⑴ 解方程的簡便方法運算
解方程的簡便方法一般是猜出來一個根,然後用短除法做,最後到二次方程,就用求根公式做就可以了。
⑵ 用方程解決問題的一般步驟
列方程解決問題的一般步驟: (1)弄清題意,設未知數,一般用x表示;
(2)找出題中數量間的相等關系,列出包含x的等式;
(3)解方程;
(4)檢驗,寫出答案.
使方程左右兩邊相等的未知數的值,叫做方程的解。求方程的解的過程叫做解方程。必須含有未知數等式的等式才叫方程。等式不一定是方程,方程一定是等式。
⑶ 解簡易方程的基本方法
根據四則運算中各部分之間的關系,看未知數屬於哪部分,然後根據相應的運算關系,求出該部分,即「X」。
⑷ 用方程解決問題有哪些步驟
一元一次方程:去分母、去括弧、移項、合並同類項和將未知數的系數化為1;
分式方程:化簡、解答方程、檢驗
一元二次方程:
一.配方法
1.將此一元二次方程化為ax^2+bx+c=0的形式(此一元二次方程滿足有實根)
2.將二次項系數化為1
3.將常數項移到等號右側
4.等號左右兩邊同時加上一次項系數一半的平方
5.將等號左邊的代數式寫成完全平方形式
6.左右同時開平方
7.整理即可得到原方程的根
二.公式法
利用公式x=-b±√b2-4ac/2解方程
三.因式分解法
1.將方程化為ax2+bx+c=0的形式
2.再利用交叉相乘的方法,化為(x+A)(x+B)=0的形式
3.解出x=A,x=B
⑸ 數學解方程有幾種方法
1、估演算法:剛學解方程時的入門方法。直接估計方程的解,然後代入原方程驗證。
2、應用等式的性質進行解方程。
3、合並同類項:使方程變形為單項式
4、移項:將含未知數的項移到左邊,常數項移到右邊
例如:3+x=18
解:x=18-3
x=15
5、去括弧:運用去括弧法則,將方程中的括弧去掉。
4x+2(79-x)=192
解: 4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
x=17
6、公式法:有一些方程,已經研究出解的一般形式,成為固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
7、函數圖像法:利用方程的解為兩個以上關聯函數圖像的交點的幾何意義求解。
(5)用簡單的方法做方程解決問題擴展閱讀
解方程依據
1、移項變號:把方程中的某些項帶著前面的符號從方程的一邊移到另一邊,並且加變減,減變加,乘變除以,除以變乘;
2、等式的基本性質
性質1:等式兩邊同時加(或減)同一個數或同一個代數式,所得的結果仍是等式。用字母表示為:若a=b,c為一個數或一個代數式。
(1)a+c=b+c
(2)a-c=b-c
性質2:等式的兩邊同時乘或除以同一個不為0的數,所得的結果仍是等式。
用字母表示為:若a=b,c為一個數或一個代數式(不為0)。則:
a×c=b×c 或a/c=b/c
性質3:若a=b,則b=a(等式的對稱性)。
性質4:若a=b,b=c則a=c(等式的傳遞性)。
⑹ 五年級解方程簡便方法
五年級上冊解簡易方程之方法及難點歸納
重點概念:方程,方程的解,解方程,等式的基本性質
要點回顧:
「解方程」就是要運用「等式的基本性質」,對「方程」的左右兩邊同時進行運算,以求出「方程的解」的過程。(方程的解即是如同「X=6」的形式)
「解方程」就好像是要把復雜的繩結解開,因此一般要按照「繩結」形成的過程逆向操作(逆運算)。
過程規范:
先寫「解:」,「=」號對齊往下寫,同時運算前左右兩邊要照抄,解的未知數寫在左邊。
注意事項:
以下內容除了標明的外,全都是正確的方程習題示例,且沒有跳步,請仔細觀看其中每步的解題意圖。帶「*」號的題目不會考查,但了解它們有助於掌握解復雜方程的一般方法,對簡單的方程也就自然游刃有餘了。
一、一步方程
只有一步計算的方程,直接逆運算除未知數外的部分。
難點:當未知數出現在減數和除數時,要先逆運算含未知數的部分。
二、兩步方程
兩步方程中,若是只有同級運算,也可以先計算,後當做一步方程求解。注意要「帶符號移動」,增添括弧時還要注意符號的變化。
則先逆運算減法(即兩邊同加),再逆運算乘法(即兩邊同時除以),依此類推。
難點:當未知數出現在減數和除數時,要先把含有未知數的部分看作一個整體(可以看成是一個新的未知數),就相當於簡化成了一步方程。
四、其它方程(方程兩邊都出現未知數的情況)
要解決兩邊都出現未知數的方程,就必須通過「等式的基本性質」,消去一邊的未知數,成為我們熟悉的一般形式。因此,常常要將若干個未知數看成整體,共同加上或者減去。
難點:方程兩邊都有未知數,且未知數是除數(即非0),則可以同時乘以未知數(這時方程的兩邊都各看作一個整體,裡面的每一項都要乘以未知數),再消去一邊的未知數。