⑴ 數控機床故障診斷可採用什麼方法和手段
(1)診斷法 利用NC系統自帶的診斷功能可以檢查輸入[MT(機床)→NC或PC(可編程序控制器)]信號、輸出(NC或PC→MT)信號、PC→NC信號、NC→PC信號及中間繼電器的狀態等。利用診斷可迅速確定故障點的產生部位,然後集中力量在該部位范圍內找出故障原因。
(2)觀察法 觀察法在維修數控機床過程中是常用的。有時,有的故障用觀察法可很容易解決。觀察法一是用眼看,觀察電纜外皮有無破損,元器件有無冒煙、燒壞現象,插頭、接線有無脫落,按鈕、開關有無撞壞,指示燈是否完整,元器件表面有無大量塵埃等;二是用手摸,停電檢查時可用手輕輕搖撥變壓器的接線是否有松動、燒壞現象,端子和導線之間結合是否緊固,旋轉電動機軸是否過緊,電氣元器件是否發熱及焊接點是否牢固等;三是用耳聽,聽電動機旋轉時有無雜訊和異常聲響,變壓器有無蜂鳴聲。加工中機床振動異常及振動聲音過大等應引起注意,這些都會成為故障的因素。利用人的感官注意發生故障時(或故障發生後)的各種外部現象並判斷故障的可能部位。這是處理數控系統故障首要的切入點,往往也是最直接,最行之有效的方法,對於一般情況下「簡單」故障通過這種直接觀察,就能解決問題。在故障的現場,通過觀察故障時(或故障發生後)是否有異響,火花亮光發生,它們來自何方,何處出現焦糊味,何處發熱異常,何處有異常震動等等,就能判斷故障的主要部分,然後,進一步觀察可能發生故障的每塊電路板,或是各種電控元件(繼電器,熱繼電器,斷路器等)的表面狀況,例如是否有燒焦、煙熏黑處或元件、連線斷裂處,從而進一步縮小檢查范圍。再者,檢查系統各種連接電纜有否松脫,斷開、接觸不良也是處理數控系統故障時首先需要想到的。這是一種最基本、最簡單、最常用的方法。該方法既適用於有故障報警顯示的較為先進系統,也適用於無故障報警顯示的早期限的系統。使用該方法,對於處理一些電氣短路,斷路,過載等是最常用的。使用這一方法雖然簡單,但卻要求維修人員要有一定經驗。在檢驗過程中,養成細致嚴謹工作態度,善於發現問題,解決問題。往往是一絲異常,便是症結所在。同時要求維修人員能及時到達,並要求建立迅捷應付機智。
(3)測量法 測量法是查找數控機床故障的基本方法。當機床發生故障時,利用手中的儀器、儀表(示波器、萬用表等)參照電氣原理圖和控制系統的邏輯圖等資料,沿著發生故障的通道,一步一步地測量,直到找到故障點為止。
用測量法找故障不一定要從起點一直測量到終點,可採用優選法進行,並要求維修人員不但要較好地掌握電路圖和邏輯圖,而且要較熟悉地了解電氣元器件的實際位置,才能迅速地排除故障。
(4)代換法 代換法能夠迅速地把故障由大范圍縮小到小范圍,進而縮小到更小的范圍之內。電氣系統越是復雜用該方法越好。
用代換法時有個問題必須注意:在調換電路板之前一定要保證該電路板的損壞不是因為電路板外原因(外部高壓竄人板內,或是板外負載短路等)造成的。在這種情況下,要首先排除相應故障後再代換,以免燒壞新更換上的好電路板。
(5)經驗法 經驗法是對數控機床經常重復性發生的故障,憑借長期積累的經驗,針對故障的表現形式,便立即想到故障可能發生在哪一部位中。
(6)綜合法 綜合法就是全面掌握以上各方法的技巧,綜合使用、融會貫通、靈活運用。對於正確進行故障診斷可以起到事半功倍的效果。
利用數控系統的硬體報警功能:為了提高系統的可維護性,在現代數控系統中設置有眾多的硬體報警指示裝置,如在主板上,各軸控制板上,電源單元,主軸伺服驅動模塊,各軸伺服驅動單元等部件上均有發光二極體或多段數碼管,通過指示燈的亮與滅,數碼管的顯示狀態(如數字編號、符號等)來為維修人員指示故障所在位置及其類型。因此,在處理數控系統故障過程中,如果直觀法不能奏效的,即從外觀上,很難判斷問題所在,或是CRT屏幕不能點亮(電源模塊有故障)的時候,我們可以藉助審視上述各報警裝置,觀察有無報警指示,然後根據指示查閱隨機說明書,依照指示來處理故障。這一方法,對於通用型的各類數控系統比較適用,因其系統設計較為完善,已充分考慮到系統中最常見可能故障形式,內置較多硬體報警裝置,所以尤為見效。但這一方法,是以手頭有詳盡報警說明為前提的,要求維修人員了解機器的說明、不斷增加對機器的了解。充分利用數控系統的軟體報警功能:CNC系統都具有自診斷功能。在系統工作期間,能定時用自診斷程序對系統進行快速診斷。一旦檢測到故障,立即將故障以報警的方式顯示在CRT上或點亮面板上報警指示燈。而且這種自診斷功能還能將故障分類報警。如①誤操作報警;②有關伺服系統報警;③設定錯誤報警;④各種行程開關報警等等,維修時,可根據報警內容提示來查找問題的症結所在。但這一方法,同樣是以手頭有詳盡報警說明為前提的。現代數控系統不但能將故障診斷信息顯示出來,如上所述,而且能以診斷地址和診斷數據的形式提供診斷的各種狀態。如機床側各種主令開關,行程開關等通斷觸發的開關信號是否按要求正確輸入到數控系統中。總之,通過列出上述狀態情況,可將故障區分出是在機床一側還是數控系統一側,從而可將故障鎖定在某一元件上,得而解決問題。這一切都得益於系統提供完善的狀態顯示功能,為故障診斷打開了一扇明了「窗口」,運用這一方法,對於診斷動作復雜機構故障如換刀機構起到極大作用。也是診斷故障基本方法之一。但使用的前提是系統提供狀態顯示功能。4.發生故障時,應及時核對數控系統參數:系統參數變化會直接影響到機床的性能,甚至使機床發生故障,整機不能正常工作。在設計和製造數控系統時,雖已考慮到系統的可靠性問題,但不可能排除外界的一切干擾,而這些干擾有可能引起存儲器內個別參數的變化。同時,人為誤操作使得系統參數變更也是可能的,作者在工作中,就碰到過。因誤操作使得系統出現動作異常,有些機器不穩定,每次開機都有可能產生系統參數丟失。所以,在診斷故障過程,如果嘗試上述幾項方法後,問題仍不能解決的話,我們可以核對系統參數,看是否是參數變更導致的,這類故障便是我們的「軟」故障。以上幾種方法,各有特點,及使用范圍。對於較為復雜的故障,需要將幾種方法同時綜合運用,才能產生較好的效果,正確判斷出故障起因和故障的具體部位。當然,任何一種方法都取決於對機器性能的了解,維修人員應熟知系統的構造、電路及各項控制功能,只有在平時的不斷積累才能及時有效的解決問題。對於數控系統故障解決同樣重要的就是維護問題,只有定期的維護保養才能有效的避免故障的發生,使系統有良好的運行環境。如何維護系統就要求從日常抓起:對於機器的硬體而言,需要完善的操作規程,操作失誤就有可能導致硬體損壞甚至報廢。這就要求對操作者有完善的培訓機制,避免不和要求的操作失誤產生,將故障的產生消除無形。數控機床是由NC系統、伺服系統、位置檢測、強電部分及機床本體組成,比一般機床要復雜得多,故障的表現形式也就比較復雜。這就相應地要求維修人員多掌握幾種維修方法,遇到不同的故障才能靈活地使用不同的方法,力求在最短的時間內排除故障,保證機床正常運轉。
⑵ 數控機床維修的方法
1 常見的維修方法
數控設備維修是一項很復雜、技術含量很高的一項工作,數控設備與普通設備有較大的差別。
1.1 利用數控系統的自診斷功能
一般CNC系統都有較為完備的自診斷系統,無論是發那科系統還是西門子系統,數控系統上電初始化時或運行中均能對自身或介面做出一定范圍的自診斷。維修人員應熟悉系統自診斷各種報警信息。根據說明書進行分析以確定故障范圍,定位故障元器件,對於進口的數控系統一般只能定位到板級,其片級維修一般可依靠各數控系統的廠家售後維修部門。
1.2 利用PLC程序的邏輯查找
現在一般CNC控制系統均帶有PLC控制器,大多為內置式PLC控制。維修人員應根據梯形圖對機床控制電器進行分析,在CRT上直觀地看出CNC系統I/O的狀態。通過PLC程序的邏輯分析,方便地檢查出問題存在部位,如FANUC-OT系統中自診斷頁面等。根據圖紙PLC梯圖進行分析,定位機床與CNC系統介面故障,以確定故障部位是機械、電器、液壓還是氣動故障。
1.3 與當場的操作人員充分溝通
現場操作人員是數控機床最親密的夥伴,操作人員也是各種故障的第一發現人。因此,當故障發生後,維修人員一般不要急於動手,先與操作人員進行充分的溝通,要仔細詢問故障發生時機床處在什麼工作狀態、表現形式、產生的後果、是否誤操作,故障能否再現等,這樣有助於維修人員快速分析和判斷故障原因。
2 數控機床的抗干擾措施
機床數控系統中既包含高電壓、大電流的強電設備,又包含低電壓、小電流的控制與信號處理設備,即弱電設備。強電設備產生的強烈電磁干擾對弱電設備的正常工作構成
極大的威脅。此外,系統所處生產現場的電磁環境較惡劣,系統外各種動力負載的干擾、供電系統的干擾、大氣中電磁波的干擾等都會對系統內的弱電設備產生嚴重影響,由於弱電設備是控制強電的設備,所以,一旦弱電設備受到干擾,最終將導致整個系統的癱瘓。
通常從以下幾個方面採取措施來提高數控系統的擾干擾能力。
2.1 減少供電線路和信號線路的干擾可採取以下措施
(1)數控機床遠離具有中、高頻電源的設備。
(2)數控機床不要和大功率且頻繁起停的設備用同一供電干線供電。
(3)對於電網電壓較長時間的欠電壓、過電壓和電壓波動的場合安裝交流穩壓器。
(4)採用電源濾波器。電源濾波器的作用是雙向的,它不僅可以阻止電網中的雜訊進入設備,也可以抑制設備所產生的雜訊污染電網。
(5)採用帶屏蔽層的隔離變壓器。隔離變壓器是一種應用相當廣泛的電源抗干擾設備,它最基本的作用是實現電路與電路之間的電氣隔離,解決設備與設備之間產生的干擾。
(6)模擬信號傳輸線的配線應盡可能短,並使用屏蔽線。
(7)光電編碼器、手搖脈沖發生器、光柵尺等的輸出信號在接收電路端並聯電容,抑制高頻干擾。光電編碼器電纜的屏蔽層雙端接地。
(8)電動機驅動電纜屏蔽層雙端接地。
(9)動力線和信號線分開走線。
(10)控制信號線採用屏蔽雙絞線。
2.2 減少機床電氣控制系統中的干擾可採取以下措施
(1)在電源輸入部分加壓敏電阻保護(浪涌吸收器),對線路中的瞬變、尖蜂等雜訊進行抑制。
(2)感性負載加裝吸收電路,抑制瞬態雜訊。系統中的感性負載如繼電器、接觸器、電磁閻、電動機等在關斷時會產生強烈的脈沖雜訊,影響其他電路的正常工作,必須在感性負載處加裝吸收電路,抑制瞬態雜訊。直流電感元件(直流繼電器線圈)並聯續流二掇管。交流接觸器、電磁閥、繼電器的線圈並聯RC阻容吸收器。三相交流電動機的電樞繞組之間並聯RC阻容吸收器。
(3)保證良好的「接地」。「接地」是數控機床安裝中一項關鍵的抗干擾技術。數控系統和電氣櫃中的控制設備必須按照使用說明書的要求進行「接地」,否則電網中的許多干擾因素都會通過「地線」對機床的運行產生干擾。
⑶ 怎麼排除數控機床的常見故障
數控系統故障維修通常按照:現場故障的診斷與分析、故障的測量維修排除、系統的試車這三大步進行。
1、數控機床故障診斷
在故障診斷時應掌握以下原則:
1.1 先外部後內部
現代數控系統的可靠性越來越高,數控系統本身的故障率越來越低,而大部分故障的發生則是非系統本身原因引起的。由於數控機床是集機械、液壓、電氣為一體的機床,其故障的發生也會由這三者綜合反映出來。維修人員應先由外向內逐一進行排查。盡量避免隨意地啟封、拆卸,否則會擴大故障,使機床喪失精度、降低性能。系統外部的故障主要是由於檢測開關、液壓元件、氣動元件、電氣執行元件、機械裝置等出現問題而引起的。
1.2 先機械後電氣
一般來說,機械故障較易發覺,而數控系統及電氣故障的診斷難度較大。在故障檢修之前,首先注意排除機械性的故障。
1.3 先靜態後動態
先在機床斷電的靜止狀態,通過了解、觀察、測試、分析,確認通電後不會造成故障擴大、發生事故後,方可給機床通電。在運行狀態下,進行動態的觀察、檢驗和測試,查找故障。而對通電後會發生破壞性故障的,必須先排除危險後,方可通電。
1.4 先簡單後復雜
當出現多種故障互相交織,一時無從下手時,應先解決容易的問題,後解決難度較大的問題。往往簡單問題解決後,難度大的問題也可能變得容易。
2、數控機床的故障診斷技術
數控系統是高技術密集型產品,要想迅速而正確的查明原因並確定其故障的部位,要藉助於診斷技術。隨著微處理器的不斷發展,診斷技術也由簡單的診斷朝著多功能的高級診斷或智能化方向發展。診斷能力的強弱也是評價CNC數控系統性能的一項重要指標。目前所使用的各種CNC系統的診斷技術大致可分為以下幾類:
2.1 起動診斷
起動診斷是指CNC系統每次從通電開始,系統內部診斷程序就自動執行診斷。診斷的內容為系統中最關鍵的硬體和系統控制軟體,如 CPU、存儲器、I/O 等單元模塊,以及MDI/CRT單元、紙帶閱讀機、軟盤單元等裝置或外部設備。只有當全部項目都確認正確無誤之後,整個系統才能進入正常運行的准備狀態。否則,將在CRT畫面或發光二極體用報警方式指示故障信息。此時起動診斷過程不能結束,系統無法投入運行。
2.2 在線診斷
在線診斷是指通過CNC系統的內裝程序,在系統處於正常運行狀態時對CNC系統本身及CNC裝置相連的各個伺服單元、伺服電機、主軸伺服單元和主軸電動機以及外部設備等進行自動診斷、檢查。只要系統不停電,在線診斷就不會停止。
在線診斷一般包括自診斷功能的狀態顯示有上千條,常以二進制的0、1來顯示其狀態。對正邏輯來說,0表示斷開狀態,1表示接通狀態,藉助狀態顯示可以判斷出故障發生的部位。常用的有介面狀態和內部狀態顯示,如利用I/O介面狀態顯示,再結合PLC梯形圖和強電控制線路圖,用推理法和排除法即可判斷出故障點所在的真正位置。故障信息大都以報警號形式出現。一般可分為以下幾大類:過熱報警類;系統報警類;存儲報警類;編程/設定類;伺服類;行程開關報警類;印刷線路板間的連接故障類。
2.3 離線診斷
離線診斷是指數控系統出現故障後,數控系統製造廠家或專業維修中心利用專用的診斷軟體和測試裝置進行停機(或離線)檢查。力求把故障定位到盡可能小的范圍內,如縮小到某個功能模塊、某部分電路,甚至某個晶元或元件,這種故障定位更為精確。
2.4 現代診斷技術
隨著電信技術的發展,IC和微機性價比的提高,近年來國外已將一些新的概念和方法成功地引用到診斷領域。
(1) 通信診斷
也稱遠程診斷,即利用電話通訊線把帶故障的CNC系統和專業維修中心的專用通訊診斷計算機通過連接進行測試診斷。如西門子公司在CNC系統診斷中採用了這種診斷功能,用戶把CNC系統中專用的「通信介面」連接在普通電話線上,而兩門子公司維修中心的專用通迅診斷計算機的「數據電話」也連接到電話線路上,然後由計算機向 CNC系統發送診斷程序,並將測試數據輸回到計算機進行分析並得出結論,隨後將診斷結論和處理辦法通知用戶。
通訊診斷系統還可為用戶作定期的預防性診斷,維修人員不必親臨現場,只需按預定的時間對機床作一系列運行檢查,在維修中心分析診斷數據,可發現存在的故障隱患,以便及早採取措施。當然,這類CNC系統必須具備遠程診斷介面及聯網功能。
(2) 自修復系統
就是在系統內設置有備用模塊,在CNC系統的軟體中裝有自修復程序,當該軟體在運行時一旦發現某個模塊有故障時,系統一方面將故障信息顯示在CRT上,同時自動尋找是否有備用模塊,如有備用模塊,則系統能自動使故障離線,而接通備用模塊使系統能較快地進入正常工作狀態。這種方案適用於無人管理的自動化工作場合。
需要注意的是:機床在實際使用中也有些故障既無報警,現象也不是很明顯,對這種情況,處理起來就不那樣簡單了。另外有此設備出現故障後,不但無報警信息,而且缺乏有關維修所需的資料。對這類故障的診斷處理,必須根據具體情況仔細檢查,從現象的微小之處進行分析,找出它的真正原因。要查清這類故障的原因,首先必須從各種表面現象中找山它的真實故障現象,再從確認的故障現象中找出發生的原因。全面地分析一個故障現象是決定判斷是否正確的重要因素。在查找故障原因前,首先必須了解以下情況:故障是在正常工作中出現還是剛開機就出現的;山現的次數是第一次還是已多次發生;確認機床加工程序的正確性;是否有其他人
3、數控機床的常見故障排除方法
由於數控機床故障比較復雜,同時數控系統自診斷能力還不能對系統的所有部件進行測試,往往是一個報警號指示出眾多的故障原因,使人難以入手。下面介紹維修人員任生產實踐中常用的排除故障方法。
3.1直觀檢查法
直觀檢查法是維修人員根據對故障發生時的各種光、聲、味等異常現象的觀察,確定故障范圍,可將故障范圍縮小到一個模塊或一塊電路板上,然後再進行排除。一般包括:
a.詢問:向故障現場人員仔細詢問故障產生的過程、故障表象及故障後果等;
b.目視:總體查看機床各部分工作狀態是否處於正常狀態,各電控裝置有無報警指示,局部查看有無保險燒斷,元器件燒焦、開裂、電線電纜脫落,各操作元件位置正確與否等等;
c.觸摸:在整機斷電條件下可以通過觸摸各主要電路板的安裝狀況、各插頭座的插接狀況、各功率及信號導線的聯接狀況以及用手摸並輕搖元器件,尤其是大體積的阻容、半導體器件有無松動之感,以此可檢查出一些斷腳、虛焊、接觸不良等故障;
d.通電:是指為了檢查有無冒煙、打火,有無異常聲音、氣味以及觸摸有無過熱電動機和元件存在而通電,一旦發現立即斷電分析。如果存在破壞性故障,必須排除後方可通電。
例:一台數控加工中心在運行一段時間後,CRT顯示器突然出現無顯示故障,而機床還可繼續運轉。停機後再開又一切正常。觀察發現,設備運轉過程中,每當發生振動時故障就可能發生。初步判斷是元件接觸不良。當檢查顯示板時,CRT顯示突然消失。檢查發現有一晶振的兩個引腳均虛焊松動。重新焊接後,故障消除。
3.2 初始化復位法
一般情況下,由於瞬時故障引起的系統報警,可用硬體復位或開關系統電源依次來清除故障。若系統工作存貯區由於掉電、撥插線路板或電池欠壓造成混亂,則必須對系統進行初始化清除,清除前應注意作好數據拷貝記錄,若初始化後故障仍無法排除,則進行硬體診斷。
例:一台數控車床當按下自動運行鍵,微機拒不執行加工程序,也不顯示故障自檢提示,顯示屏幕處於復位狀態(只顯示菜單)。有時手動、編輯功能正常,檢查用戶程序、各種參數完全正確;有時因記憶電池失效,更換記憶電池等,系統顯示某一方向尺寸超量或各方向的尺寸都超最(顯示尺寸超過機床實斤能加工的最大尺寸或超過系統能夠認可的最大尺寸)。排除方法:採用初始化復位法使系統清零復位(一般要用特殊組合健或密碼)。3.3 自診斷法
數控系統已具備了較強的自診斷功能,並能隨時監視數控系統的硬體和軟體的工作狀態。利用自診斷功能,能顯示出系統與主機之間的介面信息的狀態,從而判斷出故障發生在機械部分還是數控部分,並顯示出故障的大體部位(故障代碼)。
a.硬體報警指示:是指包括數控系統、伺服系統在內的各電氣裝置上的各種狀態和故障指示燈,結合指示燈狀態和相應的功能說明便可獲知指示內容及故障原因與排除方法;
b.軟體報警指示:系統軟體、PLC程序與加工程序中的故障通常都設有報警顯示,依據顯示的報警號對照相應的診斷說明手冊便可獲知可能的故障原因及排除方法。
功能程序測試法是將數控系統的G、M、S、T、F功能用編程法編成一個功能試驗程序,並存儲在相應的介質上,如紙帶和磁帶等。在故障診斷時運行這個程序,可快速判定故障發生的可能起因。
功能程序測試法常應用於以下場合:
a.機床加工造成廢品而一時無法確定是編程操作不當、還是數控系統故障引起;
b. 數控系統出現隨機性故障,一時難以區別是外來干擾,還是系統穩定性個好;
c. 閑置時間較長的數控機床在投入使用前或對數控機床進行定期檢修時。
例:一台FANUC9系統的立式銑床在自動加工某一曲線零件時出現爬行現象,表面粗糙度極差。在運行測試程序時,直線、圓弧插補時皆無爬行,由此確定原因在編程方面。對加工程序仔細檢查後發現該曲線由很多小段圓弧組成,而編程時又使用了正確定位外檢查C61指令之故。將程序中的G61取消,改用G64後,爬行現象消除。
3.5 備件替換法
用好的備件替換診斷出壞的線路板,即在分析出故障大致起因的情況下,維修人員可以利用備用的印刷電路板、集成電路晶元或元器件替換有疑點的部分,從而把故障范圍縮小到印刷線路板或晶元一級。並做相應的初始化起動,使機床迅速投入正常運轉。
對於現代數控的維修,越來越多的情況採用這種方法進行診斷,然後用備件替換損壞模塊,使系統正常工作。盡最大可能縮短故障停機時間,使用這種方法在操作時注意一定要在停電狀態下進行,還要仔細檢查線路板的版本、型號、各種標記、跨接是否相同,若不一致則不能更換。拆線時應做好標志和記錄。
一般不要輕易更換CPU板、存儲器板及電地,否則有可能造成程序和機床參數的丟失,使故障擴大。
例:一台採用西門子SINUMERIK SYSTEM 3系統的數控機床,其PLC采川S5—130w/B,一次發生故障時,通過NC系統PC功能輸入的R參數,在加工中不起作用,不能更改加上程序中R參數的數值。通過對NC系統工作原理及故障現象的分析,認為PLC的主板有問題,與另一台機床的主板對換後,進一步確定為PLC主板的問題。經專業廠家維修,故障被排除。
3.6 交叉換位法
當發現故障板或者個能確定是否是故障板而又沒有備件的情況下,可以將系統中相同或相兼容的兩個板互換檢查,例如兩個坐標的指令板或伺服板的交換,從中判斷故障板或故障部位。這種交叉換位法應特別注意,不僅要硬體接線的正確交換,還要將一系列相應的參數交換,否則不僅達不到目的,反而會產生新的故障造成思維混亂,一定要事先考慮周全,設計好軟、硬體交換方案,准確無誤再行交換檢查。
例:一台數控車床出現X向進給正常,Z向進給出現振動、噪音大、精度差,採用手動和手搖脈沖進給時也如此。觀察各驅動板指示燈亮度及其變化基本正常,疑是Z軸步進電動機及其引線開路或Z軸機械故障。遂將Z軸電機引線換到X軸電機上,X軸電機運行正常,說明Z軸電動機引線正常;又將X軸電機引線換到Z軸電機上,故障依舊;可以斷定是Z軸電動機故障或Z軸機械故障。測量電動機引線,發現一相開路。修復步進電動機,故障排除。
3.7 參數檢查法
系統參數是確定系統功能的依據,參數設定錯誤就可能造成系統的故障或某功能無效。發生故障時應及時核對系統參數,參數一般存放在磁泡存儲器或存放在需由電池保持的 CMOS RAM中,一旦電池電量不足或由於外界的干擾等因素,使個別參數丟失或變化,發生混亂,使機床無法正常工作。此時,可通過核對、修正參數,將故障排除。
例:一台數控銑床上採用了測量循環系統,這一功能要求有一個背景存貯器,調試時發現這一功能無法實現。檢查發現確定背景存貯器存在的數據位沒有設定,經設定後該功能正常。
又如:一台數控車床數控刀架換對突然出現故障,系統無法自動運行,在手動換刀時,總要過一段時間才能再次換刀。遂對刀補等參數進行檢查,發現一個手冊上沒有說明的參數P20變為20,經查有關資料P20是刀架換刀時間參數,將其清零,故障排除。
有時由於用戶程序和參數錯誤亦可造成故障停機,對此可以採用系統的程序自診斷功能進行檢查,改正所有錯誤,以確保其正常運行。
3.8 測量比較法
CNC系統生產廠在設計印刷線路板時,為了調整和維修方便,在印刷線路板上設計了一些檢測端子。維修人員通過測量這些檢測端子的電壓或波形,可檢查有關電路的工作狀態是否正常。但利用檢測端子進行測量之前,應先熟悉這些檢測端子的作用及有關部分的電路或邏輯關系。
3.9 敲擊法
當系統故障表現為有時正常有時不正常時,基本可以斷定為元器件接觸不良或焊點開焊,利用敲擊法檢查時,當敲擊到虛焊或接觸不良的故障部位時,故障就會出現。
3.10 局部升溫法
數控系統經過長期運行後元件均要老化,性能變壞。當它們尚未完全損壞時,出現的故障就會時有時無。這時用電烙鐵或電吹風對被懷疑的元件進行局部加溫,會使故障快速出現。操作時,要注意元器件的溫度參數等,注意不要損壞好的元器件。
3.11 原理分析法
根據數控系統的組成原理,可從邏輯上分析各點的邏輯電平和特性參數,如電壓值和波形,使用儀器儀表進行測量、分析、比較,從而確定故障部位。
除以上常用的故障檢測方法之外,還可以採用拔插板法、電壓拉偏法、開環檢測法等。總之,根據不同的故障現象,可以同時選用幾個方法靈活應用、綜合分析,才能逐步縮小故障范圍,較快地排除故障。
4、數控機床維修後的開機調試
機床的故障排除後通常分兩大步進行通電試車:
4.1 自動狀態試驗
將機床鎖住,用編制的程序進行空運轉試驗,驗證程序的正確性,然後放開機床,分別將進給倍率開關、快速超凋開關、主軸速度超調開關進行多種變化,使機床在上述各開關的多種變化的情況下進行充分地運行,後將各超調開關置於100%處,使機床充分運行,觀察整機的工作情況是否正常。
4.2 正常加工試驗
夾裝好工件按正常程序進行加工,加工後檢查工件的加工精度是否符合標准要求
5、維修調試後的技術處理
在現場維修結束後,應認真填寫維修記錄,列出有關必備的備件清單,建立用戶檔案。對於故障時間、現象、分析診斷方法、採用排故方法,如果有遺留問題應詳盡記錄,這樣不僅使每次故障都有據可查,而且也可以不斷積累維修經驗。
⑷ 數控機床故障分析與維修經驗總結
數控機床故障分析與維修經驗總結
數控機床加工柔性好,精度高,生產效率高。但是也會經常產生故障,這就需要維修人員有足夠的知識和能力去判斷分析床故障分析!為此,我為你整理了一篇維修老手的經驗總結,一起來學習吧!
數控機床的應用越來越廣泛,其加工柔性好,精度高,生產效率高,具有很多的優點。但由於技術越來越先進、復雜,對維修人員的素質要求很高,要求他們具有較深的專業知識和豐富的維修經驗,在數控機床出現故障才能及時排除。
在數控機床的應用越來越廣泛。我公司有幾十台數控設備,數控系統有多種類型,幾年來這些設備出現一些故障,通過對這些故障的分析和處理,我們取得了一定的經驗。下面結合一些典型的實例,對數控機床的故障進行系統分析,以供參考。
一、NC系統故障
1.硬體故障
有時由於NC系統出現硬體的損壞,使機床停機。對於這類故障的診斷,首先必須了解該數控系統的工作原理及各線路板的功能,然後根據故障現象進行分析,在有條件的情況下利用交換法准確定位故障點。
例一、一台採用德國西門子SINUMERIK SYSTEM3的數控機床,其PLC採用S5─130W/B,一次發生故障,通過NC系統PC功能輸入的R參數,在加工中不起作用,不能更改加工程序中R參數的數值。通過對NC系統工作原理及故障現象的分析,我們認為PLC的主板有問題,與另一台機床的主板對換後,進一步確定為PLC主板的問題。經專業廠家維修,故障被排除。
例二、另一台機床也是採用SINUMERIK SYSTEM 3數控系統,其加工程序程序號輸入不進去,自動加工無法進行。經確認為NC系統存儲器板出現問題,維修後,故障消除。
例三、一台採用德國HEIDENHAIN公司TNC 155的數控銑床,一次發生故障,工作時系統經常死機,停電時經常丟失機床參數和程序。經檢查發現NC系統主板彎曲變形,經校直固定後,系統恢復正常,再也沒有出現類似故障。
2.軟故障
數控機床有些故障是由於NC系統機床參數引起的,有時因設置不當,有時因意外使參數發生變化或混亂,這類故障只要調整好參數,就會自然消失。還有些故障由於偶然原因使NC系統處於死循環狀態,這類故障有時必須採取強行啟動的方法恢復系統的使用。
例一、一台採用日本發那科公司FANUC-OT系統的數控車床,每次開機都發生死機現象,任何正常操作都不起作用。後採取強制復位的方法,將系統內存全部清除後,系統恢復正常,重新輸入機床參數後,機床正常使用。這個故障就是由於機床參數混亂造成的。
例二、一台專用數控銑床,NC系統採用西門子的SINUMERIK SYSTEM 3,在批量加工中NC系統顯示2號報警「LIMIT SWITCH」,這種故障是因為Y軸行程超出軟體設定的極限值,檢查程序數值並無變化,經仔細觀察故障現象,當出現故障時,CRT上顯示的Y軸坐標確定達到軟體極限,仔細研究發現是補償值輸入變大引起的,適當調整軟體限位設置後,故障被排除。這個故障就是軟體限位設置不當造成的。
例三、一台採用西門子SINUMERIK 810的數控機床,一次出現問題,每次開機系統都進入AUTOMATIC狀態,不能進行任何操作,系統出現死機狀態。經強制啟動後,系統恢復正常工作。這個故障就是因操作人員操作失誤或其它原因使NC系統處於死循環狀態。
3.因其它原因引起的NC系統故障有時因供電電源出現問題或緩沖電池失效也會引起系統故障。
例一、一台採用德國西門子SINUMERIK SYSTEM 3的數控機床,一次出現故障,NC系統加上電後,CRT不顯示,檢查發現NC系統上「COUPLING MODULE」板上左邊的發光二極體閃亮,指示故障。對PLC進行熱啟動後,系統正常工作。但過幾天後,這個故障又出現了,經對發光二極體閃動頻率的分析,確定為電池故障,更換電池後,故障消除。
例二、一台採用西門子SINUMERIK 810的數控機床,有時在自動加工過程中,系統突然掉電,測量其24V直流供電電源,發現只有22V左右,電網電壓向下波動時,引起這個電壓降低,導致 NC系統採取保護措施,自動斷電。經確認為整流變壓器匝間短路,造成容量不夠。更換新的整流變壓器後,故障排除。
例三、另一台也是採用西門子SINUMIK 810的數控機床,出現這樣的故障,當系統加上電源後,系統開始自檢,當自檢完畢進入基本畫面時,系統掉電。經分析和檢查,發現X軸抱閘線圈對地短路。系統自檢後,伺服條件准備好,抱閘通電釋放。抱閘線圈採用24V電源供電,由於線圈對地短路,致使24V電壓瞬間下降,NC系統採取保護措施自動斷電。
二、伺服系統的故障
由於數控系統的控制核心是對機床的進給部分進行數字控制,而進給是由伺服單元控制伺服電機,帶動滾珠絲杠來實現的,由旋轉編碼器做位置反饋元件,形成半閉環的位置控制系統。所以伺服系統在數控機床上起的作用相當重要。伺服系統的故障一般都是由伺服控制單元、伺服電機、測速電機、編碼器等出現問題引起的。下面介紹幾例:
例一、伺服電機損壞
一台採用SINUMERIK 810/T的數控車床,一次刀塔出現故障,轉動不到位,刀塔轉動時,出現6016號報警「SLIDE POWER PACK NO OPERATION」,根據工作原理和故障現象進行分析,刀塔轉動是由伺服電機驅動的,電機一啟動,伺服單元就產生過載報警,切斷伺服電源,並反饋給NC 系統,顯示6016報警。檢查機械部分,更換伺服單元都沒有解決問題。更換伺服電機後,故障被排除。
例二、一台採用直流伺服系統的美國數控磨床,E軸運動時產生「E AXIS EXECESSFOLLOWING ERROR」報警,觀察故障發生過程,在啟動E軸時,E軸開始運動,CRT上顯示的E軸數值變化,當數值變到14時,突然跳變到471,為此我們認為反饋部分存在問題,更換位置反饋板,故障消除。
例三、另一台數控磨床,E軸修整器失控,E軸能回參考點,但自動修整或半自動時,運動速度極快,直到撞到極限開關。觀察發生故障的過程,發現撞極限開關時,其顯示的坐標值遠小於實際值,肯定是位置反饋的問題。但更換反饋板和編碼器都未能解決問題。後仔細研究發現,E軸修整器是由Z軸帶動運動的,一般回參考點時,E軸都在Z軸的一側,而修整時,E軸修整器被Z軸帶到中間。為此我們做了這樣的試驗,將E軸修整器移到Z軸中間,然後回參考點,這時回參點也出現失控現象;為此我們斷定可能由於E軸修整器經常往復運動,導致E軸反饋電纜折斷,而接觸不良。校線證實了我們的判斷,找到斷點,焊接並採取防折措施,使機床恢復工作。
三、外部故障
由於現代的數控系統可變性越來越高,故障率越來越低,很少發生故障。大部分故障都是非系統故障,是由外部原因引起的。
1.現代的數控設備都是機電一體化的產品,結構比較復雜,保護措施完善,自動化程度非常高。有些故障並不是硬體損壞引起的,而是由於操作、調整、處理不當引起的。這類故障在設備使用初期發生的頻率較高,這時操作人員和維護人員對設備都不特別熟悉。
例一、一台數控銑床,在剛投入使用的時候,旋轉工作台經常出現不旋轉的問題,經過對機床工作原理和加工過程進行分析,發現這個問題與分度裝置有關,只有分度裝置在起始位置時,工作台才能旋轉。
例二、另一台數控銑床發生打刀事故,按急停按鈕後,換上新刀,但工作台不旋轉,通過PLC梯圖分析,發現其換刀過程不正確,計算機認為換刀過程沒有結束,不能進行其它操作,按正確程序重新換刀後,機床恢復正常。
例三、有幾台數控機床,在剛投入使用的時候,有時出現意外情況,操作人員按急停按鈕後,將系統斷電重新啟動,這時機床不回參考點,必須經過一番調整,有時得手工將軸盤到非干涉區。後來吸取教訓,按急停按鈕後,將操作方式變為手動,松開急停按鈕,把機床恢復到正常位置,這時再操作或斷電,就不會出現問題。
2.由外部硬體損壞引起的故障
這類故障是數控機床常見故障,一般都是由於檢測開關、液壓系統、氣動系統、電氣執行元件、機械裝置等出現問題引起的。有些故障可產生報警,通過報答信息,可查找故障原因。
例一、一台數控磨床,數控系統採用西門子SINUMERIK SYSTEM 3,出現故障報警F31「SPINDLE COOLANT CIRCUIT」,指示主軸冷卻系統有問題,而檢查冷卻系統並無問題,查閱PLC梯圖,這個故障是由流量檢測開關B9.6檢測出來的,檢查這個開關,發現開關已損壞,更換新的開關,故障消失。
例二、一台採用西門子SINUMERIK 810的數控淬火機床,一次出現6014「FAULT LEVEL HARDENING LIQUID」機床不能工作。報警信息指示,淬火液面不夠,檢查液面已遠遠超出最低水平,檢測液位開關,發現是液位開關出現問題,更換新的開關,故障消除。
有些故障雖有報警信息,但並不能反映故障的根本原因。這時要根據報警信息、故障現象來分析。
例三、一台數控磨床,E軸在回參考點時,E軸旋轉但沒有找到參考點,而一直運動,直到壓到極限開關,NC系統顯示報警「EAXIS AT MAX.TRAVEL」。根據故障現象分析,可能是零點開關有問題,經確認為無觸點零點開關損壞,更換新的開關,故障消除。
例四、一台專用的數控銑床,在零件批量加工過程中發生故障,每次都發生在零件已加工完畢,Z軸後移還沒到位,這時出現故障,加工程序中斷,主軸停轉,並顯示F97號報警「SPINDLESPEED NOT OK STATION 2」,指示主軸有問題,檢查主軸系統並無問題,其它問題也可導致主軸停轉,於是我們用機外編程器監視PLC梯圖的運行狀態,發現刀具液壓卡緊壓力檢測開關 F21.1,在出現故障時,瞬間斷開,它的斷開表示銑刀卡緊力不夠,為安全起見,PLC使主軸停轉。經檢查發現液壓壓力不穩,調整液壓系統,使之穩定,故障被排除。
還有些故障不產生故障報警,只是動作不能完成,這時就要根據維修經驗,機床的工作原理,PLC的運行狀態來判斷故障。
例五、一台數控機床一次出現故障,負載門關不上,自動加工不能進行,而且無故障顯示。這個負載門是由氣缸來完成開關的,關閉負載門是PLC輸出Q2.0控制電磁閥Y2.0來實現的。用NC系統的PC功能檢查PLC
Q2.0的狀態,其狀態為1,但電磁閥卻沒有得電。原來PLC輸出Q2.0通過中間繼電器控制電磁閥Y2.0,中間繼電器損壞引起這個故障,更換新的`繼電器,故障被排除。
例六、一台數控機床,工作台不旋轉,NC系統沒有顯示故障報警。根據工作台的動作原理,工作台旋轉第一步應將工作台氣動浮起,利用機外編程器,跟蹤 PLC梯圖的動態變化,發現PLC這個信號並未發出,根據這個線索繼續查看,最後發現反映二、三工位分度頭起始位置檢測開關I9.7、I10.6動作不同步,導致了工作台不旋轉。進一步確認為三工位分度頭產生機械錯位,調整機械裝置,使其與二工位同步,這樣使故障消除。
發現問題是解決問題的第一步,而且是最重要的一步。特別是對數控機床的外部故障,有時診斷過程比較復雜,一旦發現問題所在,解決起來比較輕松。對外部故障的診斷,我們總結出兩點經驗,首先應熟練掌握機床的工作原理和動作順序。其次要熟練運用廠方提供的PLC梯圖,利用NC系統的狀態顯示功能或用機外編程器監測PLC的運行狀態,根據梯圖的鏈鎖關系,確定故障點,只要做到以上兩點,一般數控機床的外部故障,都會被及時排除。
拓展
數控機床專業就業方向
我國製造企業已普遍運用先進的數控技術,隨之而來的是對數控人才的大量需求。 數控就業前景美妙在興旺國度中,數控機床曾經大量普遍運用。我國製造業與國際先進工業國度相比存在著很大的差距,機床數控化率還不到2%關於目前我國現有的有限數量的數控機床(大局部為進口產品)也未能充沛應用。原因是多方面的,數控就業人才的匾乏無疑是主要緣由之一、由於數控技術是最典型的、應用最普遍的機電光一體化綜合技術,我國迫切需求大量的從研討開發到運用維修的各個層次的數控技術人才。
一、數控就業的人才需求主要集中在以下的企業和地域:
1、國有大中型企業,特別是目前經濟效益較好的軍工企業和國度嚴重配備製造企業。軍工製造業是我國數控技術的主要應用對象. 有很大的數控就業空間。杭州發電設備廠用6000元月薪招不到數控技術工。
2、隨著民營經濟的飛速開展,我國沿海經濟興旺地域(如廣東,浙江、江蘇、山東),數控就業人才更是供不應求,主要集中在模具製造企業和汽車零部件製造企業。具有數控學問的模具技工的年薪已開到了30萬元,超越了「博士」。
二、數控人才的學問構造—數控就業技藝需求:
另一個來源就是從企業現有員工中選擇人員參與不同層次的數控技術中、短期培訓,以順應企業對數控人才的急需。這些人員普通具有企業所需的工藝背景、比擬豐厚的理論經歷,但是他們大局部是傳統的機類或電類專業的各級畢業生,學問面較窄,特別是對計算機應用技術和計算機數控系統不太理解。
就業方向
在工業企業,從事數控程序編制、數控設備的使用、維護與技術管理,數控設備銷售與售後服務等工作。數控技術專業在主要面向機械、模具、電子、電氣、輕工等行業,可從事產品設計與加工、數控編程、數控機床操作、數控常用CAM軟體多軸加工、數控設備調試與維修等相關工作。數控技術應用專業的畢業生分配單位的性質分布如下:三資企業佔58%,國有企業佔26%,民營企業佔9%,其他佔5%。數控技術應用專業的畢業生所從事的工作性質分布如下:操作佔55.7%,編程佔13.4%,維修佔9.4%,工藝佔8.0%,生產管理佔7.1%,質量檢測佔4.5%,綜合佔1.2%,營銷佔1.7%,行政管理佔1.4%,其他佔5.5%。
就業前景
數控技術專業是一種集機、電、液、光、計算機、自動控制技術為一體的知識密集型技術,它是製造業實現現代化、柔性化、集成化生產的基礎,同時也是提高產品質量,提高生產率必不可少的物質手段。日本、美國、德國等工業發達國家採用數控技術所獲取經濟效益大致為:操作人員減少50%,成本降低60%,機床利用率達60%--80%,機床台數減少50%,生產面積減少40%。世界製造業由於數控技術的廣泛應用,普通機械逐漸被高效率、高精度的數控設備所替代。數控技術在機械製造業的廣泛應用,已成為國民經濟發展的強大動力。加入世貿組織後,隨著經濟的快速發展,中國正逐步成為「世界製造中心」,數控化率已成為衡量一個國家或企業製造技術水平和經濟實力的重要指標之一(數控化率:設備擁有量中數控設備所佔的比例)。目前我國機床的數控化率僅為1.9%,而日本高達30%,美國超過了40%。在發達國家數控機床已經普遍大量使用,而我國數控技術應用推廣同發達國家相比差距很大。我國數年內將增加40-50萬台數控機床,相應需要60-80萬數控專業技術人才。
;⑸ 數控車床常見故障
常見的數控機床的排除故障的經驗總結如下,以供讀者參考。
一、 操作數控機床的直線軸的正負方向時,直線軸都向一個方向移動
在數控機床的維修中,無論數控機床採用什麼品牌的數控系統,很多維修人員都遇到過如下一種故障,即數控機床的直線軸,無論開正、負方向,直線軸都向沿著撞壞機械的方向運動。以數控車床的X軸為例,具體說明一下。數控車床的X軸運動至+X方向的限位附近時,無論你按+X還是-X方向,X軸都向著+X方向運動。
出現這種故障時,一般顯示單元沒有報警,原因是由於機床X軸慣性等原因,X軸的位置處於+X軸的軟限位與硬限位之間。
解決此類故障的方法是:將X軸的正、副軟限位修改為大於硬限位的數值(如X軸的正負硬限位坐標為100,-800,可將軟限位暫時設定為1000,-1000),用手動將X軸開向偏離X軸故障方向的方向(如上述舉例所示的-X方向),感覺X軸的坐標處於+X和-X之間時,重新設置X軸的軟限位,並回參考點後,故障即消除。
二、光柵尺作為數控機床的直線軸的位置檢測元件時常見的幾種故障
1、直線軸在回參考點中,找不到零脈沖。在表現形式上就是該軸在回參考點時一直運行直到撞到該軸的限位。
這種故障發生的原因一般是讀數頭或光柵尺骯了。
解決此類故障的方法是:把讀數頭卸下來用無水乙醇沖洗干凈,用絲綢布沾上無水乙醇把帶有刻度部分清潔干凈即可。
2、數控機床的直線軸在運行中出現報警。
數控機床在運行中,如果採用西門子840D或德國力士樂數控系統的某個直線軸,出現報警「硬體編碼器錯誤」;如果採用西班牙FAGOR數控系統的某個直線軸,出現報警「跟隨誤差超界」。這時候一般是作為機床直線軸的位置檢測元件的光柵尺出故障了。
這種情況下,由於震動或其它原因,一般是機床在使用中使讀數頭與光柵刻度尺的距離遠了,數控系統誤認為光柵尺壞了。處理該故障的方法是按光柵尺說明書的要求調整讀數頭與光柵尺的距離。讀數頭與光柵尺尺身之間的間距為1~1.5mm左右,最好別超過2mm.。
出現上述故障的另外一種原因是光柵尺的安裝位置不合適,如安裝在油池附近,油氣等將光柵尺污染,這時候就要把光柵尺的「定尺」和「動尺」分別進行清潔,然後再安裝之後進行光柵尺的調試才可使用。
還有一種故障情況也會出現上述報警,那就是由於讀數頭的位置安裝不合適,造成讀數頭損壞,更有甚者,光柵尺定尺內出現鋁合金碎屑,光柵刻線出現損壞,造成光柵尺定尺的徹底報廢。
3、數控機床的直線軸出現暴走
當數控機床的直線軸安裝有光柵尺時,如果該直線軸出現暴走,一般情況下是該直線軸的位置檢測元件————光柵尺被污染,需要對光柵尺的光柵或讀數頭進行保潔才可消除故障。
在多年的數控機床維修中,我們發現光柵尺作為數控系統的位置檢測元件,在機床的機械部分良好的情況下,可以提高機床直線軸的定位精度。除此之外,光柵尺還可以檢測機床機械部分存在的隱患或問題,下面就幾個維修案例進一步說明。
4、HG3018美國CAPCO磨床機床顫抖
從美國CAPCO公司進口的HG3018軋輥數控磨床,採用德國BOSCH CC220數控系統, X軸為全閉環控制方式,位移檢測元件採用德國海德漢玻璃光柵尺。當機床操作者無意中拿木條輕輕擊打機床砂輪架外殼體時,人站在工作台上,感覺機床產生劇烈的顫動。
從這個現象看,該故障的產生,肯定帶有機床本身的一些動作,絕對不是純粹的機床某個零部件鬆了,人拿木頭條輕輕「砸」機床外殼導致的結果。經查證,是X軸的滾珠絲杠背冒松造成的:當人拿木條輕輕砸機床砂輪架外殼時,因為X軸的驅動依靠滾珠絲杠來實現,很輕便,由於X軸滾珠絲杠背冒松動,故砂輪架會有一個微小的移動。這時候,數控系統檢測到在沒有發出X軸移動信號的情況下,X軸移動了,肯定是「非法的」,這時候數控系統會發出與砂輪架移動方向反向的「給定」信號,使砂輪架反向移動。由於滾珠絲杠背冒的松動,X軸反向移動時會走過頭,此時砂輪架在數控系統的指揮下,又向與之前移動方向反向移動。。。。。如此往復,造成砂輪架的震動。
在長期對數控機床的維修中,我們發現,光柵尺不僅僅作為位置環的檢測元件,還能成為機床直線軸的「監督」元件。當機械存在故障隱患時,如果該軸採用光柵尺控制,該故障隱患會通過光柵尺將隱患「放大」,以故障的形式表現出來。沒有採用光柵尺的機床,出現機械故障隱患時,往往不容易表現出來,直至故障隱患擴大化,變成硬性故障。
5、C61200數控車床加工軋輥輥身時出現X軸前後竄動
我公司從武重購買的C61200車床經過數控化改造後,採用西班牙FAGOR 8055TC數控系統。該機床有一天在加工軋輥時,由於軋輥的輥身比較偏,正常情況下,軋輥輥身應該是圓柱形,但由於澆注原因,該軋輥輥身各部直徑尺寸不一,呈現橢圓形。致使當機床的刀具吃上輥身尺寸較大的地方時,在無X軸移動指令的情況下,X軸自行往遠離軋輥的方向移動。當刀具接觸上軋輥輥身尺寸比較「瘦」的地方時,X軸自行向靠近軋輥的方向移動,造成X軸的前後竄動.
其原因如下:我們首先對該機床的數控系統進行檢查,發現X軸在加上「使能」信號的情況下,其交流伺服電機加上了自鎖力。當把X軸的位置檢測元件屏蔽掉後,改成半閉環,再進行吃刀加工,發現之前的X軸前後竄動的現象消失了。 看到這種現象後,有人判斷認為是光柵尺出了問題,而我認為恰恰是X軸光柵尺完好無損,才可以發現機械存在的隱患。通過檢查X軸滾珠絲杠,發現是滾珠絲杠的背帽鬆了。正因為X軸滾珠絲杠的背帽鬆了,在軋輥旋轉中,由於輥身是橢圓形,在刀具接觸上軋輥輥身尺寸比較大的地方時,由於軋輥輥身對X軸有一個「向遠離軋輥直徑方向的頂力」,X軸被「頂」向遠離軋輥直徑的方向,此時X軸的移動不是機床數控指令所致。但用於檢測X軸的位置的光柵尺發現在沒有數控系統發出指令的情況下,X軸向「+X」方向(遠離軋輥輥身直徑的方向)移動,光柵尺的作用是,通過檢測直線軸在數控指令的作用下,該直線軸移動是否准確,如果該直線軸移動不準確,通過數控系統的干預,使該直線軸定位至准確位置。因此當刀具接觸上軋輥輥身尺寸比較「瘦」的地方時,刀具與軋輥輥身有了一定間隙,通過光柵尺的作用,使X軸向靠近軋輥直徑的方向移動,定位至由數控系統發出的X軸坐標位置。這樣軋輥每轉一周,在X軸沒有數控指令移動的情況下,X軸就出現「遠離軋輥直徑方向」和「靠近軋輥直徑方向」的交替移動。故加工偏輥時,X軸由於滾珠絲杠背帽的松動使其產生來回竄動。
6、 齊重RT125數控車床移動Z軸時出現震動
我們從齊重購買的RT125數控車床,有一天在移動Z軸時出現震動,我們原認為是光柵尺出了問題,後來經檢查發現該車床的導軌上表面被鐵屑劃出痕跡所致。
驗證自己判斷故障產生的原因是否正確的方法是,將該軸的控制方式改為半閉環即將光柵尺屏蔽掉,這種震動即可消失或減輕了很多。此時有人會說那就乾脆屏蔽掉光柵尺後使機床工作吧。這只是臨時措施,該軸屏蔽掉光柵尺後的加工精度肯定比以前要降低很多。
在十幾年的數控機床維修中,我們遇到了無數的和光柵尺有關聯的故障,基本上都是機械本身出現了問題。這說明光柵尺還可以把數控機床潛在的機械存在的問題檢測出來,並以故障的形式表現出來。
7、 數控機床直線軸採用全閉環時出現故障而採用半閉環時「貌似」故障消除的現象
數控機床的某個直線軸採用全閉環時出現電機抖動、軸震盪等現象,而將位置檢測元件屏蔽掉,這種不正常的現象消失,一般情況下,處理該類故障的方法如下:
首先檢查位置檢測元件,如光柵尺及讀數頭是否清潔,讀數頭的安裝位置是否合理,排除掉位置檢測元件不正常的因素。
如果能保證位置檢測元件良好的情況下,一般情況下就是該直線軸的機械傳動鏈出現了問題,此時應檢查直線軸的機械傳動鏈是否有部件松動現象、機械部件是否有磨損、機械傳動鏈的相關潤滑是否良好。
三、 與伺服電機編碼器相關的故障
編碼器作為伺服電機的速度反饋元件,無論該直線軸是否有位置檢測元件,只要伺服電機的編碼器或其線路有虛接的地方,都會使該直線軸暴走。有時候檢查編碼器線虛接也不是很容易的事:插頭的針是否有短的,插頭各針腳是否有歪斜的,插頭焊接的信號線及電源線是否有接觸不良的,在校線中一定要用數字萬用表。下面以一個具體例子說明一下校線的不易及注意事項。
TS6916落地式雙面鏜銑床是齊二機床廠產品。2004年10月之前為帶FAGOR數顯裝置的機床,但各個直線軸的機械按數控機床所需配置,各個直線軸的電機採用西班牙FAGOR公司FXM系列交流伺服電機,直線軸的控制裝置採用FAGOR公司AXD系列驅動裝置。主軸電機採用南洋交流變頻電機,主軸控制系統採用西門子6SE70變頻器。2004年10月改造為數控機床,增加西班牙FAGOR 8055M數控系統;直線軸和主軸仍採用之前的產品。
2004年5月至2004年10月 這段時間出現過大約十幾次同樣的滑枕相向暴走故障。當時對FAGOR數控系統不是十分熟悉,都認為是因為電磁干擾引起的故障。當時的說法是,主軸電機的電源線採用普通電纜,沒有採用屏蔽線,影響了Z軸的運行,偶爾干擾,產生Z軸暴走。這只是猜想,所以當時為了屏蔽干擾信號,在電櫃的四周拉上銅線網。這樣處理之後,果真故障次數少了(後來證實這是巧合),但仍不時間隔一個月出現一次同樣現象的故障。
當時大家都認為主軸電機的電源線採用屏蔽電纜就可以消除該故障。2004年10月進行數控化改造時將主軸電機電源線換成了屏蔽電纜線。各個伺服軸的電源線和編碼器電纜採用國外原裝、高柔電纜。改造完成半年後,沒有出現過一次故障。所以大家更加相信,數控改造之前出現滑枕暴走現象是因為主軸電機沒有採用屏蔽線造成信號干擾所致。2005年5月連續5次出現以前同樣的故障現象,打破了人們以前對造成該故障原因的認識。人們對以前形成的觀念開始發生動搖。
當時把發生暴走的滑枕電機的控制裝置送到我們的電氣實驗室進行試驗,發現經常性的出現暴走,通過對線路的查找,在沒有發現線路有問題的前提下,我們將驅動裝置送到北京FAGOR公司修理。經過檢查和測試,沒有發現驅動裝置有問題。
將該驅動器拿回我們的電氣實驗室進行試驗仍然不時出現暴走現象。重新對線路檢查,仍然沒有發現線路有問題。注意:後來證實,編碼器電纜的第12角虛接。我們在檢查線路時比較容易犯錯誤的地方在線路的兩頭,這次我發現通向驅動器側的接線插頭內的線松動了。當時校線時手拿著插頭,忽視了插頭本身出現了焊點開了,但有其它線在插頭內掖著,第12角線不至於徹底離開12角。
將原驅動器重新裝到機床上,對該編碼器的電纜進行檢查和測試,沒有發現線路有問題。機床送電後開始正常工作。當天晚上後夜出現了滑枕暴走的故障。由於對夜班維修人員有交代,所以趕緊對Z軸編碼器線用萬用表進行測量,當時用的指針表,測量編碼器的各個角的線路都通。早晨上班後,看了看測量後送電試機床,發現仍然暴走。趕緊用數字萬用表對Z軸編碼器的各個角的線路的阻值進行測量,發現除了12角為0.6歐姆外,其它角為0.3歐姆,看來問題就出現在0.6歐姆上。對傳統意義的電氣系統測量,一般用指針表測通斷,對數控系統內的測量要用數字表,0.6歐姆的意思是:數控系統認為該角斷路。至此造成該故障的原因基本明了。
那為什麼以前偶爾出現故障,出現故障後再重新送電機床又恢復正常了呢?
我們知道一段導線的阻值計算公式為R=ρ*L / S
公式中 R為一段導線的阻值
ρ為電阻率,其數值與導線的材料有關,材料不變,ρ值不變。.
L 為導線的長度
S為導線的截面積
我分析在機床運轉中, Z軸編碼器的電纜線敷設在兩段坦克鏈內,經過的線路比較長,當某時間,偶爾出現坦克鏈對電纜線拉伸時,該電纜線在長度上沒多大變化,在直徑上變細,其電阻值就變大,從而出現滑枕暴走現象。在滑枕暴走的時候,機床發生劇烈顫抖,又使電纜線復原,從而在重新送電後機床又恢復正常。
更換Z軸編碼器電纜線,排除故障。
四、 數控車床床頭箱異響
新購青海重型機床廠的CK84140軋輥車床,主軸箱有兩個檔位,機床操作人員反應,在使用高速檔時,主軸箱內有齒輪擊打的聲音。當時機械修理技師要拆主軸箱大蓋,我讓他暫停。我認為,如果真像機床操作人員說的那樣,只有在主軸一個檔位時,旋轉主軸,主軸箱內發出擊打齒輪的異響,那肯定是機械的原因造成的。我需要核對機床操作人員反饋來的信息是否正確。結果發現,在主軸兩個檔位的低速段,旋轉主軸,主軸箱內都發出齒輪擊打的聲音。操作者沒有正確反應信息,原因是主軸處於慢檔的低速段時,轉速范圍很短,一不留神,用電位器調速就調過去了。
既然主軸在兩個檔位的低速段,旋轉主軸,主軸箱內出現異響,首先要核對主軸電機在這個速度段,旋轉是否平穩。該主軸控制系統採用西門子6SE70變頻器,在變頻器的顯示器上,用只讀參數r19診斷主軸電機的轉速發現,主軸轉速在這個速度段運行不平穩。經過對主軸調速系統的調試和帶載優化,主軸速度平穩了,就不會出現由於主軸電機運行不平穩從而出現齒輪在轉動中,嚙合齒輪之間不能勻速轉動,出現的齒輪擊打聲。
五、 數控磨床磨削錐面產品異常
數控磨床在磨削錐面產品或修正錐面砂輪時,需要X、Z軸聯動時,有時會出現:Z軸一個方向運動時,吃刀大;Z軸往另一個方向運動時,吃刀很小或吃刀斷斷續續。這種現象在磨削錐面產品時,Z軸在往復運動中,吃刀大的一個方向,磨削的火花大,吃刀小的一個方向,磨削的火花很小。若在修復錐面砂輪時,出現上述現象,可從金剛石筆與砂輪接觸的「沙沙」聲的大小判斷。
遇到這種情況,說明數控磨床的磨削程序雖然按照砂輪或產品的指定的錐面編制,但X、Z軸的聯動速度沒有在同一時間內達到十分「合拍」。為什麼按照指定的磨削路徑編制數控加工程序,而未能達到理想境界呢?這種沒有機床報警的故障很難處理,處理方法如下:
1、 檢查數控磨床的尾座上砂輪修整用的金剛石筆座在尾座上把合的是否牢靠及金剛石筆是否松動。
2、 無論數控磨床採用的數控系統是西門子系列還是發格、博世力士樂及發那科系列等,一般情況下,調整X、Z軸的軸參數中的「比例系數」參數至同一數值。此時上述磨削中,Z軸在往復磨削中,由於X、Z軸的響應特性一樣,兩軸聯動效果會很好。
六、 數控磨床磨削產品出現振紋及螺旋紋等的原因
數控磨床在磨削產品時,若磨削的產品表面出現振紋或螺旋紋,其原因是可能是多種多樣的,可依據如下情況查找:
1、 金剛石筆是否松動
如果修正砂輪的金剛石筆出現松動,修整的砂輪表面自然會凹凸不平,磨削的產品出現表面質量是在所難免的。
2、 砂輪主軸和工件主軸轉速是否平穩
檢查砂輪主軸和工件主軸的轉速是否平穩:在診斷主軸轉速的時候,,讓所查看的主軸給定至一個速度,可以從主軸控制器的診斷參數中查看其是否在變化,變化的多少是多少。也可以用轉速儀測速。如果主軸轉速不穩,磨削的工件表面就會出現楞狀。
3、 砂輪主軸及工件主軸電機的散熱風機是否有震動
主電機的散熱風機有震動直接影響磨削產品的表面質量。
4、 磨頭的檢查
測磨頭的徑跳和軸向竄動,若超標,就要採取技術措施。若磨頭的徑跳超出標准值,在無法更換磨頭的情況下,可以將磨頭主軸油的粘度提高,來緩解磨頭的劣勢對磨削產品的影響。
5、 床頭箱撥爪及自位板
在磨削的工件旋轉中,如果床頭箱的撥爪與磨削的工件有相對位移;如果床頭箱的自位板在工件旋轉中間歇地滑動,磨削的工件的表面質量會受到很大的影響。
七、 數控機床手脈常見故障
手持單元是數控機床必不可少的手動操作部件,其可以很方便機床操作人員對刀。在多年的數控機床維修中,經常遇到的手持單元故障及方便操作人員使用機床時需要注意的事項如下:
1、 數控機床直線軸的自行移動
如果採用西門子數控系統的數控機床在手動界面下,在機床操作人員不施加指令的情況下,出現直線軸的緩慢移動;如果採用FAGOR數控系統的數控機床在手動界面下,在機床操作人員不施加指令的情況下,出現直線軸的快速移動。此時手持單元處於X軸激活狀態,X軸就出現非法移動,如果手持單元的Z軸處於激活狀態,Z軸就出現非法的移動。此時故障的根源是手持單元的0伏線松動或虛接所致。
2、用手持單元操作時,出現軸的選擇軸混亂
如果用手持單元選擇手動操作機床時,如果選擇X軸,在X軸運行中偶爾出現X軸不運行而其它軸(比如Z軸)運行,一般情況下,手持單元及手持單元至操作站的手脈插頭間的導線不會出現問題,真正的故障源在操作站與電櫃之間的手持單元的相關線路出現了導線外皮裸露。
3、避免產品事故或設備事故的幾個改進
在日常的工作中,偶爾遇到數控機床操作人員在對刀或用手持單元移動中,發生刀具扎刀或刀具碰產品的質量事故,究其原因,一般是採用的速度太快或誤操作所致,為此針對這些情況,可以採取如下的防錯糾錯措施。
快速移動時,採用數控面板上的操作。對刀時或近距離的移動時可以採用手持單元,此時可以將手持單元上的「X100」倍率封鎖住,方法是:將手持單元上的「X100」線拆掉或者修改PLC程序,使「X100」倍率不起作用。
八、 數控機床不能正常上電開機
無論採用何種數控系統,數控機床在重新開機時,出現顯示單元不能運行到正常的操作界面即出現報警提示,這種情況下,一般是操作系統出現文件缺失或損壞,要想恢復機床的正常運行,就只有重新安裝數控的操作系統了。針對這種情況,作為機床維護人員,要在機床處於良好狀態時就做硬碟備份,若數控系統為經濟型或無硬碟時,前提聯系廠家,掌握故障一旦出現時的處理方法。
九、 數控機床直線軸電機或驅動型號改變時的調整方法
對於數控機床的直線軸的伺服電機或其控制裝置出現故障,需要更換電機或控制裝置時,若無現成的同型號的備件,一般要採取如下的步驟才能使機床恢復正常。
1、 在更換損壞的電機或驅動裝置之前,在原機床的顯示單元上抄錄該機床的傳動比及螺距參數。
2、 運用相應的驅動軟體重新按照現有的條件進行參數配置,並按照傳動比及螺距參數進行設置。
3、 由於電機及驅動裝置的導線不變,在參數化配置好之後,按照原有的電機及驅動裝置的導線的線徑,在軟體中進行電流限制,以防止新更換的電機或驅動裝置啟動或運行電流大導致導線燒毀。
十、 數控機床的直線軸的定位精度不準
一些機床在運行一段時間後,可能出現直線軸的定位精度和重復定位精度準的情況,這種情況,一般是機床使用幾年後,機械磨損所致。遇到這種情況,可以按照如下步驟進行調節機床。
1、 以前直線軸上的傳動比是剛出廠時的數值,使用幾年後,由於機械等部件出現磨損,要根據實際情況修改傳動比以矯正該直線軸的定位精度。可以使用一些測量直線軸定位精度的標准桿等測量工具,通過比對數控系統的指令值和實際所移動的長度數值,可以在以前的數控參數中微調傳動比參數,尤其是在經常使用段附近進行校核,以便直線軸的實際移動數值徹底接近指令數值。
2、 在矯正定位精度准確的基礎上,若直線軸的重復定位精度仍比較差,可以在直線軸的常用段測試反向間隙,通過數控系統的軸參數將反向間隙通過相應的參數補償進去,使得常用段的重復定位精度滿足機床使用要求。
十一、 數控系統等一些散熱方面的故障
數控機床的使用現場如果粉塵大,維修人員點巡檢差或其他原因,經常出現如下一些涉及散熱方面的故障。
1、若數控系統報類似數控系統或驅動單元過熱,一般故障原因是報警所指的數控系統的NC 、驅動裝置的散熱風扇不轉造成系統內部散熱不良所致,此時修理或更換風扇使得數控系統的散熱良好,即解除機床報警。
2、若數控系統報警某系統接地,通過拆檢並觀察,若外觀良好,此時應重點檢查該系統的內部元件有無松動、螺絲或墊片散落在系統中,一般情況下,通過仔細檢查一般能修理好。
3、若顯示部分報警過熱等,一般情況下,是顯示單元封閉太嚴所致。
4、數控機床的主軸電機出現過熱現象,一般由如下情況造成:
直流電機的磁場繞組送電,而電機不旋轉,使得磁場繞組的能量無法轉化成機械能,只能轉化成熱能散發到電機中。
數控機床的主軸電機雖然沒有旋轉,但機床操作人員沒有按「主軸停止「按鈕,而是將主軸倍率開關旋至0,此時主軸電機的電流比正常旋轉時還大,接近額定電流。由於主軸電機不旋轉,主電機的電磁能無法轉化為機械能,只能轉化成熱能,散在電機中,使得電機的溫升急劇提高,時間長點,可能會造成電機損壞。
十二、驅動單元或變頻器優化不良及數控保護參數設置不當引起的故障
在數控機床的維修中經常遇到變頻器、直流調速系統、驅動單元優化不良或根本無優化造成的「貌似」機械故障實質是電氣故障的現象。在優化時要遵循其調試手冊的要求和步驟,必要時要帶載優化。如控制數控機床的主軸旋轉的變頻器沒有經過優化、啟動及制動時間設置時間過短,都有可能造成主軸旋轉不平穩。驅動單元的「比例增益系數」設置過大,「積分時間」設置過小,「加速度」參數設置過大都有可能造成直線軸運行中啟動、停止時的震動。
數控機床的直線軸有時出現機械部件的損壞,排除完機床操作者誤操作及碰撞之外,要檢查直線軸的數控保護參數是否設置合理。以FAGOR 8055數控系統為例進行說明。用驅動調試軟體進行配置後,要檢查驅動參數CP20(電流的極限值)的設置數值,該數值一般不大於驅動單元所控制的伺服電機的額定電流值。另外再設置一個保護參數,即「軸參數」的P21(動態運動時的跟隨誤差)。該參數的設定值一般略大於通過正常運行該直線軸時,觀察到的跟隨誤差的數值。對於其它類型的數控系統,可參照執行。
上述參數設置不合理,有時在加工工件時,尤其是兩軸聯動時,會出現加工的產品出現問題或報廢,究其原因是在機床加工中,機械傳動鏈出現了松動,而數控保護參數設置不合理,機床不出現報警所致。
十三、輪廓監控或跟隨誤差超界故障
數控機床在運行中,如果西門子系列數控系統或歐洲生產的一些數控系統出現「輪廓監控」報警,西班牙發格數控系統出現「跟隨誤差超界「報警。一般情況下不要將相應的輪廓監視參數的數值隨意設置過大,如此的話會掩蓋機床機械存在的隱患或故障,容易使萌芽中的故障擴大化,而應檢查該直線軸的機械傳動鏈是否有松動、裝配不合理、潤滑不良等問題,只有把這些問題處理好後,再運行該直線軸時,一般情況下就不會出現報警。
還有一種情況也會出現這種報警,即機床的參數設置合理,機械傳動鏈良好,在加工工件時,吃刀量超過了工藝要求的數值、工藝路線不合理、工藝制定有問題或機床的剛性差不足以維持目前的軸的運行速度下的吃刀量。解決的辦法是,降低軸的運行速度,減少吃刀量。
十四、數控機床貌似設備故障的一些案例
在數控機床的使用中,經常遇到如下一些機床報警或機床操作者的報修,遇到如下情況,要考慮周全,
1、 若出現「XXX字元」不可能的報警字樣,說明加工程序的一些字元不符合規范,屬於「非法「指令,修改成合乎該數控系統的合法指令即消除機床報警。
2、 在數控機床的長期維護中,若出現產品受損或報廢等,此時判定機床是否存在故障,之前的故障、操作信息一定要准確。此時可能會出現某些人為了自身利益,發生不講實話的現象。若出現1毫米以下的尺寸誤差可能是機床精度所致,若出現幾毫米以上的誤差一般是誤操作所致。
3、 數控磨床磨削的產品的圓度差,要檢查頭、尾架主軸的頂尖,檢查頂尖的後錐及端面、主軸內錐孔是否清潔。若更換頂尖時,不對頂尖的後錐及端面、主軸內錐孔用干凈的布進行擦拭,往往會造成磨削的產品的圓度超差。
4、 鏜銑床在更換刀盤時,同樣也要對主軸的內錐孔用干凈布進行擦拭。不擦拭可能造成刀具夾不緊,並且容易造成主軸內錐孔的研傷。
5、 有些數控系統,比如日本FANUC 0TD數控系統,當機床操作人員執行加工程序之前,少摁某個鍵時,加工程序的第二句會跳過不執行,造成產品質量事故。
⑹ 數控機床的常見故障及維護
2、按故障類型分類
按照機床故障的類型區分,故障可分為機械故障和電氣故障。
(1)機械故障
這類故障主要發生在機床主機部分,還可以分為機械部件故障、液壓系統故障、氣動系統故障和潤滑系統故障等。
例如一台採用SINUMERIK 810系統的數控淬火機床開機回參考點、走X軸時,出現報警1680「SERVOENABLETRAV.AXISX",手動走X軸也出現這個報警,檢查伺服裝置,發現有過載報警指示。根據西門子說明書產生這個故障的原因可能是機械負載過大、伺服控制電源出現問題、伺服電動機出現故障等。本著先機械後電氣的原則,首先檢測X軸滑台,手動盤動X軸滑台,發現非常沉,盤不動,說明機械部分出現了問題。將X軸滾珠絲杠拆下檢查,發現滾珠絲杠已銹蝕,原來是滑台密封不好,淬火液進人滾珠絲杠,造成滾珠絲杠的銹蝕,更換新的滾珠絲杠,故障消除。
(2)電氣故障
電氣故障是指電氣控制系統出現的故障,主要包括數控裝置、PLC控制器、伺服單元、CRT顯示器、電源模塊、機床控制元件以及檢測開關的故障等。這部分的故障是數控機床的常見故障,應該引起足夠的重視。
3、按數控機床發生的故障後有無報警顯示分類
按故障產生後有無報警顯示,可分為有報警顯示故障和無報警顯示故障兩類。
(1)有報警顯示故障
這類故障又可以分為硬體報警顯示和軟體報警顯示兩種。
1)硬體報警顯示的故障。硬體報警顯示通常是指各單元裝置上的指示燈的報警指示。在數控系統中有許多用以指示故障部位的指示燈,如控制系統操作面板、CPU主板、伺服控制單元等部位,一旦數控系統的這些指示燈指示故障狀態後,根據相應部位上的指示燈的報警含義,均可以大致判斷故障發生的部位和性質,這無疑會給故障分析與診斷帶來極大好處。因此維修人員在日常維護和故障維修時應注意檢查這些指示燈的狀態是否正常。
2)軟體報警顯示的故障。軟體報警顯示通常是指數控系統顯示器上顯示出的報警號和報警信息。由於數控系統具有自診斷功能,一旦檢查出故障,即按故障的級別進行處理,同時在顯示器上顯示報警號和報警信息。
軟體報警又可分為NC報警和PLC報警,前者為數控部分的故障報警,可通過報警號,在《數控系統維修手冊》上找到這個報警的原因與怎樣處理方面的內容,從而確定可能產生故障的原因;後者的PLC報警的報警信息來自機床製造廠家編制的報警文本,大多屬於機床側的故障報警,遇到這類故障,可根據報警信息,或者PLC用戶程序確診故障。
(2)無報警顯示的故障
這類故障發生時沒有任何硬體及軟體報警顯示,因此分析診斷起來比較困難。對於沒有報警的故障,通常要具體問題具體分析。遇到這類問題,要根據故障現象、機床工作原理、數控系統工作原理、PLC梯形圖以及維修經驗來分析診斷故障。
例如一台數控淬火機床經常自動斷電關機,停一會再開還可以工作。分析機床的工作原理,產生這個故障的原因一般都是系統保護功能起作用,所以首先檢查系統的供電電壓為24V,沒有間題;在檢查系統的冷卻裝置時,發現冷卻風扇過濾網堵塞,出故障時恰好是夏季,系統因為溫度過高而自動停機,更換過濾網,機床恢復正常使用。
又如一台採用德國SINUMERIK 810系統的數控溝槽磨床,在自動磨削完工件、修整砂輪時,帶動砂輪的Z軸向上運動,停下後砂輪修整器並沒有修整砂輪,而是停止了自動循環,但屏幕上沒有報警指示。根據機床的工作原理,在修整砂輪時,應該噴射冷卻液,冷卻砂輪修整器,但多次觀察發生故障的過程,卻發現沒有切削液噴射。切削液電磁閥控制原理圖如圖所示,在出現故障時利用數控系統的PLC狀態顯示功能,觀察控制切削液噴射電磁閥的輸出Q4.5,其狀態為「1」,沒有問題,根據電氣原理圖它是通過直流繼電器K45來控制電磁閥的,檢查直流繼電器K45也沒有問題,接著檢查電磁閥,發現電磁閥的線圈上有電壓,說明問題是出在電磁閥上,更換電磁閥,機床故障消除。
⑺ 數控機床故障檢查方法有哪些
先簡單後復雜:當出現多種故障互相交織,一時無從下手時,應先解決容易的問題,後解決難度較大的問題。往往簡單問題解決後,難度大的問題也可能變得容易。
1、參數檢查法:數控參數能直接影響數控機床的功能。參數通常是存放在磁泡存儲器或存放在需由電池保持的RAM中,一旦電池不足或由於外界的某種干擾等因素,會使個別參數丟失或變化,發生混亂,使機床無法正常工作。此時,通過核對、修正參數,就能將故障排除。當機床長期閑置工作時無緣無故地出現不正常現象或有故障而無報警時,就應根據故障特徵,檢查和校對有關參數。另外,經過長期運行的數控機床,由於其機械傳動部件磨損,電氣無件性能變化等原因,也需對其有關參數進行調整。有些機床的故障往往就是由於未及時修改某些不適應的參數所致。當然這些故障都是屬於故障的范疇。
2、測量比較法:系統生產廠在設計印刷線路板時,為了調整、維修的便利,在印刷線路板上設計了多個檢測用端子。用戶也可利用這些端子比較測量正常的印刷線路板和有故障的印刷線路板之間的差異。可以檢測這些測量端子的電壓或波形,分析故障的起因及故障的所在位置。甚至,有時還可對正常的印刷線路人為地製造「故障」,如斷開連線或短路,撥去組件等,以判斷真實故障的起因。為此,維修人員應在平時積累印刷線路板上關鍵部位或易出故障部位在正常時的正確波形和電壓值。因為系統生產廠往往不提供有關這方面的資料。
3、敲擊法:當系統出現的故障表現為若有若無時,往往可用敲擊法檢查出故障的部位所在。這是由於cnc系統是由多塊印刷線路板組成,每塊板上又有許多焊點,板間或模塊間又通過插接件及電纜相連。因此,任何虛焊或接觸不良,都可能引起故障。當用絕緣物輕輕敲打有虛焊及接觸不良的疑點處,故障肯定會重復再現。