① 目前常用的分析測試技術
本次研究過程中所涉及的PGE分析測試主要是利用鋶試金富集-碲共沉澱-電感耦合等離子體質譜法(ICP-MS)來完成的。詳細的分析流程可見有關參考文獻,現簡述如下:
取樣10g於玻璃三角瓶中,加入適量的Na2B4O7·10H2O、Na2CO3、SiO2、羰基鎳粉、單質硫及麵粉等混合熔劑,充分搖動混勻後,轉入粘土坩堝中,准確加入適量餓稀釋劑後再覆蓋少量熔劑。而後將粘土坩堝放入已升溫至1100℃的馬弗爐中熔融1.5h。取出坩堝,將熔融體注入鐵模,冷卻後取出鋶鎳扣。將其粉碎後轉入燒杯中,加入60m L濃HCl,加熱溶解至溶液變清且不再冒細泡為止。加入碲共沉澱劑1m L(0.5mg)、Sn Cl2溶液1m L,加熱0.5h並放置數小時使沉澱凝聚。然後用0.45µm濾膜負壓抽濾,2mol/L HCl洗沉澱數次。將沉澱和濾膜一同轉入Teflon封閉溶樣器,加入1m L王水,封閉,於約100℃溶解2~3h,冷卻後轉入10m L比色管中,用蒸餾水定容待ICP-MS測量。
這種分析方法主要特點是取樣量大,可有效地降低「塊金效應」的影響,一次熔樣可同時測定Os、Ir、Pt、Ru、Rh、Pd等6個鉑族元素,同時ICP-MS也具有多元素分析與靈敏度高檢出限低的特點,因此,近年來越來越多的實驗室採用這種分析方法作為PGE分析的常規方法。這種方法的關鍵首先在於要有合適的試金配料,這樣才能得到良好的鋶試金扣,其次在於樣品粉碎、酸溶解、碲共沉澱、過濾等化學流程的操作,最後是ICP-MS儀器的測量。就一般岩石樣品而言,在取樣量為10g的條件下,試金配料為:Na2B4O7·10H2O、Na2CO3、SiO2、羰基鎳粉、單質硫及麵粉分別取20g、15g、2g、1.5g、1.2g和1g。此時,試金扣一般為2g左右。從每批分析的樣品所帶的標准物質橄欖岩GBW07290(GPT-3)和輝石橄欖岩GBW07291(GPT-4)的結果來看,結果比較穩定並且與推薦值吻合較好(表1-7)。但是,對於礦化的尤其是礦化嚴重的樣品,按此試金配料得到的結果就不理想。表1-8為礦化較嚴重的樣品,在取樣量不同的條件下,所得到的平行樣結果。從分析結果看,如果取樣量為10g,得到的試金扣往往較大且金屬光澤性不好,在鹽酸溶解的過程中,或者有單質硫析出,或者有大量的酸不溶物產生,造成的直接影響是要麼對PGE產生吸附作用,使得分析結果偏低,要麼酸不溶物的存在可能會對質譜測量產生干擾,使得某些元素的結果又偏高。如果降低取樣量為1g,調整試金配料,盡管能得到較好的試金扣,但是否能有效地降低「塊金效應」的影響?因此,對於礦化的尤其是礦化嚴重的樣品,分析結果很難加以評價。必須從分析方法本身,從礦化樣品的試金配料、質譜干擾等方面進行進一步的研究,以期得到准確穩定的分析結果。
表1-7 標准物質統計結果(wB/ng·g-1)
表1-8 礦化樣品的平行樣結果
一、檢測標准:
1、戶外標准
(2)工業生產檢測標准和檢測方法擴展閱讀:
噪音的一些控制方法:
1、降低聲源噪音,工業、交通運輸業可以選用低噪音的生產設備和改進生產工藝,或者改變噪音源的運動方式(如用阻尼、隔振等措施降低固體發聲體的振動)。
2、在傳音途徑上降低噪音,控制噪音的傳播,改變聲源已經發出的噪音傳播途徑,如採用吸音、隔音、音屏障、隔振等措施,以及合理規劃城市和建築布局等。
3、受音者或受音器官的噪音防護,在聲源和傳播途徑上無法採取措施,或採取的聲學措施仍不能達到預期效果時,就需要對受音者或受音器官採取防護措施,如長期職業性噪音暴露的工人可以戴隔音耳塞、耳罩或頭盔等護耳器。
③ 工業廢水檢測方法
工業廢水檢測主要是對企業工廠在生產工藝過程中排出的廢水、污水和水生物檢測的總稱。工藝廢水檢測包括生產廢水和生產廢水。按工業企業的產品和加工對象可分為造紙廢水、紡織廢水、製革廢水、農葯廢水、冶金廢水、煉油廢水等。
一、生化需氧量(BOD)
生化需氧量又稱生化耗氧量,縮寫BOD,懇表示水中有機物等需氧污染物質含量的一個綜合指標,它說明水中有機物出於微生物的生化作用進行氧化分解,使之無機化或氣體化時所消耗水中溶解氧的總數量,其單位以ppm成毫克/升表示。其值越高,說明水中有機污染物質越多,污染也就越嚴重。加以懸浮或溶解狀態存在於生活污水和製糖、食品、造紙、纖維等工業廢水中的碳氫化合物、蛋白質、油脂、木質素等均為有機污染物,可經好氣菌的生物化學作用而分解,由於在分解過程中消耗氧氣,故亦稱需氧污染物質。若這類污染物質排人水體過多,將造成水中溶解氧缺乏,同時,有機物又通過水中厭氧菌的分解引起腐敗現象,產生甲烷、硫化氫、硫醇和氨等惡具氣體,使水體變質發臭。
廢水中各種有機物得到完會氧化分解的時間,總共約需一百天,為了縮短檢測時間,一般生化需氧量條以被檢驗的水樣在20℃下,五天內的耗氧量為代表,稱其為五日生化需氧量,簡稱BOD5,對生活廢水來說,它約等於完全氧化分解耗氧量的70%。
我國規定,在工廠排出口,廢水的BOD;的最高容許濃度為60毫克/升,地面水的BOD不得超過4毫克/升。
二、化學需氧量COD
化學需氧量又稱化學耗氧量簡稱COD。是利用化學氧化劑(如高錳酸鉀)將水中可氧化物質(如有機物、亞硝酸鹽、亞鐵鹽、硫化物等)氧化分解,然後根據殘留的氧化劑的量計算出氧的消耗量。它和生化需養量(BOD)一樣,是表示水質污染度的重要指標。COD的單位為ppm或毫克/升,其值越小,說明水質污染程度越輕。
水中的還原性物質有各種有機物、亞硝酸鹽、硫化物、亞鐵鹽等。但主要的是有機物。因此,化學需氧量(COD)又往往作為衡量水中有機物質含量多少的指標。化學需氧量越大,說明水體受有機物的污染越嚴重。化學需氧量(COD)的測定,隨著測定水樣中還原性物質以及測定方法的不同,其測定值也有不同。目前應用最普遍的是酸性高錳酸鉀氧化法與重鉻酸鉀氧化法。高錳酸鉀(KMnO4)法,氧化率較低,但比較簡便,在測定水樣中有機物含量的相對比較值及清潔地表水和地下水水樣時,可以採用。
三、重鉻酸鉀(K2Cr2O7)法,氧化率高,再現性好,適用於廢水監測中測定水樣中有機物的總量。有機物對工業水系統的危害很大。含有大量的有機物的水在通過除鹽系統時會污染離子交換樹脂,特別容易污染陰離子交換樹脂,使樹脂交換能力降低。有機物在經過預處理時(混凝、澄清和過濾),約可減少50%,但在除鹽系統中無法除去,故常通過補給水帶入鍋爐,使爐水pH值降低。有時有機物還可能帶入蒸汽系統和凝結水中,使pH降低,造成系統腐蝕。在循環水系統中有機物含量高會促進微生物繁殖。因此,不管對除鹽、爐水或循環水系統,COD都是越低越好,但並沒有統一的限制指標。在循環冷卻水系統中COD(KMnO4法)>5mg/L時,水質已開始變差。
④ PU固化劑的固含量怎麼檢測
一般固化劑的有機溶劑沸點都比較低,取樣加熱到110-120℃左右烘烤2-3小時就可以了。
不過各個廠家的成分不同,檢測方法也大同小異,最好咨詢相應供貨商
⑤ 工業中純水的檢測方法及國家標准!!
生活飲用水水質標准和衛生要求必須滿足三項基本要求:
1.為防止介水傳染病的發生和傳播,要求生活飲用水不含病原微生物。
2.水中所含化學物質及放射性物質不得對人體健康產生危害,要求水中的化學物質及放射性物質不引起急性和慢性中毒及潛在的遠期危害(致癌、致畸、致突變作用)。
3.水的感官性狀是人們對飲用水的直觀感覺,是評價水質的重要依據。生活飲用水必須確保感官良好,為人民所樂於飲用。
生活飲用水水質標准共35項。其中感官性狀和一般化學指標15項,主要為了保證飲用水的感官性狀良好;毒理學指標15項、放射指標2項,是為了保證水質對人不產生毒性和潛在危害;細菌學指標3項是為了保證飲用水在流行病學上安全而制定的。
隨著經濟和工農業的迅速發展,化學物質對水的污染越來越引起政府和廣大居民的關注,生活飲用水衛生標准更引起了有關部門的重視,為了和國際先進標准接軌,衛生部於2001年6月頒布了《生活飲用水衛生規范》,自2001年9月1日起實施。《生活飲用水衛生規范》是在《生活飲用水衛生標准》GB5749-85的基礎上修改而成,該規范共包括生活飲用水水質衛生規范、生活飲用水輸配水設備及防護材料衛生安全評價規范、生活飲用水化學處理劑衛生安全評價規范、生活飲用水水質處理器衛生安全與功能評價規范、生活飲用水集中式供水單位衛生規范、涉及飲用水衛生安全產品生產企業衛生規范和生活飲用水檢驗規范。《生活飲用水水質衛生規范》中水質指標共96項,常規檢測項目34項,非常規檢測項目62項,與《生活飲用水衛生標准》GB5749-85相比,增加和修改了某些指標,加強了對有機污染的監測,對人體健康危害大的指標限值更加嚴格。基本上是一個既符合國情,又與國際接軌的生活飲用水衛生規范。通過衛生部和各級衛生行政部門的宣傳貫徹,目前已在全國范圍內得到較好的落實。