1. 孩子解數學題結果總是粗心大意算不對,該怎麼辦
父母應該自己或找個老師,給他分析一下,不能停留在表面,要去深究計算錯誤的真正原因。分析計算錯誤的原因,是題目數字看錯了,還是抄寫時抄錯了,還是計算中間錯了,是知識不牢固,還是書寫格式問題,是演算步驟書寫不規范,還是其他的?
其次,對症下葯,制定解決方案。是父母自己解決,還是尋求他人幫助解決?然後,去執行。去訓練。真正提高孩子的計算能力,養成好的做題習慣。其實如果真的要補習的話,假期找自己老師辦的那種最好,因為老師最熟悉學生的情況,也知道考試重點講課進程。
2. 數學計算題老是算錯怎麼辦
一、只要是做錯的題,就一定要寫錯題原因。
不能只是把錯誤答案塗掉,把正確答案寫在旁邊。一定要把這次做錯的原因總結出來,然後認真地總結在試卷旁邊,也可以整理成錯體本或便簽紙貼在錯題旁邊。讓他盡可能長時間的記住這個"傷疤".另外,把錯誤積累起來,等到考前復習的時候復習錯題也會很有幫助。
二、認真寫演算過程,即便是填空題或選擇題。
很多錯誤是由於孩子沒認真讀題,憑印象做題造成的。家長要給孩子准備好一點的草稿本,打好格子讓他做填空選擇提示的演算過程都認真地寫在草稿本上。
決不能隨便找張紙亂寫亂畫,雖然表面看上去會影響做題速度,其實能夠大大提高做題的准確度。避免因為抄錯數或口算失誤等造成的丟分。只要這個習慣養好了基本不會影響做題速度。
三、家長多給孩子出計算題進行練習。
我們家長如果想輔導孩子的話,要盡可能的鍛煉他的計算能力。由於計算錯誤造成的丟分的現象太普遍了。解題思路如果自己不是很專業就不要跟孩子思路起沖突,但是家長可以從響應年級的書上找計算題給孩子限時做。只要堅持,孩子的計算能力一定會穩步提升,而且會終身受益。
粗心的表現
1、上課不能專心聽講,易受環境干擾而分心。
2、做事有始無終,常半途而廢或虎頭蛇尾。
3、對家長的指令心不在焉,似聽非聽。
4、做作業拖拉,不斷地以喝水、吃東西、小便等理由中斷,做作業時間明顯延長。
3. 數學解決問題不會怎麼辦
數學解決問題不會的解決辦法:
1、面對一個疑難問題,一時間想不出方法時,可以將它劃分為幾個子問題,然後在解決會解決的部分,即能解決到什麼程度就解決到什麼程度,能演算幾步就寫幾步。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。而且可望在上述處理中,可能一時獲得靈感,因而獲得解題方法。
2、有些問題好幾問,每問都很難,比如前面的小問你解答不出,但後面的小問如果根基前面的結論你能夠解答出來,這時候不妨先解答後面的,此時可以引用前面的結論,這樣仍然可以得分。
3、學會抄答案。當你做題目的時候,你總會有一些思路,但是可能因為太過零碎,沒有湊成完整地答題思路。這時候你選擇去看答案,把答案抄下來。不要單純地只會看答案抄答案,抄也要學會技巧。
4、要回想自己卡在哪一個步驟。在看答案的時候要去回想,之前到底寫到了哪一個步驟寫不下去,又或者是哪一個知識點遺漏沒有想起來,用鉛筆輕輕地在題目裡面標記。
5、用答案推導題目。如果對於完全沒有頭緒的題目,看完答案之後,要回去對照題目。找出題目的哪一個條件可以引用到這個知識點。這是一種逆向思維,通過答案將題目給出的條件聯系起來並且進行推導。
4. 不會做的數學題如何解決
可能大家都遇到過拿到一個數學題不會做,無從下手的情況;也會遇到有些知識存在記不牢,記牢不會用的問題。下面我就跟大家談談我對於數理化生解題的理解和一些數學技巧。
1、代入法,這列方法往往是給定了一些條件,比如a大於等於0,小於等於1。b大於等於1,小於等於2.這些給定了一些特殊的條件,然後讓你求一個ab組合在一起的一些式子,可能會很復雜。但是如果是選擇題,你可以取a=0.5,b=1.5試一試。還有就是可以把選項里的答案帶到題目中的式子來計算。
2、區間法,這類方法也成為排除法,靠著大概計算出的數據或者猜一些數據。比如一個題目里給了幾個角度,30°,90°。很明顯,答案里就肯定是90±30度,120加減30度。或者一些與30,60,90度有關的答案
3、坐標法,如果做的一些圖形題完全找不到思路,第一可以用比例法,第二可以用坐標法,不用管什麼三角函數,直接找到兩點坐標,直接帶入高中函數求角度(cos公式)求垂直,求長度,相切相離公式。直接直搗黃龍,不用一點點找角度做什麼麻煩的事
4、比例法,這個方法很簡單也很無賴。如果遇到一個圖形題,首先把已知的標上去,未知的用量角器量也要量出來,之後就是見證奇跡的時刻!!!尺子量出兩條實線的比例關系,然後通過已知的一邊,通過比例大概估算求得那個邊長
5、函數法,這個就是要把一些計算轉化為函數,首先帶入答案,之後移項,把方程一邊變成零,然後就可以把函數的表達式大概畫出來,看與零點有沒有唯一焦點,這樣就可以大概判斷答案,或者找最接近零點的答案!
6、經驗法:在排序或者有規律的題目也使用。首先比如求三角形面積。你看答案里a:12,b,13,c:6,d:11.第一,12,13,11明顯是拼湊的錯誤答案。第二肯定有陷阱是三角形面積忘記除以2,所以c的答案正確率高。還有一些答案,前幾個是重復的,就像下面的圖一樣,不會就選重復答案多的那幾個!1,2重復答案為兩個,c,d最可能。
7、如果,實在找不到任何方法,那就看答案,有共同公約數的一般是有正確答案。一般那些和其他三項不會有任何相似的答案,一般就是錯的。可以直接排除,找答案其實就是找不同。看參透作者的想法,考慮題目想設置什麼陷阱,去排除一些無關的答案。
5. 做數學題時,尤其是考試的時候,遇到無從下手的題目該怎麼辦
先放一放,尋找試卷中,較為簡單的題目。完成多個題目的填寫後,再返回完成留下來的空白題目。
多位學生都曾遇到過數學難題,他們無法在第一時間找到解決數學題的方法,更無法獲得解決題目的步驟。長時間集中於同一個題目中,只會浪費大量的做題時間。與其糾結於一個題目,倒不如嘗試解開其他題目。
學生時代,老師都曾告訴學生最重要的解題方法。並非所有的題目的解題方法十分簡單,部分題目中出現太多的迷惑性數據或者問題。我們遇到解不出的問題時,首先應該做到的就是先放一放。不要讓自己長時間沉浸在做不出題的尷尬情緒中,當我們逐步解開其他難題後,信心大增,也許會尋找到題目中的迷惑型線索。
總的來說,數學的知識點融會貫通,方法多種多樣,並不意味著一道題目只適用於同一種解題方法。此外,不要出現緊張的情緒,提高心理承受能力,幫助學生更快的解決問題。遇到不會的題目,先放到一邊,或許你可以在某一個時間點出現做題的想法。
6. 數學無法掌握解題方法怎麼辦
1、對題目沒思路,知識點不理解
通常學生當天剛學的新知識,晚上回去做作業時,卻沒有任何思路,在看到答案之後,才意識到使用了某個知識點。通常這種情況說明你對知識點沒有得到很好的理解,基礎知識也不牢固,導致思路問題出現阻礙。例如,你可能知道所說的定理內容,但你不知道該怎麼使用,所以只能對著題目發呆,寫不出答案。
千萬不要一味的去抄答案,你一個勁的去抄沒有用的,在看答案的過程中你一定要多思考它的來源,究竟是怎麼解答出來的?不管在什麼時候,學習一定要多問幾個為什麼,把這些為什麼都弄明白了,對你學習就有很大幫助。
7. 高中數學題的解題方法和答題策略
方法一、調理大腦思緒,提前進入數學情境
考前要摒棄雜念,排除干擾思緒,使大腦處於“空白”狀態,創設數學情境,進而醞釀數學思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態准備應考。
方法二、“內緊外松”,集中注意,消除焦慮怯場
集中注意力是考試成功的保證,一定的神經亢奮和緊張,能加速神經聯系,有益於積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
方法三、沉著應戰,確保旗開得勝,以利振奮精神
良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題後,不要急於求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然後穩操一兩個易題熟題,讓自己產生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的“門坎效應”,之後做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。
方法四、“六先六後”,因人因卷制宜
在通覽全卷,將簡單題順手完成的情況下,情緒趨於穩定,情境趨於單一,大腦趨於亢奮,思維趨於積極,之後便是發揮臨場解題能力的黃金季節了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行“六先六後”的戰術原則。
1.先易後難。就是先做簡單題,再做綜合題,應根據自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
2.先熟後生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對後者,不要驚慌失措,應想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩定,對全卷整體把握之後,就可實施先熟後生的方法,即先做那些內容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。
3.先同後異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利於提高單位時間的效益。高考題一般要求較快地進行“興奮灶”的轉移,而“先同後異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力,4.先小後大。小題一般是信息量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間,創造一個寬松的心理基矗5.先點後面。近年的高考數學解答題多呈現為多問漸難式的“梯度題”,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為後面問題准備了思維基礎和解題條件,所以要步步為營,由點到面6.先高後低。即在考試的後半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施“分段得分”,以增加在時間不足前提下的得分。
方法五、一“慢”一“快”,相得益彰
有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的“基礎工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。
方法六、確保運算準確,立足一次成功
數學高考題的容量在120分鍾時間內完成大小26個題,時間很緊張,不允許做大量細致的解後檢驗,所以要盡量准確運算(關鍵步驟,力求准確,寧慢勿快),立足一次成功。解題速度是建立在解題准確度基礎上,更何況數學題的中間數據常常不但從“數量”上,而且從“性質”上影響著後繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步准確,不能為追求速度而丟掉准確度,甚至丟掉重要的得分步驟,假如速度與准確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。
方法五、一“慢”一“快”,相得益彰
有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的“基礎工程”,題目本身是 “怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。
方法六、確保運算準確,立足一次成功
數學高考題的容量在120分鍾時間內完成大小26個題,時間很緊張,不允許做大量細致的解後檢驗,所以要盡量准確運算(關鍵步驟,力求准確,寧慢勿快),立足一次成功。解題速度是建立在解題准確度基礎上,更何況數學題的中間數據常常不但從“數量”上,而且從“性質”上影響著後繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步准確,不能為追求速度而丟掉准確度,甚至丟掉重要的得分步驟,假如速度與准確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。
方法七、講求規范書寫,力爭既對又全
考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、“感情分” 也就相應低了,此所謂心理學上的“光環效應”。“書寫要工整,卷面能得分”講的也正是這個道理。
方法八、面對難題,講究方法,爭取得分
會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。
1.缺步解答。對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什麼程度就解決到什麼程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產生頓悟,形成思路,獲得解題成功。
2.跳步解答。解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出後繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許後來由於解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。
TOP
方法七、講求規范書寫,力爭既對又全
考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、“感情分”也就相應低了,此所謂心理學上的“光環效應”。“書寫要工整,卷面能得分”講的也正是這個道理。
方法八、面對難題,講究方法,爭取得分
會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。
1.缺步解答。對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什麼程度就解決到什麼程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產生頓悟,形成思路,獲得解題成功。
2.跳步解答。解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出後繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許後來由於解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。
TOP
方法九、以退求進,立足特殊,發散一般對於一個較一般的問題,若一時不能取得一般思路,可以採取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等。總之,退到一個你能夠解決的程度上,通過對“特殊”的思考與解決,啟發思維,達到對“一般”的解決。
方法十、執果索因,逆向思考,正難則反
對一個問題正面思考發生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結論或中間步驟入手,找充分條件;用反證法,從否定結論入手找必要條件。
方法十一、迴避結論的肯定與否定,解決探索性問題
對探索性問題,不必追求結論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進行嚴格的推理與討論,則步驟所至,結論自明。
方法十二、應用性問題思路:面—點—線
解決應用性問題,首先要全面調查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點詞句,提出重點數據,此為“點”;綜合聯系,提煉關系,依靠數學方法,建立數學模型,此為“線”,如此將應用性問題轉化為純數學問題。當然,求解過程和結果都不能離開實際背景。
一、三點建議
1、保持內緊外松的臨戰狀態
①考生在考試前一、二周陸續放鬆,進入臨戰狀態,並進行生物鍾的調節,讓自己的作習時間安排得與高考同步。在這段時間內,要保持情緒的穩定、降低學習強度,增加睡眠時間,進行輕微的活動,增加體質,熟悉考試細則,作不要的物質准備,在一種寧靜的氣氛中,只要做復習的識證性的復習工作。比如回想學科的整體結構,疏通知識網路,背誦重要的定理公式,查閱筆記中的重要內容等,發現缺漏時,千萬不要焦急,應從容不迫坐下來翻看一下資料。經過強化訓練後的靜息,是記憶恢復的最佳選擇,相反這段時間還做難題,加班加點,只會帶來精神的過渡緊張疲勞,直接或間接、有形或無形的影響考場的發揮。至於作習時間進入工作狀態並迅速達到高潮。
② 考離家前,要按預先列好的清單帶好一應用具,如准考證、文具等,否則進土考場後又為忘這忘那引起不必要的焦慮和恐慌,影響考試的發揮。(如:進入考場後發現缺了什麼或者什麼找不到,急得臉面發紅,冷汗直冒,未考先慌,未戰先敗這種現象時有發生) 。
③ 考試過程要放得開,挺得住,精神集中,心態和平,善於暗示自我,還要認識到個別題目不會做,個別科目未能發揮應有的水平都是正常現象,不必大驚小怪,驚慌失措,自亂陣腳,要保持良好的心態,全身心投入,堅持做好每一題,用好每一分每一秒,不到時間決不放棄,發揚“生命不止、戰斗不息”的頑強作風,相信堅持就是勝利。樹立“我難、你難、他也難,大家都難不算難”的全局意識。
2、使用適應高考的策略
高考的性質與平時的訓練不同,高考的形式也與平時的作業有很大的區別,如時間的限制性,分數的選拔性,評分的階段性等,都要我們採取一些不同平時的解題措施,再次提兩條建議:
① 由於高考時間的限制,因此拿到題後要迅速解決“從何處下手”, “向何方前進”這兩個基本問題,這與平時作業沒有時間限制有很大的區別,高考有明顯的速度要求。據資料統計:一套高考數學試題通常控制在2000個印刷符號,若以每分鍾300—400個符號的速度審題,約需5—7分鍾,考慮到有題目要反復閱讀,實際需要時間不少於12分鍾, 書寫主要用於解答題約3000個印刷符號,若按每分鍾150個印刷符號書寫大約28分鍾,也就是說看清楚土模後直接抄寫答案都得40分鍾,留給思考、草算、文字組織和復查的時間只要80分鍾,平均到每道題(通常22道題,近30個問)保證不了3分鍾,為了給解答留下思考時間,選擇、填空題就應在一、二分鍾之內解決,解決不了就跳過去,不能糾纏解答題中容易題也只能邊想邊寫,節省時間。對於客觀題與主觀題的時間分配應以4:6為宜,具體到每一道題,一旦找到了解題思路,書寫要見簡明扼要,快速規范不能拉泥帶水,羅嗦重復,更不能添蛇畫足,注意知識的得分點,對於設計初中知識的可以直接寫出結論,須知“言多必失”,多寫一步就是多出現一個錯誤的機會,就多佔用了後面高分題的時間,叫做“潛在丟分”。如解應用題或排列組合問題時,在引進所需字母後可寫。依題意”直接寫出數字模型,話件題目較長時,多用。原點二”,這就節約了很多時間。
② 靈活機動,由於高考題量大,且實行“分段評分”,所以考生必須作心理換位,從平時做作業的“全做全對”要求,轉到立足於完成部份題目的部份上來,並積極爭取“分段得分”。即合理應用數學解題策略,使所掌握的知識能充分表示出來,並轉化為得分點,比如:分解分步的解題策略;引理或中途點的解題策略;以退求進 的解題策略;正難則反的解策略;從特殊到一般的解題策略等解題技術,使得進可以全題解決,退可以分段得分。
3、 運用應對選拔的考試技術
高考是選拔性考試,從技術上考慮,有兩點建議,即制定科學的解題程序,樹立“進入錄取線”的全局意識。這就是說要盡量避免因“順序答題、自然書寫”所帶來的緝私戶性的失分,對次提出五點建議:
① 提前進入角色;
②迅速摸清題型;
③執行“三個”循環;
④做到“四先四後”;
⑤答題”一快一慢” 。
對每條建議作如下說明:
①提前進入角色是那到試卷前半小時,應讓細胞開始簡單數學活動,讓大腦進入單一的數學情景,這不僅能轉移臨考前的焦慮,而且有利於把最佳競技狀態帶進考場,這個過程跟體育比賽中“熱身”一樣,具體操作如下:清點用具是否齊全,把一些重要的數據,常用的公式,重要的定理過過電影,同學之間互問互答一些不大復雜的問題,但要注意提出的問題不能太難,否則回出現緊張情緒。
②迅速摸清“題情”。剛拿到試卷,一般心情比較緊張,思考問題尚未進入高潮,不要匆忙答題,可先從頭 尾正面反面覽一遍全卷,弄清全卷有幾頁,幾題,印刷是否完整、清晰,尤其認真讀試卷說明與各類題型的指導語。其主要作用是:
a、了解試卷的全貌和整體結構,便於從科學的知識體系產生聯想,激活回憶,提高分析問題的能力和解決問題的效率;
b、順手解答,即順手解答那些一眼看得出結論的簡單選擇題、填空題,尋找自己比較熟悉的內容,易上手會做的題目,主要能很快答出一、二道題,情緒就會迅速穩下來,有“旗開得勝”的愉悅,有一種增強信心的作用,他將會鼓勵自己能更充分的發揮。
c、粗略分類,給“先後難”做好准備。
d、心中有數,即題目有數,各學科知識心中有數,每一道題得分情況有數,不怕難題不得分,就怕每題都扣分。
③執行“三個循環”,這就是講完整解答一套試題可經過三個循環,一頭一尾兩個小循環,各用時10分鍾左右,中間一個大循環用時近100分鍾。
第一循環通覽全卷,先作簡單的第一遍解答是第一個小循環,按高考題的難度比例3:5:2計算,可先做30%的容易題,獲二、三十分,同時把情緒穩定下來,將思維推向高潮。
第二個循環用時100分鍾,基本完成全卷,會做的都做完了,在這個大循環中,要有全局意識,能整體把握,並要執行“四先四後”, “一快一慢”的原則。
第三個循環查收尾,用大約10分鍾的時間來檢查解答並實施“分段得分”,對於大多數考生來說,不可能字第二個循環中答對所有題目,因此要對那些答不全或答後一關,即使做完了題目,也要復查,防止“會而不對,對而不全”,這一步是正常發揮乃至超水平發揮不可缺少的一步,否則將遺憾終身。
④做到“四先四後”,考慮到滿分卷極少數的,絕大多數考生都只能答部份題或題目的部份,執行好“四先四後”的技術是明智的。即:
a、先易後難:就是說先做簡單題,後做困難題,跳過啃不動的題目,對於低分題不能耽誤時間過長,千萬防止“前面難題久攻不下,後面易無暇顧及” 。
b、先熟後生:通覽全卷,即可看到較多有利條件,也可觀到較多不利因素,特別是後者,不要驚慌失措,萬一試題偏難(比如2003年高考卷),首先要學會暗示自己,安慰自己“我難、你難、他也難,大家都難不算難,要鎮定,不要緊張”,先做那些容易掌握比較到家,題目比較熟悉的題目,這樣容易產生精神亢奮,會使人情不自禁的進入境界,展開聯想,促進轉化,拾級登高,達到預想不到的目的。
c、先高後低:就是說要優先處理高分題,特別是在考試後半時間,更要注意解題的時間效益,兩道都會做的題,應先做高分題,後做低分題,盡可能減少時間不夠而失分其次要注意前面低分題久攻不下,後面高分容易題無時間光顧這種想像發生。
d、先同後異:就是說考慮將同學、同類型的題目集中處理,這些題目常常用到同樣的數學思想和類似的思考方法,甚至同一數學公式,把它們和起來,一齊處理,思考比較集中,方法知識網路比較系統,有利於提高單位時間的小,避免興奮中心的過快轉移帶來不利的影響。
⑤答題“一快一慢”:這就是說審題要慢,答題要快。
審題要慢:是說題目本身包含無數個信息,問題是你將如何將這無數個信息通過加工、整理成你的有用的東西。這就是需要逐字逐句看清楚,力求從語法結構、邏輯關系、數學含義、解答形式、數據要求等各方法弄懂這一步不要怕慢。“成在審題,敗在審題” 。
二、掌握高考解題的思維規律
研究表明:中學教材是高考試題的基本來源,每年平均有50%--80%的試題是課本的類型、變題。少量高難題找不到課本的原型,但實際也是按課本知識所能達到的范圍來設計的,因此解高考題與平時作業不同之處在於他在特殊環境下和特定的條件下完成的,其中最顯著的特點是嚴格受時間的限制,因此解高考題必須做到:
①迅速解決“從何處著手”;
②迅速解決“向何方前進”;
③立足中下題目,力爭高水平;
④立足一次成功,重復復查環節。
因為高考時間較為緊張,不可能做大量細微的接後檢驗,所以要立足與一次成功,穩扎穩打,字字正確,步不有據努力提高解題的成功率,最好每進行一次書寫,都用眼睛的餘光掃視上下兩行,順便檢查有無差錯。
復查應“以粗為主,粗細結合”,其主要目的在於看題目是否遺漏﹖題意是否弄錯﹖要求是否符合﹖解題過程是否合理﹖步驟是否完整﹖結果是否科學﹖其復查方法主要有:復查核對、多解對照、逆向運算、觀測估算、特值檢驗、條件檢驗、邏輯檢驗等。
三、注意加強分段得分技術
高考試題的有一個明顯特點是“進門容易、出門難”,因此,在解高考試題分段中又一個技術是分段得分。
①分解分步----缺步解答:解題中遇到一個很難的問題,實在啃不動,一個明智的策略是,將他分解為一系列的子問題,先解決問題的一部分,把這種情況反映出來,說不定起到“柳暗花明” 的效果,也就是說在高考解答中能做幾步算幾步,能解決什麼程度就表達到什麼程度,最後雖不能拿滿分,但部份分總是可以拿的。
②以退求進---退步解答: “以退求進”是一個重要的解題策略,如果我們不能馬上解決的所面臨的問題,那麼可以從一般到特殊,從抽象到具體,從復雜到簡單,從整體退到部分,從較強的結論退到較弱的結論,總之退到一個能夠解決的問題上來。這叫做“退一步,海闊天空” 。
③正難則反---倒步叫做“正難則反”也是一個重要的解題策略,順推有困難時就逆推,直接證明有困難時就從見解證明,從左推有困難時就從右推,從條件有困難時就從結論出發,這種死亡方式叫逆向思維,效果很好。
④掃清外圍---輔助解答:一道題目的完整解答,即有主要的實質步驟,也要有輔助性的步驟,實質性的步驟找不到,找輔助解答的步驟也是明智的,有時間甚至是必可少的。輔助解答的內容十分廣泛,如准確作圖,條件翻譯等。
⑤大膽猜測—認真作答:猜測是一種能力,最後就是在結實過程中實在沒有辦法,無從下手,不妨就用猜想來“進可攻全守,退可分步得分” 。
8. 數學解題思路混亂怎麼辦
一、答題原則
大家拿到考卷後,先看是不是本科考試的試卷,再清點試卷頁碼是否齊全,檢查試卷有無破損或漏印、重印、字跡模糊不清等情況。如果發現問題,要及時報告監考老師處理。
答題時,一般遵循如下原則:
1.從前向後,先易後難。通常試題的難易分布是按每一類題型從前向後,由易到難。因此,解題順序也宜按試卷題號從小到大,從前至後依次解答。當然,有時但也不能機械地按部就班。中間有難題出現時,可先跳過去,到最後攻它或放棄它。先把容易得到的分數拿到手,不要「一條胡同走到黑」,總的原則是先易後難,先選擇、填空題,後解答題。
2.規范答題,分分計較。數學分I、II卷,第I卷客觀性試題,用計算機閱讀,一要嚴格按規定塗卡,二要認真選擇答案。第II卷為主觀性試題,一般情況下,除填空題外,大多解答題一題設若干小題,通常獨立給分。解答時要分步驟(層次)解答,爭取步步得分。解題中遇到困難時,能做幾步做幾步,一分一分地爭取,也可以跳過某一小題直接做下一小題。
3.得分優先、隨機應變。在答題時掌握的基本原則是「熟題細做,生題慢做」,保證能得分的地方絕不丟分,不易得分的地方爭取得分,但是要防止被難題耗時過多而影響總分。
4.填充實地,不留空白。考試閱卷是連續性的流水作業,如果你在試卷上留下的空白太多,會給閱卷老師留下不好印象,會認為你確實不行。另外每道題都有若干采分點,觸到采分點便可給分,未能觸到采分點也沒有倒扣分的規定。因此只要時間允許,應盡量把試題提問下面的空白處寫上相應的公式或定理等有關結論。
5.觀點正確,理性答卷。不能因為答題過於求新,結果造成觀點錯誤,邏輯不嚴密;或在試卷上即興發揮,塗寫與試卷內容無關的字畫,可能會給自己帶來意想不到的損失。胡亂塗寫可以認為是在試卷上做記號,而判作弊。因此,要理性答卷。
6.字跡清晰,合理規劃。這對任何一科考試都很重要,尤其是對「精確度」較高的數理化,若字跡不清無法辨認極易造成閱卷老師的誤判,如填空題填寫帶圈的序號、數字等,如不清晰就可能使本來正確的失了分。 另外,卷面答題書寫的位置和大小要計劃好,盡量讓卷面安排做到 「前緊後松」而不是「前松後緊」。特別注意只能在規定位置答題,轉頁答題不予計分。
二、審題要點
審題包括瀏覽全卷和細讀試題兩個方面。
一是開考前瀏覽。開考前5分鍾開始發卷,大家利用發卷至開始答題這段有限的時間,通過答前瀏覽對全卷有大致的了解,初步估算試卷難度和時間分配,據此統籌安排答題順序,做到心中有數。此時考生要做到「寵辱不驚」,也就是說,看到一道似曾相識的題時,心中不要竊喜,而要提醒自己,「這道題做時不可輕敵,小心有什麼陷阱,或者做的題目只是相似,稍微的不易覺察的改動都會引起答案的不同」。碰到一道從未見過,猛然沒思路的題時,更不要受到干擾,相反,此時應開心,「我沒做過,別人也沒有。這是我的機會。」時刻提醒自己:我易人易,我不大意;我難人難,我不畏難。
二是答題過程中的仔細審題。這是關鍵步驟,要求不漏題,看準題,弄清題意,了解題目所給條件和要求回答的問題。不同的題型,考察不同的能力,具有不同的解題方法和策略,評分方式也不同,對不同的題型,審題時側重點有所不同。
1.選擇題是所佔比例較大(40%)的客觀性試題,考察的內容具體,知識點多,「雙基」與能力並重。對選擇題的審題,要搞清楚是選擇正確陳述還是選擇錯誤陳述,採用特殊什麼方法求解等。
2.填空題屬於客觀性試題。一般是中檔題,但是由於沒有中間解題過程,也就沒有過程分,稍微出現點錯誤就和一點不會做結果相同,「後果嚴重」。審題時注意題目考查的知識點、方法和此類問題的易錯點等。
3.解答題在試卷中所佔分數較多(74分),不僅需要解出結果還要列出解題過程。解答這種題目時,審題顯得極其重要。只有了解題目提供的條件和隱含信息,聯想相關題型的通性通法,尋找和確定具體的解題方法和步驟,問題才能解決。
三、時間分配
近幾年,隨著高考數學試題中的應用問題越來越多,閱讀量逐漸增加,科學地使用時間,是臨場發揮的一項重要內容。分配答題時間的基本原則就是保證在能得分的地方絕不丟分,不易得分的地方爭取得分。在心目
中應有「分數時間比」的概念,花10分鍾去做一道分值為12分的中檔大題無疑比用10分鍾去攻克1道分值為4分的中檔填空題更有價值。有效地利用最好的答題時間段,通常各時間段內的答題效率是不同的,一般情況下,最後10分鍾左右多數考生心理上會發生變化,影響正常答卷。特別是那些還沒有答完試卷的考生會分心、產生急躁心理,這個時間段效率要低於其它時間段。
在試卷發下來後,通過瀏覽全卷,大致了解試題的類型、數量、分值和難度,熟悉「題情」,進而初步確定各題目相應的作答時間。通常一般水平的考生,解答選擇題(12個)不能超過40分鍾,填空題(4個)不能超過15分鍾,留下的時間給解答題(6個)和驗算。當然這個時間安排還要因人而異。
在解答過程中,要注意原來的時間安排,譬如,1道題目計劃用3分鍾,但3分鍾過後一點眉目也沒有,則可以暫時跳過這道題;但若已接近成功,延長一點時間也是必要的。需要說明的是,分配時間應服從於考試成功的目的,靈活掌握時間而不墨守最初安排。時間安排只是大致的整體調度,沒有必要把時間精確到每1小題或是每1分鍾。更不要因為時間安排過緊,造成太大的心理壓力,而影響正常答卷。
一般地,在時間安排上有必要留出5—10分鍾的檢查時間,但若題量很大,對自己作答的准確性又較為放心的話,檢查的時間可以縮短或去除。但是需要注意的是,通常數學試卷的設計只有少數優秀考生才可能在規定時間內答完。
五、大題和難題
一張考卷必不可少地要有大題、難題以區分考生的知識和能力水平,以便拉開檔次。一般大題、難題分值都較高,遇到難題,要盡量放到最後去攻克;如果別的題目全部做完而且檢查無誤,而又有一定時間的話,就應想辦法攻克難題。不是每個人都能得150的,先把會的做完,也可以給自己奠定心裡優勢。
六、各種題型的解答技巧
1.選擇題的答題技巧
(1)掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題乾的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。
(2)特值法。在選擇支中分別取特殊值進行驗證或排除,對於方程或不等式求解、確定參數的取值范圍等問題格外有效。
(3)反例法。把選擇題各選擇項中錯誤的答案排除,餘下的便是正確答案。
(4)猜測法。因為數學選擇題沒有選錯倒扣分的規定,實在解不出來,猜測可以為你創造更多的得分機會。除須計算的題目外,一般不猜A。
2.填空題答題技巧
(1)要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能准確無誤、清晰回憶。對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了並集等等。
(2)一般第4個填空題可能題意或題型較新,因而難度較大,可以酌情往後放。
3.解答題答題技巧
(1)仔細審題。注意題目中的關鍵詞,准確理解考題要求。
(2)規范表述。分清層次,要注意計算的准確性和簡約性、邏輯的條理性和連貫性。
(3)給出結論。注意分類討論的問題,最後要歸納結論。
(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。
七、如何檢查
在考試中,主動安排時間檢查答卷是保證考試成功的一個重要環節,它是防漏補遺、去偽存真的過程,尤其是考生如果採用靈活的答題順序,更應該與最後檢查結合起來。因為在你跳躍式往返答題過程中很可能遺漏題目,通過檢查可彌補這種答題策略的漏洞。
檢查過程的第一步是看有無遺漏或沒有做的題目,發現之後,應迅速完成或再次思考解法。對各類題型的做答過程和結果,如果有時間要結合草稿紙的解題過程全面復查一遍,時間不夠,則重點檢查。
選擇題的檢查主要是查看有無遺漏,並復查你心存疑慮的題目。但是若沒有充分的理由,一般不要改變你依據第一感覺作出的判斷。
對解答題的檢查,要注意結合審查草稿紙的演算過程,改正計算和推理中的錯誤。另外要補充遺漏的理由和步驟,刪去或修改錯誤或不準確的觀點。
計算題和證明題是檢查的重點,要仔細檢查是否完成了題目的全部要求;若時間倉促,來不及驗算的話,有一些簡單的驗證方法:一是查單位是否有誤;二是看計算公式引用有無錯誤;三是看結果是否比較「像」,這里所說的「像」是依靠經驗判斷,如應用題的答案是否符合實際意義;數字結論是否為整數、自然數或有規則的表達式,若結論為小數或無規則的數,則要重新演算,最好能用其他方法再試著去做
八、強調的一點是草稿紙,這是考試時和試卷同等重要的東西。
同學們拿到草稿紙後,請先將它三折。然後按順序使用。草稿紙上每道題之間留空,標清題號。字跡要做到能夠准確辨認,切不可胡寫亂畫。這樣做的好處是:
1. 草稿紙展現的是你的答題思路。草稿紙清晰,答題思路也會清晰,最起碼你清楚你已經做到了哪一步。如果草稿混亂的話,這一步推出來了,往往又忘了上一步是怎麼得到的。
2. 對於前面提到的暫時不會,回頭再做的題,由於你第一次做本題時已經進行了一定的思維過程。第二次做時如果重頭再思考非常浪費時間。利用草稿紙,可以迅速找到上次的思維斷點。從而繼續攻破。關鍵結論要特殊標記。
3. 檢查過程中,草稿紙更是最好的幫手。如果連演算過程都可從草稿紙上清晰找到的話,無疑會節省大量時間。
第二部分 提高解題速度的八步驟
在考試時,我們常常感到時間很緊,試卷還沒來得及做完,就到收卷時間了,雖然有些試題,只要再努一把力,我們是有可能做出來的。這其中的原因之一,就是解題速度太慢。
幾乎每個學生都知道,要想取得好成績,必須努力學習,只有加強練習,多做習題,才能熟能生巧。可是有些學生天天趴在那裡做題,但解出的題量卻不多,花了大量的時間,卻沒有解出大量的習題,難道不應找一找原因嗎?何況,我們並不比別人的時間更多。試想,如果你的解題速度提高10倍,那會是怎樣一種情景?解題速度提高10倍?可能嗎?答案是肯定的,完全可能。關鍵在於你想與不想了。
那麼,究竟怎樣才能提高解題速度呢?
首先,應十分熟悉習題中所涉及的內容,做到概念清晰,對定義、公式、定理和規則非常熟悉。你應該知道,解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。我指導學生按此方法學習,幾乎所有的學生都大大提高了解題的速度,其效果非常之好。
第二,還要熟悉習題中所涉及到的以前學過的知識和與其他學科相關的知識。例如,有時候,我們遇到一道不會做的習題,不是我們沒有學會現在所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是數學題中要用到的一個物理概念,而我們對此已不是十分清晰了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。這時我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然後再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。
第三,對基本的解題步驟和解題方法也要熟悉。解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。
第四,要學會歸納總結。在解過一定數量的習題之後,對所涉及到的知識、解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對於類似的習題一目瞭然,可以節約大量的解題時間。
第五,應先易後難,逐步增加習題的難度。人們認識事物的過程都是從簡單到復雜,一步一步由表及裡地深入下去。一個人的能力也是通過鍛煉逐步增長起來的。若簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。養成了習慣,遇到一般的難題,同樣可以保持較高的解題速度。而我們有些學生不太重視這些基本的、簡單的習題,認為沒有必要花費時間去解這些簡單的習題,結果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。
其實,解簡單容易的習題,並不一定比解一道復雜難題的勞動強度和效率低。比如,與一個人扛一大袋大米上五層樓相比,一個人拎一個小提包也上到五層樓當然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那麼,拎包人比扛米人的勞動強度大。所以在相同時間內,解50道、100道簡單題,可能要比解一道難題的勞動強度大。再如,若這袋大米的重量為100千克,由於太重,超出了扛米人的能力,以至於扛米人費了九牛二虎之力,卻沒能扛到五樓,雖然勞動強度很大,卻是勞而無功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五樓,勞動強度也許並不很大,而效率之高卻是不言而喻的。由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習題,其收獲也許會更大。因此,我們在學習時,應根據自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。
第六,認真、仔細地審題。對於一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,並從中找出隱含條件。讀題一旦結束,哪些是已知條件?求解的結論是什麼?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應該已經結成了一張網,並有了初步的思路和解題方案,然後就是根據自己的思路,演算一遍,加以驗證。有些學生沒有養成讀題、思考的習慣,心裡著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。很多時候學生來問問題,我和他一起讀題,讀到一半時,他說:「老師,我會了。」所以,在實際解題時,應特別注意,審題要認真、仔細。
第七,學會畫圖。畫圖是一個翻譯的過程。讀題時,若能根據題義,把對數學(或其他學科)語言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目瞭然。尤其是對於幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。所以,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過程和條件,對於提高解題速度非常重要。畫圖時應注意盡量畫得准確。畫圖准確,有時能使你一眼就看出答案,再進一步去演算證實就可以了;反之,作圖不準確,有時會將你引入歧途。
最後,對於常用的公式,如數學中的乘法公式、三角函數公式,常用的數字,如11~25的平方,特殊角的三角函數值,化學中常用元素的化學性質、化合價以及化學反應方程式等等,都要熟記在心,需用時信手拈來,則對提高演算速度極為有利。
總之,學習是一個不斷深化的認識過程,解題只是學習的一個重要環節。你對學習的內容越熟悉,對基本解題思路和方法越熟悉,背熟的數字、公式越多,並能把局部與整體有機地結合為一體,形成了跳躍性思維,就可以大大加快解題速度。