『壹』 利用質譜技術進行臨床癌症蛋白質組學研究
腫瘤生物標志物是目前腫瘤臨床研究的關鍵點,因此在早期診斷、風險分級和檢測患者的治療應答等方面需要不斷挖掘新的生物標志物並加以驗證。基因組和轉錄組研究已經發現了很多可用的標志物,但蛋白質表達改變更能反映出腫瘤病理生理學的變化。在過去,臨床診斷一直依賴於基於抗體檢測的各種方法,但這些方法都存在局限性。而質譜(MS)是一種強大的方法,使人們能全面洞悉蛋白質組的變化,從而促進個性化醫療的發展。本文將以腫瘤學為重點介紹基於MS技術的臨床蛋白質組學的研究進展,對臨床樣品制備、蛋白定量檢測方法、MS配置和數據分析進行詳細敘述。此外,MS技術靈敏度不斷提高,涌現出新形式的腫瘤特異性蛋白標志物如翻譯後修飾和源於基因組畸變的變異。這些進步不僅鞏固了以MS為基礎的臨床蛋白質組學在癌症研究中的地位,還使其向成為常規分析和臨床實踐的方向加速發展。
臨床樣品的制備方法
對於臨床組織研究,為了保證從手術切除到蛋白質酶解過程中的蛋白質量,正確的保存方式非常關鍵。有幾種方法可以選擇:新鮮冷凍(FF)、福爾馬林固定石蠟包埋(FFPE)和OCT包埋。FF與FFPE相比可檢測到更多的蛋白質,但現有的FFPE已經儲存了幾年甚至十幾年,是臨床隨訪等回顧性研究的重要樣品來源。雖然組織的蛋白質組學研究可探究生物機制信息,但臨床蛋白質組學研究以發現新的生物標志物為主要目標,因此「體液」樣品如血液(血清、血漿)、尿液、唾液、淚液和腦脊液等是較為理想的樣品形式,還可用於檢測癌症和治療反應發展的縱向研究中。當臨床樣品質量不足以支持研究時,可考慮使用模型系統如轉基因動物模型、癌細胞系、異種移植模型(CDX、PDX)、類器官等。
蛋白質組樣品制備沒有統一的方案,要根據樣品復雜性、樣品量和研究目的選擇合適的方法並優化。制備的主要方法有FASP、MStern、S-trap、SP3和iST等。這里以FASP為例進行介紹。FASP,即過濾器輔助的樣品制備法,首先使用陰離子表面活性劑十二烷基硫酸鈉(SDS)溶解蛋白質,然後使用分子量(MW)過濾將蛋白質結合到硝酸纖維素過濾器上,而較低MW的物質則被過濾掉,連續的尿素洗滌有助於更好地去除SDS,最後是過濾器上的蛋白酶解和洗脫獲得多肽產物。
MS檢測原理及流程
為了在檢測時增加蛋白質組的覆蓋率,肽段樣品首先通過反相液相色譜等方法分成不同餾分後進入MS分析。利用軟電離技術(ESI或MALDI)對肽段進行離子化,霧化的多肽可以通過離子遷移率進一步分離,從而降低一級質譜(MS1)的復雜性和二級質譜(MS2)的污染,並最終實現更大的蛋白質組覆蓋率。這樣的技術包括離子淌度(TIMS)和高強場離子遷移譜和(FAIMS)。在質譜掃描模式的選擇上,傳統的數據依賴採集(DDA)模式在蛋白質組學研究非常成熟,且兼容基於標簽的定量技術。在DDA中,MS1掃描結果中信號最強的前n個母離子才會被選擇並進行順序碎裂和MS2檢測。但是,這種模式的檢測重復性差,且存在MS1中高豐度肽影響低豐度肽檢出的問題。由於DDA的缺點,蛋白質組學研究開始傾向於使用數據非依賴採集(DIA)模式。在該模式下,在多個小范圍的質荷比窗口中的所有母離子順序碎裂產生更復雜的MS2結果。然後將這些結果與預先定義好的譜圖庫進行匹配,通過大范圍的肽分級達到最大的蛋白質組深度。
蛋白定量檢測方法
蛋白定量檢測技術多種多樣,按照檢測范圍可分為靶向與非靶向技術,也可按照定量方式分為相對定量或絕對定量技術。其中,相對定量技術又可分為標記技術(TMT和iTRAQ)和非標記技術(label-free、DIA)。標記相對定量技術中TMT標簽可增加樣品通量到16個。然而, TMT方法需要多級的肽分級來獲得深入的蛋白質組圖譜,並且1-2個TMT通道常用於檢測所有樣品的混樣來減少批間差,這降低了各個項目之間進行有效比較的能力,並增加檢測成本。而label-free技術,得益於數據分析軟體的發展,可以從MS1的肽離子峰分數計算出蛋白質的相對豐度。與標記技術相比,非標記技術具有更寬廣的動態范圍,但精準度會稍差一些。因此,對於患者間和患者內存在較大蛋白質表達差異的臨床樣品,label-free定量技術更適合鑒定出更多的差異表達蛋白。
通過非靶向相對定量檢測技術篩選到的目標蛋白質需要進行表達驗證,如基於抗體的ELISA和基於MS的靶向分析技術。其中,基於MS的靶向定量技術有多反應檢測(MRM)和平行反應檢測(PRM)兩種。MRM使用三重四極桿質譜儀進行分析,需要先確定目標母離子和碎片離子的質荷比,由四極桿選擇母離子和3-5個相關碎片離子的組合並進行定量分析。而PRM利用高解析度質譜提高特異性。PRM中所有碎片離子都是在分析中生成並被記錄,所以只需要確定目標母離子的質荷比並直接從二級質譜中選擇最好的碎片離子即可進行定量分析。如果加入用穩定同位素標記的肽標准品做對照,這兩種靶向技術可達到絕對定量水平。兩種技術相比,PRM能可靠地監測更多的靶點。
臨床蛋白質組學的應用方向
在腫瘤學研究中,組織分析能夠最准確地反映腫瘤的生理狀態,發現生物標志物、生物學通路,並與現有的基因組學和轉錄組學結果整合做多組學分析。這類研究通常使用同一患者的癌組織樣品和癌旁「健康」對照樣品比較尋找潛在的診斷biomarker。同時,對不同癌症分期患者比較獲得預後信息。當鑒定到較少數量的候選蛋白後,就可以利用通路分析深入了解這些蛋白是如何與腫瘤發生、增殖、轉移和其他癌症驅動過程相關的,隨後在獨立大隊列樣品中補充差異表達蛋白的驗證實驗。總結目前科研現狀,癌症蛋白質組學的研究方向主要有尋找風險預測、癌症分級和預後的標志物、確認有效的治療靶點和翻譯後修飾如磷酸化、乙醯化、糖基化等。此外,腫瘤異質性問題對單細胞水平的蛋白質研究提出了要求。基於質譜的質譜流式技術可以在單個細胞中監測幾十個蛋白質標志物,將抗體探針和獨特的重金屬同位素連接在一起後與細胞孵育,然後細胞被感應耦合等離子體(ICP)霧化,金屬離子向質譜儀提供目標蛋白在樣本中的定量讀數。
2019年10月在《Cell》上發表的「Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma」一文中,作者利用多組學研究思路,對159位感染乙型肝炎病毒的肝細胞癌患者的配對癌組織和癌旁肝組織進行了基因組、轉錄組、蛋白質組和磷酸化蛋白質組研究,發現了代謝改變對肝癌晚期發展和不良預後的影響,並對肝細胞癌進行了蛋白層面的精準分型,為個性化靶向治療提供了新策略。
臨床蛋白質組學的研究前景
隨著標准化、高通量的蛋白質組學技術不斷發展,臨床研究將向著更大隊列的方向進步,這將使蛋白質組學研究結果更具有統計學意義,並提高蛋白標志物和葯物靶點臨床轉化的效率。另一方面,蛋白質組學將通過集成基因組學、表觀基因組學、轉錄組學和翻譯後修飾組學等多組學數據,成為癌症系統生物學的重要組成部分。
參考文獻
Macklin, Andrew et al. 「Recent advances in mass spectrometry based clinical proteomics: applications to cancer research.」 Clinical proteomics vol. 17 17. 24 May. 2020.
Zhang, Yaoyang et al. 「Protein analysis by shotgun/bottom-up proteomics.」 Chemical reviews vol. 113,4 (2013): 2343-94.
Gao, Qiang et al. 「Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma.」 Cell vol. 179,2 (2019): 561-577.e22.
『貳』 質譜檢測是什麼
質譜(又叫質譜法)是一種與光譜並列的譜學方法,通常意義上是指廣泛應用於各個學科領域中通過制備、分離、檢測氣相離子來鑒定化合物的一種專門技術。
質譜法在一次分析中可提供豐富的結構信息,將分離技術與質譜法相結合是分離科學方法中的一項突破性進展。在眾多的分析測試方法中,質譜學方法被認為是一種同時具備高特異性和高靈敏度且得到了廣泛應用的普適性方法。
質譜儀器一般由樣品導入系統、離子源、質量分析器、檢測器、數據處理系統等部分組成。
質譜分析
是一種測量離子質荷比(質量-電荷比)的分析方法,其基本原理是使試樣中各組分在離子源中發生電離,生成不同荷質比的帶電荷的離子,經加速電場的作用,形成離子束,進入質量分析器。在質量分析器中,再利用電場和磁場使發生相反的速度色散,將它們分別聚焦而得到質譜圖。
從而確定其質量。第一台質譜儀是英國科學家弗朗西斯·阿斯頓於1919年製成的。阿斯頓用這台裝置發現了多種元素同位素,研究了53個非放射性元素,發現了天然存在的287種核素中的212種,第一次證明原子質量虧損。他為此榮獲1922年諾貝爾化學獎。
『叄』 抗體檢測怎麼檢測(核酸、抗原、抗體檢測)
自 2020 年新冠疫情爆發以來,「核酸檢測」作為一項檢測是否感染的重要指標,開始反復出現在我們的生活中。2022 年 3 月 10 日,國務院應對新型冠狀病毒肺炎疫情聯防聯控機制綜合組發布通知,決定推進「抗原篩查、核酸診斷」的檢測模式,在核酸檢測基礎上增加抗原檢測作為補充。
抗原檢測是什麼?和其他的檢測手段有什麼不同?這篇文章,我們以新型冠狀病毒為例,講講常見的快速篩查手段,聊聊相關的原理以及適用范圍。
想要對一種疾病或是一種物質進行篩查,我們首先要弄清楚的就是「從何下手」的問題,其次是「如何檢測」,讓微觀世界的變化反映到我們眼前,幫助我們作出判斷。
我們面對的是病毒。根據大家耳熟能詳的中學生物課知識,病毒是一類由遺傳物質和蛋白質外殼組成的類生命體 。如果想對病毒的感染情況進行探測,就需要從它的組分下手。接下來的內容,希望大家帶著自己中學的生物知識閱讀。
以目前正在困擾我們的 SARS-CoV-2 為例。它屬於冠狀病毒科下,冠狀病毒亞科的乙型冠狀病毒屬,是已知的第七種能夠感染人類的冠狀病毒。所有的冠狀病毒都是具有 包膜 的 正義單鏈 RNA 病毒 ,也就是說,它們的遺傳物質是一條單獨的 RNA 鏈,並且這條 RNA 鏈可以直接作為 mRNA(信使 RNA)參與翻譯,指導蛋白質的合成。
編號為NPRC 2020.00002的毒種,圖片由國家病原微生物資源庫(中國疾病預防控制中心病毒病預防控制所)提供。
我們現在的目的是檢測標本中是否存在這種病毒,無論是檢測它本身,還是檢測病毒帶來的產物,能夠下手的方向也就是兩種:蛋白質外殼(包膜)、遺傳物質。
順著這個邏輯,那最顯而易見的方法就是檢查它「能不能看到」,但病毒本體小得很,SARS-CoV-2 的直徑在 80-120 nm,要想每個標本都拿電鏡過一遍是不現實的,人力物力和財力都撐不住。那麼更經濟實惠的方法,就是通過某些措施,讓 病毒的組分 ,或是因為病毒而出現的 某些特殊物質 積攢到一定數量級後發光、變色,出現 宏觀表現 。
那麼我們的問題就轉化成了,選擇一種可以觀察到宏觀尺度變化的方法,和病毒的組分、病毒引發的某種物質產生關聯。我們能選擇的物質也擺在檯面上:病毒的遺傳物質,在這里是它的 RNA;病毒的包膜,也就是蛋白質外殼;以及,如果你還記得一些基礎的生物知識,人體的免疫系統會在感染病毒之後產生抗體以抵抗入侵,它也是不錯的選材。
我們目前採用的幾種檢測方式,也就從這些物質(以及它們的相關物質)脫胎而來,分別為針對遺傳物質的核酸檢測,針對包膜的抗原檢測,以及針對抗體的血清抗體檢測。
作為病毒的遺傳物質,核酸序列載寫了能夠鑒定病毒為某一特定種的基因特徵,因此核酸陽性,也就意味著病毒在體內存在過。
我們目前進行的「核酸檢測」其實分為兩個部分。平常我們進行的「捅鼻子」「捅嗓子」取樣和後續的定性是第一部分。在取得標本之後,因為病毒量太少,樣本會在實驗室中進行一定次數的擴增,並根據熒光反應結果來判定陽性陰性。
第二部分,確定為陽性的樣本,還需要通過基因測序,確定樣本病毒的分型,以便溯源。這一步已經不屬於日常篩查的范疇,但在流行病學調查上具有重大意義,如果有興趣了解,可以參看 Wikipedia 簡要了解。
我們平常參與的作為 篩查 工具的核酸檢測,指的就是採集到定性的第一部分。
在感染了 SARS-CoV-2 之後,咽拭子、痰、下呼吸道分泌物、血液等標本中均可發現病毒核酸。不同部分標本核酸檢測的陽性率有一定差異,隨著病程進展,各個部位的檢出率也會發生變化。
我們習慣稱呼的「鼻拭子」與「咽拭子」,其實都是採集咽腔後壁的分泌物與組織,前者採集鼻咽,後者採集口咽。也有採用其他標準的,比如唾液等亦可作為檢測標本,本質上也是不同地區規定有差異
鼻(咽)拭子與(口)咽拭子已經是綜合了陽性率與便利程度的考量。糞便和尿液等其實也可以作為標本採集的對象。而且根據一項對 31 例患者的研究,肛拭子的准確率要高於鼻咽與口咽采樣,尤其病程後期,肛拭子確診病例的鼻拭子陽性率不到 30%。 4 但顯然,由於操作的限制,它無法作為早期篩查的首選手段。
接下來的工作,就是從獲取的那一點點標本中提取核酸。由於樣本中病毒的數量級很小,不足以拿來分析,還需要將其擴增並標記。需要用到的同樣是高中學過的知識:聚合酶鏈式反應(PCR)——這一步看起來麻煩,但由於它的原理和工序已經研究成熟,實際操作中只需要加好試劑送機器,整個核酸檢測的過程里最麻煩的還是讓待測者安安分分弄來標本(笑)。
各地疾控機構或檢測中心會采購合適的核酸 提取試劑盒 與核酸 檢測試劑盒 。提取試劑盒負責將 RNA 從混雜的樣本(細胞碎屑、分泌物、灰塵等雜質)中提取出來,常見的有磁珠法、離心柱法和釋放劑法,不同提取方法可能對後期檢測的准確度略有影響 。之後,提純出的 RNA 就會移交給檢測試劑盒(也有一些試劑盒將兩者合一),進行之後的工序。
檢測試劑盒帶著樣本在機器中進行的過程,就是這個檢測中最主要的反應:RT-qPCR(實時定量逆轉錄聚合酶鏈反應)。
接下來需要你撿起高中生物的知識。一般的 PCR 反應有以下幾步:
加熱:讓雙鏈 DNA 解旋變形,成為兩條單鏈; 退火:讓混合的單鏈 DNA 與根據需要復制的片段而設計好的引物結合; 延伸:調整溫度,讓 DNA 聚合酶順著引物開始工作,復制出新鏈,形成新的雙鏈。在對病毒的探測中,我們要做的工作也無非上面幾步,只是需要多出兩樣東西:
在第一次反應之前,使用 逆轉錄酶 (依賴 RNA 的 DNA 聚合酶),合成病毒單鏈 RNA 的互補鏈,組合成 cDNA ; 在退火與延伸的階段,除了引物和所需的酶外,還需要 TaqMan 探針 。你可以把 TaqMan 探針這樣理解:它的主體部分是一段寡核苷酸鏈,被設計成能和一小部分需要復制的基因片段配對成雙鏈的樣子;它一端接了一個熒光分子,另一端接了一個開關(淬滅基團),兩者和探針相連時,熒光就會被淬滅基團壓制,探測不到。退火時,這個探針會和引物一起結合在要復制的單鏈片段上。在延伸的過程中,DNA 聚合酶會把擋在面前的障礙物切碎,其中就包括這段探針,淬滅基團和熒光分子就這樣分離,熒光就表現出來。
隨著循環數的增多,擴增的 DNA 片段和熒光也越來越多。對比每個循環的熒光亮度和前若干次循環的基準亮度,我們就能得出目前的 DNA 片段量,也可以直接用循環數和熒光亮度做定性的判斷。
那麼具體復制哪一部分呢?既然要探測病毒,那我們就選取最有代表性的核酸片段。現行的標准中,ORF 基因與 N 基因是常用的檢測位點。
檢測試劑盒負責的就是將提取出的 RNA(樣本)投入後,根據試劑盒上的程序說明,設定對應的 PCR 溫度與時長,由機器控制完成擴增過程,在固定的環節收集熒光信號,記錄對應的循環數(Ct 值)。判斷陰性陽性 / 是否還具有傳染力的標准,就是看熒光信號達到閾值時,目前循環數是多少。根據目前現行的《新型冠狀病毒肺炎診療方案(試行第九版)》,解除隔離管理的標准為 Ct 值 ≥ 35 。和此前通行的 ≥40 標准相比,出院與解除隔離的時間會大大縮短 。
經 RT-PCR 的核酸檢測到現在都是確診的金標准,因為它在方法學的角度看來,(理論上)可以做到 100% 准確。但核酸檢測耗時長、對環境與操作人員要求高,在環境條件達不到標准、物資與儀器不齊全等情況下,大批量的核酸檢測會帶來巨大人力與財力消耗。
在本次疫情中,我們採用的免疫測定包括了快速抗原檢測與抗體檢測,它以 抗原-抗體反應 為基本原理,旨在通過抗原與抗體快速的中和效應,以較少的時間成本探測樣本中是否存在待測物。兩者都屬於免疫層析法的范疇。
以盒裝方式出現、可以自行操作的抗原檢測就很適合作為物資不足、自我測定等情況下的補充。
核酸檢測檢查的是病毒的(標志性)遺傳物質,是病毒的「內里」。那麼(快速)抗原檢測檢查的就是病毒的「外在」,直接檢查完整的病毒顆粒。目前通過審批的抗原檢測試劑盒包括三種類型:膠體金法、乳膠法、熒光免疫層析法。三者內在原理一致。但其中熒光免疫層析法試劑盒仍然需要專用的檢測儀或紫外線手電筒,不適合家庭自測;膠體金法和乳膠法則都是將檢查結果轉化成肉眼可見的條帶,差別在於用於標記上色的物質不同。
當然,抗原檢測自然有它的劣勢在,它的 假陰性率 (是陽性但顯示陰性)要更高,可能導致漏檢錯檢。但放在一杯茶就能出結果的時間優勢面前,准確性上的差距在某些特定情況下可以暫時讓步。
圖源:How the SARS-CoV-2 EUA Antigen Tests Work | ASM.org
和核酸檢測相比,抗原檢測增加了「鼻拭子」這一采樣途徑,降低了個人自測的難度。拭子上的樣本在緩沖液中洗脫,取液體滴加在加樣孔後,液體會因為毛細作用,帶著潛在的抗原,經過一片預載了抗體的區域(結合墊,conjugate pad)。
這片區域上的抗體,是抗目標抗原(SARS-CoV-2)的單克隆抗體,每一個抗體分子都和特別的標記結合,它們與樣本中的抗原發生反應,形成抗原-抗體復合物,並隨著毛細作用向下一條帶流去。
緊接著經過的是檢測線(T 線,test line),在檢測線上附著的同樣是抗目標抗原的單克隆抗體,你可以理解成這里的東西和結合墊上的一樣,只是沒帶標記。此時,如果受測者已經感染了 SARS-CoV-2,他留在樣本中的抗原形成的抗原-抗體復合物,會在此處與固定在線上的抗體再次結合。在這里,這些帶著標記的復合物不斷沉積,最終會顯示出一條或深或淺的條帶。條帶的顏色來源,就是之前結合墊上的抗體分子附著的標記,在膠體金法中是膠體狀態的金顆粒,在乳膠法中是上色的乳膠滴,在熒光法中是熒光分子。所以你在使用這類試紙時,會發現剛剛加樣結束,液體剛開始擴散的時候,擴散的最前端會有一點點很淡的顏色不斷推移,這就是還沒有固定沉積的標記的顏色。
接下來,液體繼續擴散,經過質控線(C 線,control line),在質控線上附著的是另一種抗體——『抗「抗目標抗原的單克隆 抗體 」 的 單克隆 抗體 』,簡稱「 二抗 」。這種新的抗體是讓上一種抗體在另一種動物的免疫系統中反應得來的,比如結合墊的抗體來自兔,那這里的抗體就來自羊,是羊抗兔的單克隆抗體。也就是說, 二抗的抗原是 之前在 結合墊上的抗體 。這條線就是為了檢測液體有沒有正常擴散、結合墊上的抗體有沒有失效等等而存在的。此時,液體中剩餘的大量來自結合墊的抗體就會作為抗原,與質控線上的二抗發生抗原抗體反應,形成復合物,顯出一條明顯的條帶。
由於結合墊上的抗體非常充裕,這條質控線條帶會出現得非常快、非常顯色,而檢測線由於抗原(病毒)數量不一定,顯色速度會有差別,但一般在 15 分鍾內就足夠判斷結果。所以不要看 C 線很明顯,T 線隱隱約約就覺得「沒事了」, T 線不管深淺,只要有,就是陽性 。
具體操作方面,可以參考醫政醫管局發布的 教學視頻。目前國家也在逐步推廣抗原自測試劑盒,在一定程度上可以減輕未來醫療與街道的壓力。
除了前兩種檢測手段外,還有一種使用不太多,但同樣重要的檢測方法,就是同屬免疫測定方法的「血清抗體檢測」。
抗體檢測採用的試劑盒與抗原檢測非常接近,但標本的限制更大——由於檢測的對象變成了抗體,標本就必須是明確有抗體存在的血液(或血漿、血清)。而且人體在初次感染病毒後,並不會第一時間內產生抗體。抗體能夠明確達到被檢測的數量級,一般是在初次感染(或接種疫苗)的一到兩周之後。這些條件限制了抗體檢測不能作為確診性質的檢查。目前,血清抗體檢測僅作為一定情況下檢查疫苗是否生效,或查驗受測者近期是否感染過新冠病毒的方法。
在人體中有五種抗體,分別是 IgA、IgD、IgE、IgG 和 IgM。IgA 主要負責黏膜免疫。IgD 與免疫反應激活有關。IgE 抵禦寄生蟲,同時也參與過敏反應。剩下的 IgG 與 IgM 就是對抗病原體的過程中,免疫系統派出的主力軍。
SARS-CoV-2 作為病原體,人體經刺激主要分泌的就是 IgG 與 IgM 兩種。現有的抗體檢測試劑盒,主要也是針對人體對 SARS-CoV-2 的 N 蛋白(核衣殼蛋白)或 S 蛋白(刺突蛋白)產生的 IgG 與 IgM。
抗體試劑盒的檢測裝置外觀和抗原檢測別無二致。二者的差別就是上文中提到的結合墊、檢測線、質控線上附著的物質。
這次,加樣孔中滴入的樣本可能有對 SARS-CoV-2 的抗體。因此,結合墊上就應當是帶了標記物的抗原——當然不可能放活病毒上來。一般這里使用的都是設計檢測的抗原蛋白,比如前文提到的 N 蛋白或 S 蛋白,或是重組病毒,無論是哪種,它都必須包含受體結合域(RBD)作為抗體結合的靶點。在檢測線上,附著的就是抗 IgM 或抗 IgG 抗體,以捕獲結合了抗原的抗體蛋白。最後,質控線上附著抗原的特異性抗體,捕獲剩餘的游離抗原。
總的說來,三種檢測方式針對的是不同的需求,互有優勢,互相補充。核酸檢測作為金標准,直接查驗病毒的 RNA,負責看被檢者帶不帶病毒;抗原檢測作為快速檢測方法,查的是病毒的蛋白質,但准確度不如核酸檢測,對傳染力強的感染者更有效;抗體檢測查的是疫苗有沒有生效、人近期有沒有感染過病毒。
近期,新冠疫情在各地卷土重來。Omicron 變種與此前流行的 Delta 變種相比,雖然病死率與重症率明顯下降,但潛伏期更短,病毒復制速度更快,傳染力明顯增強。希望大家在這樣的環境中保持健康。
『肆』 免疫測定法與液相色譜串聯質譜法的優缺點
免疫測定法與液相色譜串聯質譜法的優缺點如下,
認識到液相色譜-質譜/質譜是一項戰略技術,許多臨床實驗室現在正在使用它來代替其他方法。傳統上,免疫測定主要用於測量低分子量化合物。然而,它們受到一些限制,包括特異性問題、不同製造商的測試之間缺乏一致性,以及由於抗體的交叉反應性不同,同一製造商的批次之間存在差異。此外,異嗜抗體和鉤效應可能會限制許多免疫測定的動態測量范圍。
另一方面,質譜/質譜對許多分析物具有優異的選擇性,因為它通過至少兩個物理特徵來識別它們,——它們的母離子和產物離子質量。隨著軟電離技術(如電噴霧電離和大氣壓化學電離)的引入,低分子量分子可以在液相中電離,從而實現高性能液相色譜和質譜/質譜的耦合.當質譜與液相色譜結合使用時,保留時間增加了另一個屬性,以正確識別分析物,從而提高特異性。
檢驗科也經歷過廠家意外將免疫檢測退出市場的情況,這讓實驗室瘋狂尋找替代方法將檢測結果返還給訂購醫生。這些經驗為實驗室改用液相色譜-串聯質譜法提供了另一個理由
質譜/質譜還顯示出靈活性和多功能性,使實驗室能夠在美國食品和葯物管理局批準的用於測量生物標志物或新批准葯物的試劑盒或免疫測定進入市場之前,提供新的實驗室開發的測試(LDT)。此外,與免疫分析和其他方法相比,液相色譜-質譜/質譜的靈敏度可能會使某些分析物(如類固醇)的檢出限較低。
液相色譜-質譜/質譜的另一個優點是,它使臨床實驗室能夠同時對各種感興趣的分析物進行多重分析、鑒定和定量。多路復用降低了每次測試的成本。與固相萃取或衍生化等更耗時、更昂貴的樣品制備方法相比,液相色譜-質譜/質譜通過簡化或最大限度地減少某些應用(如稀釋和注射或蛋白質碰撞)的樣品制備,提供了其他成本節約和更高的通量。在其他方法中,如氣相色譜(GC),極性化合物的衍生化或化學修飾是必要的,因為這些化合物必須具有足夠的揮發性才能進行分析。然而,衍生化過程增加了樣品制備的時間、人力和成本。
『伍』 自身抗體的檢測方法有哪些
1、抗核抗體檢測
抗核抗體是一組將自身真核細胞的各種細胞核成分作為靶抗原的自身抗體的總稱,主要是IgG,其次是IgM和IgA,無器官和種屬特異性。ANA在大多數自身免疫性疾病中均可呈陽性,正常老年人也可有低滴度的ANA。ANA檢測在臨床自身免疫病診斷與鑒別診斷中是一個重要的篩查試驗。
2、類風濕因子
類風濕因子是變性lgG刺激機體產生的一種自身抗體,主要存在於類風濕關節炎患者的血清和關節液內。主要為lgM型,也有lgG、lgA、lgD和IgE型。
3、抗中性粒細胞胞漿抗體
抗中性粒細胞胞漿抗體是指與中性粒細胞及單核細胞胞漿成分發生反應的抗體。當中性粒細胞受抗原刺激後,胞漿中的α-顆粒釋放蛋白酶-3、髓過氧化物酶等物質,刺激機體而產生ANCA。
自身抗體的產生原因:
人體的生長、發育和生存有完整的自身免疫耐受機制的維持,正常的免疫反應有保護性防禦作用,即對自身組織、成分不發生反應。—旦自身耐受的完整性遭到破壞,則機體視自身組織、成分為「異物」,而發生自身免疫反應,產生自身抗體。
正常人體血液中可以有低滴度的自身抗體,但不會發生疾病,但如果自身抗體的滴度超過某—水平,就可能對身體產生損傷,誘發疾病。自身免疫性疾病中有許多自身抗體,其中最重要的是抗核抗體。
『陸』 樣本前處理(三)
蛋白提取的質量控制
我們通過上一篇筆記里介紹的各種方法把蛋白質提取出來以後,這事兒還沒完,因為我們需要對提取出來的蛋白進行一下質控,以確認是否成功提取出了足夠的蛋白,是否有污染等。
如上圖,質量控制分兩個部分:
含量測定 :檢測是否有充足的蛋白被提取出。注意上圖里提到的不兼容問題,如果你樣品里加過SDS,就不要用Bradford法來測定蛋白濃度,而可以選用BCA方法;反之,如果你樣品里加入了還原劑,就不要用BCA方法來測定蛋白,可以選用Bradford法。
SDS-PAGE :檢測蛋白的提取效率,以及是否有污染。比如我們上了50個樣,能看到的條帶卻很少,說明定量不準確。如果想從幾組樣品中尋找差異蛋白,特別需要做一次SDS-PAGE檢測同類樣品蛋白的提取效率。
以上圖為例,0號樣品中間的條帶不見了,可能是提取蛋白不充分引起的差異,也可能是樣品本身的差異。我們可以重新提取一次,先排除是否是提取造成的差異;如果是樣品本身的差異,建議用label free的方法,每個樣品單獨做定量,而不要用iTRAQ或TMT標記定量,否則會因為中間這個高豐度蛋白的影響,而導致定量不準。
我們再看來幾種常見的問題,以及解決方法,如下圖:
情況1:提取出來的結果差異很大。這種情況需要重新提取,以檢測到底是提取不充分造成的差異,還是樣品本身的差異;
情況2:左邊是分子量marker,右邊是實際樣品,可以看到實際樣品的條帶很少,可能是提取不充分,需要重設提取參數,使用更劇烈的條件,更長的時間,重新提取;
情況3:橫紋、縱紋比較多,很可能是核酸或脂蛋白的影響,這種情況需要進行脫鹽處理,也就是利用脫鹽柱與肽段結合,而與其它物質不結合,從而達到去除污染的目的。
情況4:兩個條帶很類似,但一條明顯比另一條淡。可能造成這種情況的原因有哪些呢?第一種情況,由於這是同樣類型的樣品,比如都是小鼠肌肉組織,一個樣品的蛋白質抽提充分,而另外一個樣品蛋白抽提不充分,就會導致兩條帶不一樣,這種情況下需要重新抽提。還有一種可能,考慮到是等量上樣跑的SDS-PAGE,如果兩個條帶顯示出的蛋白含量差別很大,則可能因為參考的含量測定結果不準確引起的,這時候需要重新定量。
脫鹽
蛋白提取後,還需要做脫鹽處理,我們來看看可以用哪些方法實現。
超濾: 可以截留10kDa及以上的蛋白分子,適用於體積較小的樣品。操作步驟可以是,從100μL超濾濃縮到40μL,再加緩沖液至100μL,再超濾到40μL,反復幾次。事實上,超濾是很難把污染(比如SDS)完全去掉的,最終仍然會有極少量的污染物存在,但當這些污染物的濃度降到一定程度時,則樣品的純凈度我們認為是可以接受的了。
Tips :
樣品中的尿素濃度需要控制在1M以下才能不對樣品造成影響,我們提取蛋白時使用的是8M尿素,直接稀釋8倍的話,造成樣品體積太大,下一步加入酶後,則酶和蛋白的濃度會特別低,酶解效果受到很大影響。另外,體積太大處理起來也不方便。這時也可以使用超濾的方法,多步稀釋,將尿素的濃度降到1M以下。
透析 :也是可以截留10kDa及以上的蛋白分子,適用於體積比較大的樣品,比如尿液,可以將鹽透析至外面的透析液里。
丙醇沉澱 :-20℃丙酮(V樣品:V冷丙酮=1:3以上)沉澱2個小時以上。
C18色譜柱脫鹽法 :Waters公司生產的XBridge C18色譜柱,利用柱子上的填料與蛋白結合,而鹽類物質則流穿過去,從而達到分離的目的。
還原烷基化及酶解
脫鹽完成以後,接下來我們就要進行相當重要的一步:還原烷基化及酶解。整個流程,大夥兒看下面這張圖:
這裡面有兩件事要先跟大夥兒聊聊。
首先,我們來說說為什麼步驟里要把丙酮沉澱放在烷基化以後。通過之前的學習,我們知道丙酮可以溶解樣品的去污劑、還原劑等,而蛋白是不會在丙酮中溶解的,而是會沉澱下來,這樣就達到了去除雜質的目的。
烷基化以後,球狀蛋白變成鏈狀,再通過丙酮沉澱去掉尿素或SDS等污染物,然後復溶(即重新溶解,以備下一步酶解操作),那麼鏈狀的蛋白比球狀蛋白的復溶效果會更好,可以避免因為復溶不充分而造成的損失。因此,丙酮沉澱要放在烷基化之後再做。
另外,關於酶切這一步,有些抗體如果只用胰酶進行酶切,由於酶切位點太少,導致切出來的肽段太長,不便於質譜檢測。這種情況下可以結合其它酶,比如Lys-C,進行多酶酶切,使肽段變得短一些。經過測試我們發現,用Lys-C+胰酶酶切,比只用胰酶酶切,可以提高10%-20%的鑒定率。
酶解需要在buffer體系下完成,比如25mM碳酸氫銨體系(易揮發,pH 7-8)最為常用,或者也可以使用TEAB( triethyl ammonium bicarbonate,三乙基二乙胺鹽,10-100mM)。
Tips :
如果做iTRAQ(或TMT)標記,最好用TEAB,而不是碳酸氫銨體系。因為iTRAQ(或TMT)試劑是標記末端氨基,碳酸氫銨上的氨基也會被標記上,影響蛋白的標記效率。
酶的用量可以參考以下的公式:
W(酶):W(底物)=1:20 – 1:50
此外,需要注意的是胰酶酶解的兼容性問題。胰酶只能耐受最多1M的尿素,且不能與SDS同時使用。
蛋白質及肽段的預分級
前面提過,質譜儀是一種離子飽和性儀器,高豐度蛋白的存在會對低豐度蛋白的信號產生抑制,並且質譜儀反應也需要一定的時間。例如,人的細胞內通常會表達20300種蛋白,它們酶解後,每種蛋白會產生10-20種肽段,那麼就有幾十萬種肽段,質譜很難同時檢測到這么多種肽段。所以對肽段混合物進行分級,可以降低檢測的難度,得到更多的肽段/蛋白鑒定結果。
我們既可以從蛋白水平進行分離,也可以從肽段水平進行分離,還可以將多種分離手段結合起來。從蛋白水平的分離,大家都比較熟悉吧?通常我們用SDS-PAGE或IEF等技術,利用蛋白質的分子量、形狀、等電點等理化性質的不同,將混合在一起的蛋白質分開。
第二種分離方案是在肽段水平上進行,根據肽段的不同性質,使用不同填料進行分離。
SCX(Strong Cation Exchange):是以硅膠為基質的強陽離子交換柱,可以與陽離子結合,並通過buffer進行離子交換,將陽離子分離和洗脫出來,達到與其它不帶陽離子的肽段分離的目的。
SAX(Strong Anion Exchange):硅膠鍵合季銨基團的強陰離子交換柱,可以與陰離子結合,並通過buffer進行離子交換,將陰離子分離和洗脫出來,達到與其它不帶陰離子的肽段分離的目的。
RPLC(Reverse Phase Liquid Chromatography):反相液相色譜柱,與正相柱在表面鍵合極性官能團不同,反相柱的表面鍵合的是非極性的官能團,例如,鍵合十八烷基官能團,稱為C18柱,其它常用的還有C8,C4和C2等。這里我們選用C18柱,根據肽段疏水性的不同,達到分離的目的。
HILIC(Hydrophilic interaction liquid chromatography ):親水色譜柱可以用來分離極性化合物。由於強極性肽段在反相色譜柱中保留情況都比較差,很難將它們分開,而親水色譜柱卻可以用來固定強極性的肽段,並結合高比例有機相與低比例水相組成的流動相,來實現分離的目的,且這樣的流動相組成尤其有利於提高電噴霧離子化質譜(ESI-MS)的靈敏度。
High pH - Low pH RPLC:用pH10的液相條件,結合pH2的RPLC酸性條件,進行分離。
Tips :
通常,我們通過RPLC與質譜聯用。因為RPLC體系是用水和乙腈,易揮發,不含鹽,可以直接送入質譜進行檢測。而像SCX/SAX這類正相柱,需要通過高鹽的體系將樣品洗脫下來,所以它與質譜不兼容。我們在做多級分離時,前面都會有各種鹽的洗脫,最後才是RPLC,然後就可以直接連質譜了。
多維分離:例如,先從蛋白水平進行分離,再從肽段水平進行分離,或者多種肽段水平的分級分離結合起來使用。接下來我們重點聊一下各種多維分離的策略和效果。
我們先來看看上面這張圖。左上角的「A圖「展示的是通過High pH - Low pH RPLC將樣品分成了40個餾分,然後進行叉開的合並,合並為20個餾分,這樣的合並可以讓樣品中的肽段分布更加均勻。
右上角的」B圖」展示的是通過SDS-PAGE進行分離,也分成20個餾分,然後用兩種合並方案,分別合並為5個餾分和6個餾分,這樣做的目的也是為了讓樣品的肽段分布更加均勻。
左下角的「C圖」針對同一種樣品,對High/Low pH RPLC和SDS-PAGE兩種分離策略進行了比較,發現經過兩種分離方法後,有5408個蛋白是都可以鑒定到的,另外有1951種蛋白是只在High/Low pH RPLC分離策略中鑒定到的,而用SDS-PAGE分離,則可以鑒定到其它389種蛋白。從這個圖上看,兩種方法有互補性。
右下角的四幅小圖說明,當我們在做分級分離時,分的級別越多,能鑒定到的蛋白也就越多。不過這種增長並不是呈線性關系的,分級的級數達到一定程度時,能鑒定到的蛋白數量的增長就會飽和。所以比較省時省力又能保證效果的做法時,選擇一個合適的分級數即可。
我們來看一下目前發表的文獻里,利用多級分離所能鑒定到的蛋白數量。
一篇2013年發表在MCP上的文獻報道,採用RP-RPLC兩級分離,分成常規的24個餾分,上樣量為100μg,在一天內能檢測到8000多個蛋白。
一篇2013年發表在Nat Comm上的文獻報道,先採用RP柱分級,再使用SAX分離,然後通過1米的長柱子反相色譜分離。樣品為人的胚胎幹細胞,上樣量仍然為100μg,在線分離8天檢測了9818個蛋白,如果分離時間延長到24天,則可以檢測13075個蛋白。
一篇2014年發表在Nat Method上的文獻報道,採用IEF(等電聚焦電泳,isoelectric focusing)與RPLC結合,樣品是人的上皮癌細胞,上樣量為800μg,分成了360個餾分,耗時超過15天,一共分析到13078個蛋白。
就像前面說到的,對蛋白及多肽分離的級數越多,能鑒定到的蛋白也就越多,但常常因為機時的限制,再加上這種變化趨勢到一定程度總會飽和,所以我們通常有個權衡。比如常規的分10個餾分,基本上可以鑒定到5000-8000個蛋白。如果是血清樣品,可以餾分更多一些,尤其是RPLC一維,如果分到40或60個餾分,再合並為10或20個餾分,比直接分成10個或20個餾分能鑒定到的蛋白要多30%左右!
Tips :
對於分餾分,通常是利用C18的色譜柱來分級分餾分,這個沒有試劑盒。
『柒』 質譜檢測是什麼呢
質譜檢測是一種與光譜並列的譜學方法,通常意義上是指廣泛應用於各個學科領域中通過制備、分離、檢測氣相離子來鑒定化合物的一種專門技術。
質譜法在一次分析中可提供豐富的結構信息,將分離技術與質譜法相結合是分離科學方法中的一項突破性進展。
在眾多的分析測試方法中,質譜學方法被認為是一種同時具備高特異性和高靈敏度且得到了廣泛應用的普適性方法。質譜儀器一般由樣品導入系統、離子源、質量分析器、檢測器、數據處理系統等部分組成。
質譜檢測技術的應用:
質譜技術是一種鑒定技術,在有機分子的鑒定方面發揮非常重要的作用。它能快速而極為准確地測定生物大分子的分子量,使蛋白質組研究從蛋白質鑒定深入到高級結構研究以及各種蛋白質之間的相互作用研究。
隨著質譜技術的發展,質譜技術的應用領域也越來越廣。由於質譜分析具有靈敏度高,樣品用量少,分析速度快,分離和鑒定同時進行等優點,因此,質譜技術廣泛的應用於化學,化工,環境,能源,醫葯,運動醫學,刑事科學技術,生命科學,材料科學等各個領域。
以上內容參考:網路-質譜