導航:首頁 > 解決方法 > 解決問題的策略的方法

解決問題的策略的方法

發布時間:2022-12-27 06:06:24

⑴ 解決問題的策略與方法(急需)

1、畫圖的策略

根據孩子的年齡特點,他們對符號、運算性質的推理可能會發生一些困難,如果適時地讓孩子們自己在紙上塗一塗、畫一畫,可以拓展學生解決問題的思路,幫助他們找到解決問題的關鍵。因為畫圖比較直觀,通過畫圖能夠把一些抽象的數學問題具體化,把一些復雜的問題簡單化,從而有效地解決問題。

(1)、線段圖。

線段圖在解答分數問題時的作用是顯而易見的,教過小學高年級數學的教師都對運用線段圖來解答分數問題情有獨鍾,但線段圖在解決其它類型的問題時同樣也會發揮其直觀、形象的作用。

(2)、連線圖。

在解決諸如互相通電話、上下衣搭配、比賽場上有多少場比賽等問題時,運用連線的方法解答既直觀又快捷還不容易出錯,可以說是解答此類問題的最佳選擇策略。

(3)、范圍圖

在解決長方形長不變,而寬減少,面積減少,求原長方形面積;長方形長增加或寬增加,面積增加,求原長方形面積;長方形長增加,寬增加,求增加面積。可以通過畫范圍圖,就比較直觀,不容易出錯。

2、列表、嘗試的策略。

在解決問題的過程當中,教師可以引導學生將問題的條件信息用表格的形式把它列舉出來,起到事半功倍的效果。如在解決諸如租船、租車、購票或得分問題以及解決比較困難的雞兔同籠問題時經常用到。

3、藉助手來學習的策略。

每個人都有兩只手,10個手指頭,5個手指4個空(間隔),10個手指就有9個間隔,首先使學生明確手指數與間隔數的關系,明確了這兩者之間的關系後,就可以用手來解決植樹、鋸木頭、上樓梯、鍾打點等問題。例如:小紅家住5樓,每層樓之間有20個台階,從1樓到5樓要走多少個台階?手一伸,5個手指代表5層樓,共4個間隔,4×20=80個台階,就不會出現5×20=100個台階的錯誤了。用手來幫我們解決問題的策略可以說是簡便易行,應用廣泛。

4、模擬操作策略。

模擬操作是通過探索性的動手操作活動,來模擬問題情境,從而獲得問題解決的一種策略。學生是通過自己探索的過程,將需要解決的問題,轉化為一個已知的問題來進行推導性的研究。通過這種開發性的操作的策略的訓練,不僅能夠使學生獲得問題的解決,而且在這個過程當中,也能培養學生的創造性思維。

5、推理的策略。

除了以上介紹的這些策略外,我們以前經常用到的從問題出發思考問題(可稱作逆推的策略),從條件出發思考問題(可稱作順推的策略)既是過去我們經常用到的「分析法」和「綜合法」,這些方法都可以看作推理的策略。

事實上,當一個數學問題呈現在面前時,其思維的觸須是多端的。以上所述的幾種問題解決的策略只是平時常用的導引途徑,為了能夠更有效地提高數學問題解決的能力,教師還要引導學生在數學問題解決的實踐中注意不斷思索探求、逐步積累解題經驗,以掌握更多、更具體的解題方法和思維策略。

教案版

⑵ 常見解決問題的策略有( )、( )、( )

畫圖的策略、推理的策略、嘗試調整的策略,模擬操作的策略。

一、畫圖的策略。

由於小學生認知水平的局限,他們對符號、運算性質的推理可能會發生困難,在解決問題時,引導他們自己在紙上塗一塗、畫一畫,可以拓展解題思路,找到解題關鍵,領悟解題方法。因此,畫圖應該是學生們應該掌握的一種基本的解題策略,尤其用算術法解題的小學生來說,非常重要。

主要是因為這種方法直觀、形象,能夠幫助學生將抽象的數學問題具體化,復雜的問題簡單化。可以彌補小學生思維能力的不足,逐步提升其思維水平。

常用的畫圖方法有:直觀圖、線段圖、示意圖、思維導圖、集合圖等。

二、推理的策略。

數學教學的價值追求就是學生思維的發展,數學教育的最高境界就是培養人的思維方式。而推理是數學的基本思維方法,也是學生數學學習中經常使用的思維方式。

推理包括合情推理和演繹推理。合情推理是從已有的事實出發,憑借經驗和直覺,通過歸納和類比得到某些結果。演繹推理是從定義、公式、法則等出發,進行證明與計算。

在小學數學問題解決的過程中,更多採用合情推理。比如常用的假設法、設數法等。以往數學教學中常說的「分析法」與「綜合法」,都是簡單的推理。

三、嘗試調整的策略。

嘗試的策略,簡單地說就是你不知道從哪兒開始的時候,可以先猜一猜。猜測的結果如果合理但不合乎要求,再把結果放到問題中去考慮,進一步調整、尋找答案。

小學數學學習中常用的表格法、枚舉法、篩選法等,其實就是嘗試調整的策略。比如我們在解決雞兔同籠問題時,用列舉雞和兔的只數算對應腿數,就是這種策略。

四、模擬操作的策略。

模擬操作是通過探索性的動手操作活動來模擬問題情境,從而獲得解決問題的一種策略。通過這種策略的訓練,可以培養學生的創造性思維。

比如,在解決火車過橋問題時,讓學生將文具盒當做橋,將自己用的筆當做火車,自己模擬火車過橋。通過類似問題的模擬,把這種不清晰的數量關系很直觀地表現出來,這種問題就容易理解解決了。

其他策略:

1、簡化策略

所謂簡化就是把復雜的問題簡單化,我們在解決問題的過程可能會發現有些結合實際的問題,不管在語言的表述還是信息的傳遞上可能要說一大堆有關情境的事,我們怎麼樣把這個生活中的實際問題,把它抽象成數學問題,簡化策略就是指在解決問題過程中,先拋開問題的細節,直接抓住問題的關鍵信息,將抽象的問題簡化成簡單的形式,解決簡化了的問題,再解決復雜的問題,這就是一個簡化的過程。

正如著名數學家華羅庚所說的「善於『退』,足夠地『退』,『退』到最原始而不失去重要性的地方,是學好數學的一個訣竅」。運用簡化策略除了可以將復雜的問題明了、簡潔,還可以運用簡化策略將陌生的問題轉化為熟悉的問題,使我們便於抓住問題的關鍵部分進行思考從而解決問題。

2、倒推策略

倒推策略也叫還原策略,就是在解決問題時,有些問題用順向推理的方法很難解答,如果從問題的結果出發,從後往前逐步推理,問題很容易就解決了。這種從問題出發推理尋求解題途徑的方法就是逆推法。

在解決實際問題的過程中讓學生了解適合用這個策略來解決問題的特點,學會用「逆推」的策略解決問題的思考方法,增強解決問題的策略的意識,獲得解決問題的成功體驗,提高學好數學的信心。例如:男生比女生的2倍多10人,男生有50人,求女生有多少人?就可以使用倒推的策略。

3、類比推理策略

當學生面臨新問題時,教師及時啟發學生用他們所熟悉的知識經驗對新問題進行分析、比較,發現其內在聯系,從而獲得新問題的解決方法。引導學生類比,進行推測和引申,串聯了知識點,拓寬了知識面,強化了解決問題的能力。

就如同搭橋引渡,使學生溫故知新,能幫助學生有效的認識事物的基本規律,更好地理解問題、提高分析問題和解決問題的能力。

4、轉化策略

轉化是小學生在學習和解決問題時常用的一種策略,所謂轉化就是一個人運用已有的知識的、已經習得的經驗,將一些新問題轉化成舊有問題進而解答的過程,也就是人的思維方式轉變的過程。學生運用轉化策略,不僅可以熟練運用舊有知識,又可將新問題的解決方式納入到舊有的策略中,以形成更完整的知識體系。

曹沖稱象的方法就是一個很典型的轉化策略。例如:一支鋼筆和三支圓珠筆的價錢相等,小明買了5支鋼筆和4支鉛筆,一共用了38元,求每支鋼筆和鉛筆各多少元?就可以運用轉化的策略來解決,可以把鋼筆轉化為鉛筆,就很容易解決了。

⑶ 初中的數學公式(解決問題的策略)

中學數學常用的解題方法

數學的解題方法是隨著對數學對象的研究的深入而發展起來的。教師鑽研習題、精通解題方法,可以促進教師進一步熟練地掌握中學數學教材,練好解題的基本功,提高解題技巧,積累教學資料,提高業務水平和教學能力。

下面介紹的解題方法,都是初中數學中最常用的,有些方法也是中學教學大綱要求掌握的。

1、配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

6、構造法

在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

7、反證法

反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。

歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

8、面積法

平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法

用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

9、幾何變換法

在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。

10.客觀性題的解題方法

選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。

要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。

⑷ 小學數學中解決問題的策略有哪些

1)首先要幫助學生提高自信心和學數學的興趣。
2)其次,老師要幫助學生建立扎實的基礎知識,這種知識必須是系統化的,相互聯系融會貫通的的知識體系,而不是簡單的,孤立的知識點。
3)再次,引導幫助學生建立一種系統化的過程和方法去解題。從閱讀理解題意和求解目標開始,分析問題,制定解題計劃,應用與題目相關聯的知識及相關的解題策略,逐步達到求解目標,驗證求解目標,最後還要反思和總結。
4)最後而且是非常重要且易被人們忽視的一點是,要在講解數學基本知識的同時,幫助引導小學生建立初步的【數學思想方法】,用【數學思想方法】武裝學生的頭腦,而不能僅僅是就事論事講解題目的解法。
數學思想方法是人類智慧的結晶,是人類長期積累起來的寶貴財富,是指導我們解數學題的指導思想。一旦學生腦海中建立起來數學思想方法,它不僅適用於小學數學,而且還可以延續到初中,高中和大學,陪伴人的一生。知識是死的,會隨著時間的推移或淘汰或淡忘,而通過講解學習知識過程所建立起來的數學思想方法思維,具有長久的生命力,就像我們所說的:毛澤東思想永放光芒。 數學思想方法和思維建立後,它會融入到我們的血液里,潛移默化地影響我們的思維,伴隨人的一生。

⑸ 小學數學中解決問題的策略有哪些

要提高學生解決問題的能力,關鍵是要加強對學生進行解決問題策略的指導。

解決問題的策略是在解決問題的過程中逐步形成和積累的,同時需要學生自己不斷進行內化。

根據問題的難易程度,解決問題的策略可以分為一般策略和特殊策略兩類。

一、一般策略

有些問題的數量關系比較簡單,學生只需依據生活經驗或通過分析、綜合等抽象思維過程就可以直接解決問題。

1.生活化。

生活化是指在解決數學問題時通過建立與學生生活經驗的聯系從而解決問題的策略,常運用於學習新知時,關鍵要在問題解決後向學生點明解決問題過程中所蘊涵的數學知識和方法。

如學習《最大公因數》,先出示問題:老師最近買了一個車庫,長40分米、寬32分米,想在車庫的地面上鋪正方形地磚。

如果要使地磚的邊長是整分米數,在鋪地磚時又不用切割,地磚有幾種選擇?如果要使買的塊數最少,應該買哪一種?因為學生對此類問題比較熟悉,所以普遍認為:地磚的邊長應該是40和32公有的因數,公有因數最大時買的塊數最少,解決這兩個問題應先找出40和32的因數。

然後讓學生梳理解決問題的過程,並點明什麼是公因數、什麼是最大公因數、如何找公因數和最大公因數。

2.數學化。

數學化是指在解決實際問題時通過建立與學生已有知識的聯系從而解決問題的策略,常運用於實際解決問題時,關鍵是在解決問題之前要讓學生明確運用什麼知識和方法來解決問題。

如學習《長方形周長》,當學生已經知道長方形周長=(長+寬)×2後出示:小明沿著一個長方形游泳池走了一圈,他一共走了多少米?首先讓學生明確「求一共走了多少米就是求長方形周長」,再思考「長方形周長怎麼求」、「求長方形周長應知道什麼」,最後出示信息「長50米、寬20米」,學生就能自主解決問題。

3.純數學。

純數學是指在解決數學問題時通過分析、利用數量之間的關系從而解決問題的策略,常運用於學習與舊知有密切聯系的新知時,關鍵要在需解決的數學問題和已有的數學知識之間建立起橋梁。

如學習《稍復雜的分數乘法應用題》,先出示舊問題:水泥廠二月份生產水泥8400噸,三月份比二月份增加25%,三月份生產水泥幾噸?學生認為:因為增加幾噸=二月份幾噸×25%,所以三月份幾噸=二月份幾噸×(1+25%)=8400×(1+25%)。

再出示新問題:水泥廠二月份生產水泥8400噸,三月份比二月份減少25%,三月份生產水泥幾噸?讓學生說說兩類問題有什麼異同,因為這兩類問題有著本質的聯系,所以教師只需在兩者之間建立起聯系的橋梁,學生就能用遷移的方法自主解決新問題,他們認為:因為減少幾噸=二月份幾噸×25%,所以三月份幾噸=二月份幾噸×(1-25%)=8400×(1-25%)。

二、特殊策略

有些問題的數量關系較復雜,常需要一些特殊的解題策略來突破難點,從而找到解題的關鍵並順利解決問題。

小學生常用的也易接受的特殊策略主要有以下七種:

1.列表的策略。

這種策略適用於解決「信息資料復雜難明、信息之間關系模糊」的問題,它是「把信息中的資料用表列出來,觀察和理順問題的條件、發現解題方法」的一種策略。

如在學習人教版第7冊《烙餅中的數學問題》時,為了研究烙餅個數與烙餅時間的關系就可採用列表策略,如右圖。

運用此策略時要注意:(1)帶領學生經歷填表過程;(2)引導學生理解數量之間的關系;(3)啟發學生利用表格理出解題思路,說一說自己的發現,感受函數關系。

2.畫圖的策略。

這種策略適用於解決「較抽象而又可以圖像化」的問題,它是「用簡單的圖直觀地顯示題意、有條理地表示數量關系,從中發現解題方法、確定解題方法」的一種策略。

如在學習人教版第5冊《搭配問題》時,為了能更直觀、有條理地解決問題就可採用畫圖策略,如右圖。

運用此策略時要注意:(1)讓學生在畫圖的活動中體會方法,學會方法;(2)畫圖前要理請數量關系;(3)畫圖要與數量關系相統一。

3.枚舉的策略。

這種策略適用於解決「用列式解答比較困難」的問題,它是「把事情發生的各種可能進行有序思考、逐個羅列,並用某種形式進行整理,從而找到問題答案」的一種策略。

如在學習人教版第3冊《簡單的排列與組合》時,為了能做到不重復不遺漏就可採用枚舉策略,如右圖。

運用此策略時要注意:(1)在枚舉的時候要有序地思考,做到不重復、不遺漏;(2)設計的教學活動應包括「引發需要——填表列舉——反思方法——感悟策略」等幾個主要環節;(3)要在反思中積累列舉技巧,引導學生進行整理、歸納與交流。

4.替換的策略。

這種策略較適用於解決「條件關系復雜、沒有直接方法可解」的問題,它是「用一種相等的數值、數量、關系、方法、思路去替代變換另一種數值、數量、關系、方法、思路從而解決問題」的一種策略。

如學習人教版第6冊《等量代換》時,為了能把復雜問題變成簡單問題就可採用替換策略,如右圖。

運用此策略時要注意:(1)把握替換的思路,提出假設並進行替換、分析替換後的數量關系;(2)掌握替換的方法,在題目中尋找可以進行替換的依據、表示替換的過程;(3)抓住替換的關鍵,明確什麼替換什麼、把握替換後的數量關系。

5.轉化的策略。

這種策略主要適用於解決「能把數學問題轉化為已經解決或比較容易解決的問題」的問題,它是「通過把復雜問題變成簡單問題、把新穎問題變成已經解決的問題」的一種策略。

如學習人教版第11冊《按比例分配》時,為了能讓學生利用所學知識主動解決新問題就可採用轉化策略,如右圖。

運用此策略時要注意:(1)突出轉化策略的實用價值,精心選擇數學問題;(2)突破運用轉化策略的關鍵,把新問題、非常規問題分別轉化成熟悉的、常規的且能夠解決的問題;(3)在豐富的題材里靈活應用轉化策略,提高應用轉化策略解決問題的能力。

6.假設的策略。

這種策略主要運用於解決「一些數量關系比較隱蔽」的問題,它是「根據題目中的已知條件或結論作出某種假設,然後根據假設進行推算,對數量上出現的矛盾進行適當調整,從而找到正確答案」的一種策略。

如學習人教版第11冊《雞兔同籠》時,為了能使隱蔽復雜的數量關系明朗化、簡單化就可採用假設策略,如右圖。

運用此策略時要注意:(1)根據題目的已知條件或結論作出合理的假設;(2)要弄清楚由於假設而引起的數量上出現的矛盾並作適當調整;(3)根據一個單位相差多少與總數共差多少之間的數量關系解決問題。

7.逆推的策略。

這種策略主要運用於解決「已知『最後的結果、到達最終結果時每一步的具體過程或做法、未知的是最初的數量』這三個條件」的問題,它是「從題目的問題或結果出發、根據已知條件一步一步地進行逆向推理,逐步靠攏已知條件直至問題解決」的一種策略。

如解決右圖中的類似問題時,為了能更充分地利用條件、更好地解決問題就可以運用逆推策略。

運用此策略時要注意:(1)在鋪墊式敘述時不要有任何暗示,不到最後不要得出結論;(2)在每一處的敘述中都要能為最後的結論服務;(3)在向前推理的過程中,每一步運算都是原來運算的逆運算;(4)這類問題還可以用畫線段圖和列表的方法來解決。

關註解決問題的策略,對於如何分類其實並不重要,重要的是要理解常用策略的本質、把握每種策略的運用范圍和要點,更快、更好地解決問題。

⑹ 常用的解決問題的策略有哪些

解決問題策略的學習,和解決問題的學習是統一的。在小學數學學習中,往往通過例題的學習來使學生掌握解決問題的策略,又通過練習題的應用,使學生掌握解決問題的策略。可以說解決問題的策略是數學例題學習的核心,作為一名教師要知道小學數學中常用的解決問題的策略有哪些?下面嘗試列舉一二。

一、畫圖的策略。

由於小學生認知水平的局限,他們對符號、運算性質的推理可能會發生困難,在解決問題時,引導他們自己在紙上塗一塗、畫一畫,可以拓展解題思路,找到解題關鍵,領悟解題方法。因此,畫圖應該是學生們應該掌握的一種基本的解題策略,尤其用算術法解題的小學生來說,非常重要。

為什麼說畫圖的策略很重要呢?主要是因為這種方法直觀、形象,能夠幫助學生將抽象的數學問題具體化,復雜的問題簡單化。可以彌補小學生思維能力的不足,逐步提升其思維水平。

常用的畫圖方法有:直觀圖、線段圖、示意圖、思維導圖、集合圖等。

二、推理的策略。

數學教學的價值追求就是學生思維的發展,數學教育的最高境界就是培養人的思維方式。而推理是數學的基本思維方法,也是學生數學學習中經常使用的思維方式。

推理包括合情推理和演繹推理。合情推理是從已有的事實出發,憑借經驗和直覺,通過歸納和類比得到某些結果。演繹推理是從定義、公式、法則等出發,進行證明與計算。

在小學數學問題解決的過程中,更多採用合情推理。比如常用的假設法、設數法等。以往數學教學中常說的「分析法」與「綜合法」,都是簡單的推理。

三、嘗試調整的策略。

嘗試的策略,簡單地說就是你不知道從哪兒開始的時候,可以先猜一猜。猜測的結果如果合理但不合乎要求,再把結果放到問題中去考慮,進一步調整、尋找答案。

小學數學學習中常用的表格法、枚舉法、篩選法等,其實就是嘗試調整的策略。比如我們在解決雞兔同籠問題時,用列舉雞和兔的只數算對應腿數,就是這種策略。

四、模擬操作的策略。

模擬操作是通過探索性的動手操作活動來模擬問題情境,從而獲得解決問題的一種策略。通過這種策略的訓練,可以培養學生的創造性思維。

比如,在解決火車過橋問題時,讓學生將文具盒當做橋,將自己用的筆當做火車,自己模擬火車過橋。通過類似問題的模擬,把這種不清晰的數量關系很直觀地表現出來,這種問題就容易理解解決了。

當然,解決問題的策略還有很多,在解決一個問題時,往往是多種策略的綜合運用。我們在解決問題時,要重視滲透解決問題的策略,進而逐步提升學生解決問題的能力。

⑺ 數學解決問題的策略

在解題過程中,運用畫圖的方法,畫出與題意相關的示意圖,藉助示意圖來幫助推理、思考,這是小學數學解決問題中最常用的一種策略。

常見的畫圖方式有:線段圖、集合圖等。
將疑難問題的文字「翻譯成圖」,能夠立竿見影地理清思路,找到解題策略。

例:某班有45位同學,其中有30人沒有參加數學小組,有20人參加航模小組,有8小組都參加了。問:只參加一個小組的學生有多少人?

分析:畫出集合圖。
方框表示全班所有人。區域①表示只參加數學小組的同學。區域②表示只參加航模小組的人。區域③表示同時參加數學、航模兩個小組的人。區域④表示兩個小組都沒有參加的人。

圖片、圖形轉達信息的效率要遠遠高於文字和語言。
利用集合圖將復雜的文字概念關系轉化為直觀的圖,可以幫助孩子快速理清各種量之間的邏輯關系,提高解題效率。

轉化策略
轉化也是小學數學解決問題中常用的一種方法,能把較復雜的問題轉化為簡單問題,能把未知的問題變為已知的問題。

例:媽媽買了2千克柑橘和5千克生梨,共花了28.6元。每千克柑橘的價格是生梨的4倍,每千克柑橘和生梨各多少元?
分析:「每千克柑橘的價格是生梨的4倍」,這句話就是轉化的條件。我們可以這樣想:買1千克柑橘的價錢可以買4千克生梨,那麼買2千克柑橘的價錢可以買2×4=8千克生梨。所以總共花了28.6元相當於買了(8+5)千克生梨所花的錢。通過轉換,問題就得以解決了。

列表策略
列表策略,又叫列舉策略。是將問題的條件信息用表格的形式列舉出來,便於從中發現問題、分析數量關系,從而排除非數學信息的干擾,同時也便於找到解決問題的方法。

例:有1張五元紙幣,2張兩元紙幣,8張1元紙幣,要拿9元錢,有幾種拿法?

閱讀全文

與解決問題的策略的方法相關的資料

熱點內容
蘋果6拍的圖片在哪裡設置方法 瀏覽:745
坐骨結節痛的治療方法 瀏覽:286
正確的血壓測量方法圖片 瀏覽:936
花生醬的保鮮方法有哪些 瀏覽:716
柱混泵施工方法視頻 瀏覽:178
簡述心理干預的常用技術方法 瀏覽:421
人工挖孔鋼筋計算方法 瀏覽:110
脫發少的治療方法 瀏覽:226
能變瘦的方法視頻 瀏覽:865
眼皮跳土方法怎麼治 瀏覽:264
褲子收納最佳方法技巧 瀏覽:954
墨西哥豆子的種植方法 瀏覽:564
如何擦木製門方法 瀏覽:629
水中臭氧檢測方法 瀏覽:889
母豬拱地不吃食的治療方法 瀏覽:160
外泌體蛋白質組學分析方法 瀏覽:438
epson掃描儀的使用方法 瀏覽:421
兒童斑禿的治療方法 瀏覽:592
怎麼選擇籌資決策的評價方法 瀏覽:660
掛鍾製作方法簡單 瀏覽:923