① 蛋白含量測定的最常用的是什麼方法
蛋白質含量測定法,是生物化學研究中最常用、最基本的分析方法之一。目前常用的有四種古老的經典方法,即定氮法,雙縮尿法(Biuret法)、Folin-酚試劑法(Lowry法)和紫外吸收法。另外還有一種近十年才普遍使用起來的新的測定法,即考馬斯亮藍法(Bradford法)。其中Bradford法和Lowry法靈敏度最高,比紫外吸收法靈敏10~20倍,比Biuret法靈敏100倍以上。定氮法雖然比較復雜,但較准確,往往以定氮法測定的蛋白質作為其他方法的標准蛋白質。
值得注意的是,這後四種方法並不能在任何條件下適用於任何形式的蛋白質,因為一種蛋白質溶液用這四種方法測定,有可能得出四種不同的結果。每種測定法都不是完美無缺的,都有其優缺點。在選擇方法時應考慮:①實驗對測定所要求的靈敏度和精確度;②蛋白質的性質;③溶液中存在的干擾物質;④測定所要花費的時間。
考馬斯亮藍法(Bradford法),由於其突出的優點,正得到越來越廣泛的應用。
② 常用的蛋白質含量測定方法有哪些
①凱氏定氮法
原理:蛋白質平均含氮量為16%。當樣品與濃硫酸共熱,蛋白氮轉化為銨鹽,在強鹼性條件下將氨蒸出,用加有指示劑的硼酸吸收,最後用標准酸滴定硼酸,通過標准酸的用量即可求出蛋白質中的含氮量和蛋白質含量。
②雙縮脲法
原理:尿素在180℃下脫氨生成雙縮脲,在鹼性溶液中雙縮脲可與Cu2+形成穩定的紫紅色絡合物。蛋白質中的肽鍵實際上就是醯胺鍵,故多肽、蛋白質等都有雙縮脲(biuret)反應,產生藍色或紫色復合物。比色定蛋白質含量。
缺點:靈敏度低,樣品必須可溶,在大量糖類共存和含有脯氨酸的肽中顯色不好。其 精確度 較差 (數mg),且會受樣品中 硫酸銨 及 Tris 的干擾,但 准確度 較高,不受蛋白質的種類影響。
③Folin酚法(Lowry)
Folin酚法是biuret 法的延伸,所用試劑由試劑甲和乙兩部分組成。試劑甲相當於雙縮脲試劑(鹼性銅試劑),試劑乙中含有磷鉬酸和磷鎢酸。
在鹼性條件下,蛋白質中的巰基和酚基等可將Cu2+還原成Cu+, Cu+能定量地與Folin-酚試劑反應生成藍色物質,600nm比色測定蛋白質含量。
靈敏度較高(約 0.1 mg),但較麻煩,也會受 硫酸銨 及 硫醇化合物 的干擾。 步驟中各項試劑的混合,要特別注意均勻澈底,否則會有大誤差。
④紫外法
280nm光吸收法:利用Tyr在280nm在吸收進行測定。
280nm-260nm的吸收差法:若樣品液中有少量核酸共存按下式計算:
蛋白質濃度(mg/ml)=1.24E280-0.74E260 (280 260為角標)
⑤色素結合法(Bradford 法)
直接測定法:利用蛋白質與色素分子(Coomassie Brilliant Blue G-250)結合物的光吸收用分光光度法進行測定。
考馬斯亮蘭(CBG)染色法測定蛋白質含量。CBG 有點像指示劑,會在不同的酸鹼度下變色;在酸性下是茶色,在中性下為藍色。當 CBG接到蛋白質上去的時候,因為蛋白質會提供 CBG一個較為中性的環境,因此會變成藍色。當樣本中的蛋白質越多,吸到蛋白質上的CBG也多,藍色也會增強。因此,藍色的呈色強度,是與樣本中的蛋白質量成正比。
間接測定法:蛋白質與某些酸性或鹼性色素分子結合形成不溶性的鹽沉澱。用分光光度計測定未結合的色素,以每克樣品結合色素的量來表示蛋白質含量的多少。
⑥BCA法
BCA(Bicinchoninc acid procere,4,4』-二羧-2,2』-二喹啉)法與Lowry法相似,主要差別在鹼性溶液中,蛋白質使Cu2+轉變Cu+後,進一步以BCA 取代Folin試劑與Cu+結合產生深紫色,在波長562 nm有強的吸收。
它的優點在於鹼性溶液中BCA 比Folin試劑穩定,因此BCA與鹼性銅離子溶液結合的呈色反應只需一步驟即完成。靈敏度Lowry法相似。
本方法對於陰離子、非離子性及二性離子的清潔劑和尿素較具容忍度,較不受干擾,但會受還原糖 及EDTA的干擾。
⑦膠體金測定法
膠體金(colloidal gold)是氯金酸(chloroauric acid)的水溶膠,呈洋紅色,具有高電子密度,並能與多種生物大分子結合。
膠體金是一種帶負電荷的疏水膠體遇蛋白質轉變為藍色,顏色的改變與蛋白質有定量關系,可用於蛋白質的定量測定。
⑧其他方法
有些蛋白質含有特殊的 非蛋白質基團,如 過氧化物酶含有 亞鐵血紅素基團,可測 403 nm 波長的吸光來定量之。 含特殊金屬的酶 (如鎘),則可追蹤該金屬。
③ 蛋白質含量的測定方法有哪些
蛋白質含量測定的方法有微量凱氏定氮法、雙縮脲法、folin―酚試劑法、考馬斯亮蘭法、紫外吸收法等。
1、微量凱氏定氮法:含氮有機物即分解產生氨(消化),氨又與硫酸作用,變成硫酸銨。經強鹼鹼化使之分解放出氨,借蒸汽將氨蒸至酸液中,根據此酸液被中和的程度可計算得樣品之氮含量。
2、雙縮脲法:雙縮脲是兩個分子脲經180℃左右加熱,放出一個分子氨後得到的產物。在強鹼性溶液中,雙縮脲與CuSO4形成紫色絡合物,稱為雙縮脲反應。
3、folin―酚試劑法:這種蛋白質測定法是最靈敏的方法之一。過去此法是應用最廣泛的一種方法,由於其試劑乙的配製較為困難,近年來逐漸被考馬斯亮蘭法所取代。
4、考馬斯亮蘭法:1976年由bradford建立的考馬斯亮蘭法,是根據蛋白質與染料相結合的原理設計的。這一方法是目前靈敏度最高的蛋白質測定法。
5、紫外吸收法:蛋白質分子中,酪氨酸、苯丙氨酸和色氨酸殘基的苯環含有共軛雙鍵,使蛋白質具有吸收紫外光的性質。吸收高峰在280nm處,其吸光度(即光密度值)與蛋白質含量成正比。
④ 一般採用什麼方法檢驗蛋白質即鑒定
一般用雙縮脲試劑鑒定,雙縮脲試劑可以和蛋白質發生紫色反應。
⑤ 食品中蛋白質的測定
食品中蛋白質的測定如下:
蛋白質的檢測原理是基於食品中蛋白質含量與食品中氮含量的比例關系換算的。如乳中蛋白質與氮含量的比值為6.38,大豆中蛋白質與氮含量的比值為5.71,普通食品中蛋白質與氮含量的比值為6.25。因此是通過測定食品中氮含量後再根據換算系數得到食品中蛋白質含量。
蛋白質的檢測方法:
1、凱氏定氮法:樣品在高溫濃硫酸的消化作用下,將樣品中的有機氮轉化為無機銨,待消化液冷卻後,加入過量的鹼,使無機銨轉化為揮發性的氨,再將氨蒸出後,利用鹽酸標准溶液滴定,最後根據消耗的鹽酸標液體積推算樣品中的氮含量。
2、杜馬斯定氮法:樣品在高純氧中充分燃燒的過程中,將氮元素轉化為氮氣或氮氧化物,再經過高溫銅的還原,使所有的氮轉化為N2,然後利用熱導檢測器檢測N2的含量來推算樣品中氮含量。因此杜馬斯定氮法也稱為杜馬斯燃燒法或燃燒定氮法。
⑥ 蛋白質的營養成分能用什麼方法判別出來
1:用雙縮脲試劑檢測,呈現紫色就有蛋白質:
2:雙縮脲試劑是由雙縮脲試劑A和雙縮脲試劑B兩種試劑組成.
3:雙縮脲試劑A的成分是氫氧化鈉的質量分數為0.1 g/mL的水溶液;
4:雙縮脲試劑B的成分是硫酸銅的質量分數為0.01 g/mL的水溶液.:
5:雙縮脲試劑可以驗證蛋白質的存在.
具體方法是:
1:先將雙縮脲試劑A加入組織樣液,搖盪均勻(必須營造鹼性環境),在加入雙縮脲試劑B,搖盪均勻.:
2:如果組織里含有蛋白質,那麼會看到溶液變成紫色.具有兩個或兩個以上肽鍵的化合物皆可與雙縮脲試劑產生紫色反應.
3:蛋白質的肽鍵在鹼性溶液中能與Cu2+絡合成紫紅色的化合物.顏色深淺與蛋白質濃度成正比.:
4:雙縮脲(NH2CONHCONH2)是兩個分子脲經180℃左右加熱,放出一個分子氨後得到的產物.:
5:雙縮脲試劑本是用來檢測雙縮脲,因蛋白質中也有-CONH-基也可用於檢驗蛋白質,與蛋白質接觸後的顏色呈紫色
希望我的回答對你有幫助!
⑦ 請問蛋白質的檢驗方法有多少種(請盡量詳細,
蛋白質測定方法:
測定蛋白質的方法可分為兩大類:
一類是利用蛋白質的共性,即含氮量 、肽鍵和折射率測定蛋白質含量 ;
另一類是利用蛋白質中特定氨基酸殘基、酸性和鹼性基團 以及芳香基團等測定蛋白質含量.
(1) 凱氏定氮法:是通過測出樣品中的總含氮量再乘以相應的蛋白質系數而求出蛋白質的含量,由於樣品中含有少量非蛋白質含氮化合物,故此法的結果稱為粗蛋白質含量.(是食品上蛋白質含量測定最常用的方法)
(2) 雙縮脲法
(3) 染料結合法
(4) 酚試劑法:方法簡便快速,故多用於生產單位質量控制分析.
(5) 紫外分光光度法-近紅外光譜法
⑧ 鑒別蛋白質的方法有哪些
常見的蛋白質鑒定方法有:
一、最簡單的方法就是對所要鑒定的物體進行灼燒
二、使用化學葯劑進行化學反應來鑒定蛋白質
三、較為精準的方法是使用儀器進行蛋白質鑒定,如質譜儀等
在生物學研究中經常會遇到一些關於蛋白質鑒定的問題,如單一蛋白質或者簡單混合物的鑒定;對單一蛋白質的序列分析等。這一類蛋白質鑒定,在精密度上要求較高,所以幾乎都是採用質譜儀器,來對蛋白質進行精密鑒定。
質譜技術是鑒定蛋白質的其中一種平台技術。可用到的質譜儀有Thermo Fisher的Q Exactive質譜儀,LTQ Orbitrap Velos質譜儀,以及AB SCIEX的6500 Q TRAP質譜儀。所在鑒定機構的不同,在硬體品牌的使用上也會有不同。
蛋白質鑒定的流程一般分三大步:蛋白質提取、純化、鑒定。這個流程是一個將蛋白質層層「解剖」的過程,從中我們可以對蛋白分子量進行測定,蛋白膠點、膠條、IP樣品蛋白質進行鑒定,非變性質譜分析以及Pull-down靶蛋白質譜鑒定等,較為細致的去分析蛋白質中的各種物質、性質等。