點歸納3

一、數列求和

等差數列:在一列數中,任意相鄰兩個數的差是一定的,這樣的一列數,就叫做等差數列。

基本概念:首項:等差數列的第一個數,一般用a1表示;

項數:等差數列的所有數的個數,一般用n表示;

公差:數列中任意相鄰兩個數的差,一般用d表示;

通項:表示數列中每一個數的公式,一般用an表示;

數列的和:這一數列全部數字的和,一般用Sn表示.

基本思路:等差數列中涉及五個量:a1 ,an,d, n, sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。

基本公式:通項公式:an = a1+(n-1)d;

通項=首項+(項數一1) ×公差;

數列和公式:sn,= (a1+ an)×n÷2;

數列和=(首項+末項)×項數÷2;

項數公式:n= (an- a1)÷d+1;

項數=(末項-首項)÷公差+1;

公差公式:d =(an-a1))÷(n-1);

公差=(末項-首項)÷(項數-1);

關鍵問題:確定已知量和未知量,確定使用的公式。

二、加法乘法原理和幾何計數

加法原理:如果完成一件任務有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那麼完成這件任務共有:m1+ m2....... +mn種不同的方法。

關鍵問題:確定工作的分類方法。

基本特徵:每一種方法都可完成任務。

乘法原理:如果完成一件任務需要分成n個步驟進行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那麼完成這件任務共有:m1×m2....... ×mn種不同的方法。

關鍵問題:確定工作的完成步驟

基本特徵:每一步只能完成任務的一部分。

直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。

直線特點:沒有端點,沒有長度。

線段:直線上任意兩點間的距離。這兩點叫端點。

線段特點:有兩個端點,有長度。

射線:把直線的一端無限延長。

射線特點:只有一個端點;沒有長度

①數線段規律:總數=1+2+3+…+(點數一1);

②數角規律=1+2+3+…+(射線數一1);

③數長方形規律:個數=長的線段數×寬的線段數:

④數長方形規律:個數=1×1+2×2+3×3+…+行數×列數。

小升初數學知識點:加法乘法原理和幾何計數

三、質數與合數

質數:一個數除了1和它本身之外,沒有別的約數,這個數叫做質數,也叫做素數。

合數:一個數除了1和它本身之外,還有別的約數,這個數叫做合數。

質因數:如果某個質數是某個數的約數,那麼這個質數叫做這個數的質因數。

分解質因數:把一個數用質數相乘的形式表示出來,叫做分解質因數。通常用短除法分解質因數。任何一個合數分解質因數的結果是唯一的。

分解質因數的標准表示形式:N= ,其中a1、a2、a3……an都是合數N的質因數,且a1……。

求約數個數的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

互質數:如果兩個數的最大公約數是1,這兩個數叫做互質數。

四、約數與倍數

約數和倍數:若整數a能夠被b整除,a叫做b的倍數,b就叫做a的約數。

公約數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。

最大公約數的性質:

1、幾個數都除以它們的最大公約數,所得的幾個商是互質數

2、幾個數的最大公約數都是這幾個數的約數

3、幾個數的公約數,都是這幾個數的最大公約數的約數。

4、幾個數都乘以一個自然數m,所得的積的最大公約數等於這幾個數的最大公約數乘以m。

例如:12的約數有1、2、3、4、6、12;

18的約數有:1、2、3、6、9、18;

那麼12和18的公約數有:1、2、3、6;

那麼12和18最大的公約數是:6,記作(12,18)=6;

求最大公約數基本方法:

1、分解質因數法:先分解質因數,然後把相同的因數連乘起來。

2、短除法:先找公有的約數,然後相乘。

3、輾轉相除法:每一次都用除數和余數相除,能夠整除的那個余數,就是所求的最大公約數。

公倍數:幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。

12的倍數有:12、24、36、48……;

18的倍數有:18、36、54、72……;

那麼12和18的公倍數有:36、72、108……;

那麼12和18最小的公倍數是36,記作[12,18]=36;

最小公倍數的性質:

1、兩個數的任意公倍數都是它們最小公倍數的倍數。

2、兩個數最大公約數與最小公倍數的乘積等於這兩個數的乘積。

求最小公倍數基本方法:1、短除法求最小公倍數;2、分解質因數的方法。

20172017小升初數學復習重點大全 :約數與倍數

五、數的整除

一、基本概念和符號:

1、整除:如果一個整數a,除以一個自然數b,得到一個整數商c,而且沒有餘數,那麼叫做a能被b整除或b能整除a,記作b|a。

2、常用符號:整除符號「|」,不能整除符號「 」;因為符號「∵」,所以的符號「∴」;

二、整除判斷方法:

1. 能被2、5整除:末位上的數字能被2、5整除。

2. 能被4、25整除:末兩位的數字所組成的數能被4、25整除。

3. 能被8、125整除:末三位的數字所組成的數能被8、125整除。

4. 能被3、9整除:各個數位上數字的和能被3、9整除。

5. 能被7整除:

①末三位上數字所組成的數與末三位以前的數字所組成數之差能被7整除

②逐次去掉最後一位數字並減去末位數字的2倍後能被7整除。

6. 能被11整除:

①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被11整除。

②奇數位上的數字和與偶數位數的數字和的差能被11整除。

③逐次去掉最後一位數字並減去末位數字後能被11整除。

7. 能被13整除:

①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。

②逐次去掉最後一位數字並減去末位數字的9倍後能被13整除

三、整除的性質:

1. 如果a、b能被c整除,那麼(a+b)與(a-b)也能被c整除。

2. 如果a能被b整除,c是整數,那麼a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那麼a也能被c整除。

4. 如果a能被b、c整除,那麼a也能被b和c的最小公倍數整除。

20172017小升初數學復習重點大全 :數的整除

六、余數問題

余數的性質:

①余數小於除數。

②若a、b除以c的余數相同,則c|a-b或c|b-a。

③a與b的和除以c的余數等於a除以c的余數加上b除以c的余數的和除以c的余數。

④a與b的積除以c的余數等於a除以c的余數與b除以c的余數的積除以c的余數

余數、同餘與周期

一、同餘的定義:

①若兩個整數a、b除以m的余數相同,則稱a、b對於模m同餘。

②已知三個整數a、b、m,如果m|a-b,就稱a、b對於模m同餘,記作a≡b(mod m),讀作a同餘於b模m

二、同餘的性質:

①自身性:a≡a(mod m);

②對稱性:若a≡b(mod m),則b≡a(mod m);

③傳遞性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);

④和差性:若a≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);

⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);

⑥乘方性:若a≡b(mod m),則an≡bn(mod m);

⑦同倍性:若a≡ b(mod m),整數c,則a×c≡ b×c(mod m×c);

三、關於乘方的預備知識:

①若A=a×b,則MA=Ma×b=(Ma)b

②若B=c+d則MB=Mc+d=Mc×Md

四、被3、9、11除後的余數特徵:

①一個自然數M,n表示M的各個數位上數字的和,則M≡n(mod 9)或(mod 3);

②一個自然數M,X表示M的各個奇數位上數字的和,Y表示M的各個偶數數位上數字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);

五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則ap-1(mod p)。

數學是小升初考試中的一個重要科目,所以我們在小升初總復習的時候,都會把數學作為一個重點。因為相對於其他科目來說,數學是拉分比較大的一個科目。為了使大家能夠更好的復習,我們為大家整理了2017年小升初數學常見知識點,僅供參考。

小升初數學知識點歸納4

和差問題的公式

(和+差)÷2=大數

(和-差)÷2=小數

和倍問題

和÷(倍數-1)=小數

小數×倍數=大數

(或者和-小數=大數)

差倍問題

差÷(倍數-1)=小數

小數×倍數=大數

(或小數+差=大數)

植樹問題

1非封閉線路上的植樹問題主要可分為以下三種情形:

⑴如果在非封閉線路的兩端都要植樹,那麼:

株數=段數+1=全長÷株距-1

全長=株距×(株數-1)

株距=全長÷(株數-1)

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:

株數=段數=全長÷株距

全長=株距×株數

株距=全長÷株數

⑶如果在非封閉線路的兩端都不要植樹,那麼:

株數=段數-1=全長÷株距-1

全長=株距×(株數+1)

株距=全長÷(株數+1)

2封閉線路上的植樹問題的數量關系如下

株數=段數=全長÷株距

全長=株距×株數

株距=全長÷株數

② 小升初數學簡便計算

小升初數學簡便計算

現在,越來越多的家長希望孩子進入民校。數學是每年民校小升初測評的核心,簡便運算又是考試的重要題型,我整理了小學簡便運算的方法技巧,相信一定可以幫到各位家長。

提取公因式

這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。

注意相同因數的提取。

例如:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

借來借去法

看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。

考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。

例如:

9999+999+99+9

=9999+1+999+1+99+1+9+1—4

拆 分 法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。

例如:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

加法結合律

注意對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例如:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

拆分法和乘法分配律結

這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的`時候,要首先考慮拆分。

例如:

34×9.9 = 34×(10-0.1)

案例再現: 57×101=?

利用公式法

01

加法:

交換律,a+b=b+a,

結合律,(a+b)+c=a+(b+c).

02

減法運算性質:

a-(b+c)=a-b-c,

a-(b-c)=a-b+c,

a-b-c=a-c-b,

(a+b)-c=a-c+b=b-c+a.

03

乘法:

交換律,a*b=b*a,

結合律,(a*b)*c=a*(b*c),

分配率,(a+b)xc=ac+bc,

(a-b)*c=ac-bc.

04

除法運算性質:

a÷(b*c)=a÷b÷c,

a÷(b÷c)=a÷bxc,

a÷b÷c=a÷c÷b,

(a+b)÷c=a÷c+b÷c,

(a-b)÷c=a÷c-b÷c.

前邊的運算定律、性質公式很多是由於去掉或加上括弧而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括弧,後面數值的運算符號不變。

例1:

283+52+117+148

=(283+117)+(52+48)

(運用加法交換律和結合律)

例2:

657-263-257

=657-257-263

=400-263

(運用減法性質,相當加法交換律)

例3:

195-(95+24)

=195-95-24

=100-24

(運用減法性質)

例4:

150-(100-42)

=150-100+42

(運用減法性質)

例5:

(0.75+125)*8

=0.75*8+125*8=6+1000

. (運用乘法分配律)

例6:

( 125-0.25)*8

=125*8-0.25*8

=1000-2

(運用乘法分配律)

例7:

(1.125-0.75)÷0.25

=1.125÷0.25-0.75÷0.25

=4.5-3=1.5。

(運用除法性質)

例8:

(450+81)÷9

=450÷9+81÷9

=50+9=59.

(同上,相當乘法分配律)

例9:

375÷(125÷0.5)

=375÷125*0.5=3*0.5=1.5.

(運用除法性質)

例10:

4.2÷(0。6*0.35)

=4.2÷0.6÷0.35

=7÷0.35=20.

(運用除法性質)

例11:

12*125*0.25*8

=(125*8)*(12*0.25)

=1000*3=3000.

(運用乘法交換律和結合律)

例12:

(175+45+55+27)-75

=175-75+(45+55)+27

=100+100+27=227.

(運用加法性質和結合律)

例13:

(48*25*3)÷8

=48÷8*25*3

=6*25*3=450.

(運用除法性質, 相當加法性質)

裂 項 法

分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.

常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。

分數裂項的三大關鍵特徵:

①分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。

②分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」

③分母上幾個因數間的差是一個定值。

公式:


;

③ 分數拆分法巧算

分數計算是小學計算部分的重要部分,也是小升初競賽的常考內容。對於分數的運算,除了掌握常規的運演算法則外,還應該掌握一些特殊的運算技巧,才能提高運算速度,解答較難的問題。因此,關於詳細的方法與技巧如下:

分數運算的技巧主要表現在兩方面:一是,所有的整數、小數計算技巧全都可以在分數的巧算上加以應用,例如乘法的運算定律、提取公因式、字母替換等常用方法;二是,分數簡算中獨有的方法,包括分數裂項、整體約分法等。

湊整法

與整數運算中的「湊整法」相同,在分數運算中,充分利用四則運演算法則和運算律(如交換律、結合律、分配律),使部分的和、差、積、商成為整數、整十數...從而使運算得到簡化。

改順序

通過改變分數式中的先後順序,使運算算簡便。常見有以下幾種方法:

01加括弧性質

在一個只有加減法運算的算式中,給算式的一部分添上括弧,如果括弧前面是加號,那麼括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:

a+b-c=a+(b-c)

a-b+c=a-(b-c)

a-b-c=a-(b+c)

02去括弧性質

在一個有括弧的加減法運算的算式中,將算式中的括弧去掉,如果括弧前面是加號,那麼去掉括弧後,括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:

a+(b-c)=a+b-c

a-(b+c)=a-b-c

a-(b-c)=a-b+c

03分數搬家

在連減或加減混合運算中,如果算式中沒有括弧,那麼計算時,可以帶著符號「搬家」,用「字母」表示:

a-b-c=a-c-b

a-b+c=a+c-b

提取公因式

當幾個乘積相加減,而這些乘積中又有相同的因數時,我們可以採用提取公因數的方法進行巧算。如果乘積中另外幾個因數相加減的結果正好湊成整十、整百、整千、整萬的數,或是是一些比較簡單的數,那麼計算就更為簡便。這種方法叫「提取公因數法」。

01簡單提取法

02創造條件法

對於復雜的分數算式,要根據算式特點,進行一定的轉化,創造條件後再運用提取公因數的方法來簡算。

拆數

一組分數混合運算時,為了能夠「湊整」或湊成比較簡單的數,常常需要先把分數中分子或分母進行拆分,再來進行分組運算。這種巧算方法叫「拆分法」,也叫「分解分組法」。

代數法

在相同數字較多的分數式中,用字母表示式子中的一部分,使運算更加方便。這就是分數式中的代數法。

易錯點糾正

異分母分數相加減:要先通分,化成相同的分母,再加減,計算結果能約分的要約分。

在計算過程中要注意統一分數單位。

在比較分數與小數大小時,要先統一他們的表現形式。將分數轉化為小數或者將小數轉化為分數。只有表現形式統一了,才有可能比較大小。分數化成小數的方法:用分子除以分母所得的商即可,除不盡時通常保留三位小數。

溫馨提示:

計算類的題目一定要多練習才能提高計算速度和准確率

閱讀全文

與小升初分數拆分最簡單的方法相關的資料

熱點內容
尋找真愛有哪些方法 瀏覽:552
如何才是最好的減肥方法 瀏覽:509
頭孢拉定鑒別顯色的方法是 瀏覽:962
電腦手機在線連接方法 瀏覽:629
什麼方法治扁平疣 瀏覽:336
公主蛋糕怎麼做的方法 瀏覽:401
打開膏肓穴有哪些方法 瀏覽:583
腈綸可用什麼方法鑒別 瀏覽:96
足球對抗技戰術訓練方法180例 瀏覽:170
枕套的正確安裝方法 瀏覽:296
工程資料教學方法 瀏覽:93
治療青胎記最好的方法 瀏覽:332
腎陽虛腹瀉最快治療方法 瀏覽:136
吊扇變速器的安裝方法 瀏覽:298
如何選擇生茶存放方法和條件 瀏覽:525
讓頭發直有哪些方法 瀏覽:470
大腸菌群檢測方法實驗報告 瀏覽:850
把手機變成高逼格的方法 瀏覽:259
晶片拋光有哪些方法 瀏覽:546
籃球運動的訓練方法 瀏覽:84