A. 中科大發明檢測γ射線輻射劑量新材料
中國科學技術大學張國慶教授團隊發明一種新型亞克力樹脂薄膜材料,無需使用光電倍增管和電子儀器,可通過薄膜熒光顏色變化直接判斷γ射線輻射劑量的大小。該成果日前發表在《美國化學會應用材料與界面》上。
γ射線是波長短於千分之一納米的高能電磁波,穿透力強,是核彈爆炸後的主要輻射源之一,對人體有致命殺傷力。基於γ射線的輻射電離效應,由可以發生電離的氣體或固體、光電倍增管和電子儀器組成的設備,是目前定量檢測γ射線強度的常用儀器。
B. 射線檢測是怎樣的檢測方法
射線檢測視力用X射線和伽馬射線,這種能量比較高的射線,它的特性是穿透性好,可以穿透很多工件。如果工件局部區域存在缺陷,它將改變物體對射線的衰減,引起透射射線強度的變化
C. 射線檢測的概述
作為五大常規無損檢測方法之一的射線檢測(Radiology),在工業上有著非常廣泛的應用。
ΔI/I=-((μ-μ』)ΔT)/(1+n)
這個公式就是射線檢測基本原理的關系式,ΔI/I稱為物體對比度,(I是射線強度,ΔI是射線強度增量,μ是物質線衰減系數,μ』是缺陷線衰減系數,ΔT是射線照射方向上的厚度差,n是散射比)從它我們可以得知,只要缺陷在透射方向上具有一定的尺寸、其衰減系數與物體的線衰減系數具有一定差別,並且散射比控制在一定范圍,我們就能夠獲得由於缺陷存在而產生的對比度差異,從而發現缺陷。
D. 無損檢驗都有哪些方法原理
無損檢驗通常包括五大類常規方法:超聲波檢驗、射線檢驗、磁粉檢驗、滲透檢驗、渦流檢驗。
超聲波檢驗:超聲波在被檢材料中傳播時,根據材料的缺陷所顯示的聲學性質對超聲波傳播的影響來探測其缺陷的方法。通常用超聲波檢驗內部缺陷和表面缺陷。
X射線檢驗:利用X射線等射線對金屬內部缺陷進行的無損檢驗方法。
磁粉檢驗:利用漏磁和合適的檢驗介質發現試件表面和近表面的不連續性的無損檢驗方法。
滲透檢驗:通過施加滲透劑,用洗凈劑除去多餘的部分,然後再施加顯像劑以得到零件上開口於表面的缺陷顯示。
渦流檢驗:利用在試件中的渦流,分析試件中質量狀況的無損檢測方法。
超聲波檢驗和射線檢驗是應用最廣泛的檢測方法,只要應用於內部缺陷檢驗,對於表面檢驗,主要應用磁粉檢驗,只要是鐵磁性材料就要優選磁粉檢驗。
工業上超聲波檢驗以金屬為主,也可以用於其它檢驗對象;射線檢驗的對象也很廣泛,以金屬為主;磁粉檢驗只能適用於鐵磁性材料;滲透檢驗既可以用於金屬,也可以用於非金屬材料;渦流檢驗只能應用於導電材料。
在不損傷被測材料的情況下,檢查材料的內在或表面缺陷,或測定材料的某些物理量、性能、組織狀態等的檢測技術。廣泛用於金屬材料、非金屬材料、復合材料及其製品以及一些電子元器件的檢測。常用的無損檢測技術有:
①射線探傷。
利用X射線或γ射線在穿透被檢物各部分時強度衰減的不同,檢測被檢物的缺陷。
若將受到不同程度吸收的射線投射到X射線膠片上,經顯影後可得到顯示物體厚度變化和內部缺陷情況的照片。如用熒光屏代替膠片,可直接觀察被檢物體的內部情況。
②超聲檢測。
利用物體自身或缺陷的聲學特性對超聲波傳播的影響,來檢測物體的缺陷或某些物理特性。在超聲檢測中常用的超聲頻率為0.5~5兆赫(MHz)。最常用的超聲檢測是脈沖反射式探傷。
③磁粉探傷。
通過磁粉在物體缺陷附近漏磁場中的堆積來檢測物體表面或近表面處的缺陷,被檢測物體必須具有鐵磁性。
④滲透探傷。
利用某些液體對狹窄縫隙的滲透性來探測表面缺陷。常用的滲透液為含有有色染料或熒光的液體。
⑤渦流檢測
由於渦流的大小隨工件內有沒有缺陷而不同,所以線圈電流變化的大小能反映有無缺陷。
此外,中子射線照相法、激光全息照相法、超聲全息照相法、紅外檢測、微波檢測等無損檢測新技術也得到了發展和應用。
E. 無損探傷的常規方法是什麼
五大常規探傷方法概述
五大常規方法是指射線探傷法、超聲波探傷法、磁粉探傷法、渦流探傷法和滲透探傷法。
1、射線探傷方法
射線探傷是利用射線的穿透性和直線性來探傷的方法。這些射線雖然不會像可見光那樣憑肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器來接收。常用於探傷的射線有x光和同位素發出的γ射線,分別稱為x光探傷和γ射線探傷。當這些射線穿過(照射)物質時,該物質的密度越大,射線強度減弱得越多,即射線能穿透過該物質的強度就越小。此時,若用照相底片接收,則底片的感光量就小;若用儀器來接收,獲得的信號就弱。因此,用射線來照射待探傷的零部件時,若其內部有氣孔、夾渣等缺陷,射線穿過有缺陷的路徑比沒有缺陷的路徑所透過的物質密度要小得多,其強度就減弱得少些,即透過的強度就大些,若用底片接收,則感光量就大些,就可以從底片上反映出缺陷垂直於射線方向的平面投影;若用其它接收器也同樣可以用儀表來反映缺陷垂直於射線方向的平面投影和射線的透過量。由此可見,一般情況下,射線探傷是不易發現裂紋的,或者說,射線探傷對裂紋是不敏感的。因此,射線探傷對氣孔、夾渣、未焊透等體積型缺陷最敏感。即射線探傷適宜用於體積型缺陷探傷,而不適宜面積型缺陷探傷。
2、 超聲波探傷方法
人們的耳朵能直接接收到的聲波的頻率范圍通常是20Hz到20kHz,即音(聲)頻。頻率低於20 Hz的稱為次聲波,高於20 kHz的稱為超聲波。工業上常用數兆赫茲超聲波來探傷。超聲波頻率高,則傳播的直線性強,又易於在固體中傳播,並且遇到兩種不同介質形成的界面時易於反射,這樣就可以用它來探傷。通常用超聲波探頭與待探工件表面良好的接觸,探頭則可有效地向工件發射超聲波,並能接收(缺陷)界面反射來的超聲波,同時轉換成電信號,再傳輸給儀器進行處理。根據超聲波在介質中傳播的速度(常稱聲速)和傳播的時間,就可知道缺陷的位置。當缺陷越大,反射面則越大,其反射的能量也就越大,故可根據反射能量的大小來查知各缺陷(當量)的大小。常用的探傷波形有縱波、橫波、表面波等,前二者適用於探測內部缺陷,後者適宜於探測表面缺陷,但對表面的條件要求高。
3、 磁粉探傷方法
磁粉探傷是建立在漏磁原理基礎上的一種磁力探傷方法。當磁力線穿過鐵磁材料及其製品時,在其(磁性)不連續處將產生漏磁場,形成磁極。此時撒上干磁粉或澆上磁懸液,磁極就會吸附磁粉,產生用肉眼能直接觀察的明顯磁痕。因此,可藉助於該磁痕來顯示鐵磁材料及其製品的缺陷情況。磁粉探傷法可探測露出表面,用肉眼或藉助於放大鏡也不能直接觀察到的微小缺陷,也可探測未露出表面,而是埋藏在表面下幾毫米的近表面缺陷。用這種方法雖然也能探查氣孔、夾雜、未焊透等體積型缺陷,但對面積型缺陷更靈敏,更適於檢查因淬火、軋制、鍛造、鑄造、焊接、電鍍、磨削、疲勞等引起的裂紋。
磁力探傷中對缺陷的顯示方法有多種,有用磁粉顯示的,也有不用磁粉顯示的。用磁粉顯示的稱為磁粉探傷,因它顯示直觀、操作簡單、人們樂於使用,故它是最常用的方法之一。不用磁粉顯示的,習慣上稱為漏磁探傷,它常藉助於感應線圈、磁敏管、霍爾元件等來反映缺陷,它比磁粉探傷更衛生,但不如前者直觀。由於目前磁力探傷主要用磁粉來顯示缺陷,因此,人們有時把磁粉探傷直接稱為磁力探傷,其設備稱為磁力探傷設備。
4、 渦流探傷方法
渦流探傷是由交流電流產生的交變磁場作用於待探傷的導電材料,感應出電渦流。如果材料中有缺陷,它將干擾所產生的電渦流,即形成干擾信號。用渦流探傷儀檢測出其干擾信號,就可知道缺陷的狀況。影響渦流的因素很多,即是說渦流中載有豐富的信號,這些信號與材料的很多因素有關,如何將其中有用的信號從諸多的信號中一一分離出來,是目前渦流研究工作者的難題,多年來已經取得了一些進展,在一定條件下可解決一些問題,但還遠不能滿足現場的要求,有待於大力發展。
渦流探傷的顯著特點是對導電材料就能起作用,而不一定是鐵磁材料,但對鐵磁材料的效果較差。其次,待探工件表面的光潔度、平整度、邊介等對渦流探傷都有較大影響,因此常將渦流探傷用於形狀較規則、表面較光潔的銅管等非鐵磁性工件探傷。
5、 滲透探傷方法
滲透探傷是利用毛細現象來進行探傷的方法。對於表面光滑而清潔的零部件,用一種帶色(常為紅色)或帶有熒光的、滲透性很強的液體,塗覆於待探零部件的表面。若表面有肉眼不能直接察知的微裂紋,由於該液體的滲透性很強,它將沿著裂紋滲透到其根部。然後將表面的滲透液洗去,再塗上對比度較大的顯示液(常為白色)。放置片刻後,由於裂紋很窄,毛細現象作用顯著,原滲透到裂紋內的滲透液將上升到表面並擴散,在白色的襯底上顯出較粗的紅線,從而顯示出裂紋露於表面的形狀,因此,常稱為著色探傷。若滲透液採用的是帶熒光的液體,由毛細現象上升到表面的液體,則會在紫外燈照射下發出熒光,從而更能顯示出裂紋露於表面的形狀,故常常又將此時的滲透探傷直接稱為熒光探傷。此探傷方法也可用於金屬和非金屬表面探傷。其使用的探傷液劑有較大氣味,常有一定毒性。
除以上五大常規方法外,近年來又有了紅外、聲發射等一些新的探傷方法。
F. 什麼儀器可以對鋼材進行射線無損探傷
可以對鋼材進行射線無損探傷的檢測方法有:射線檢測、磁粉(或漏磁)檢測、滲透檢測、超聲波檢測、渦流檢測。
射線檢測是應用最早的一種無損檢測的方法,廣泛用於金屬和非金屬材料及製品的內部缺陷檢驗,但是設備較復雜、成本較高
磁粉檢測或漏磁檢測只能用於鐵磁性材料或製品的表面或近表面缺陷檢驗
滲透檢測主要用於非磁性材料的表面缺陷檢驗
G. 射線檢測與其他無損檢測手段的比較
希望幫到你
射線檢測 是利用射線對材料或試件進行透照,檢查其內部缺陷或根據衍射特性對其晶體結構進行分析的技術。目前射線檢測可以分為:照相檢測、實時成像檢測、層析檢測和其它射線檢測技術四類。
最能與射線檢測比較的是超聲波檢測,兩者都是對工件內部進行檢測的方法,但是不同之處在於射線檢測對工件內的與射線束方向垂直且薄的缺陷(工件表面平行的薄面積缺陷)檢測靈敏度很低會漏檢,而超聲波檢測恰好相反,超聲波對(工件表面垂直的缺陷)檢測靈敏度很低會漏檢。
其他的磁粉檢測、滲透檢測、渦流檢測都是對工件的表面檢測的方法,不能檢測到內部缺陷。
射線檢測最明顯的優勢就是檢測後有可以追溯可查的檢測射線底片,具有良好的保存效果,做到有據可查,但是射線檢測需要放射作業,安全要求較高,檢測成本大,檢測速度慢。
H. 射線探傷原理
作為五大常規無損檢測方法之一的射線探傷,在工業上有著非常廣泛的應用,它既用於金屬檢查,也用於非金屬檢查。對金屬內部可能產生的缺陷,如氣孔、針孔、夾雜、疏鬆、裂紋、偏析、未焊透和熔合不足等,都可以用射線檢查。應用的行業有特種設備、航空航天、船舶、兵器、水工成套設備和橋梁鋼結構。
射線探傷的基本原理如下:
當強度均勻的射線束透照射物體時,如果物體局部區域存在缺陷或結構存在差異,它將改變物體對射線的衰減,使得不同部位透射射線強度不同,這樣,採用一定的檢測器(例如,射線照相中採用膠片)檢測透射射線強度,就可以判斷物體內部的缺陷和物質分布等。
射線探傷常用的方法有X射線探傷、γ射線探傷、高能射線探傷和中子射線探傷。對於常用的工業射線探傷來說,一般使用的是X射線探傷、γ射線探傷。
射線對人體具有輻射生物效應,危害人體健康。探傷作業時,應遵守有關安全操作規程,應採取必要的防護措施。
克林沃爾科技溫馨提示您X射線探傷裝置的工作電壓高達數萬伏乃至數十萬伏,作業時應注意高壓的危險。
I. 射線探傷的射線探傷(x、γ)方法介紹
工業上常用的射線探傷方法為X射線探傷和γ射線探傷。指使用電磁波對金屬工件進行檢測,同X線透視類似。射線穿過材料到達底片,會使底片均勻感光;如果遇到裂縫、洞孔以及夾渣等缺陷,一般將會在底片上顯示出暗影區來。這種方法能檢測出缺陷的大小和形狀,還能測定材料的厚度。
X 射線是在高真空狀態下用高速電子沖擊陽極靶而產生的。γ射線是放射性同位素在原子蛻變過程中放射出來的。兩者都是具有高穿透力、波長很短的電磁波。不同厚度的物體需要用不同能量的射線來穿透,因此要分別採用不同的射線源。例如由X射線管發出的X射線(當電子的加速電壓為400千伏時),放射性同位素60Co所產生的γ射線和由 20兆電子伏直線加速器所產生的X射線,能穿透的最大鋼材厚度分別約為90毫米、230毫米和600毫米。 工業射線照相探傷中使用的低能X射線機,簡單地說是由四部分組成:射線發生器(X射線管)、高壓發生器、冷卻系統、控制系統。當各部分獨立時,高壓發生器與射線發生器之間應採用高壓電纜連接。
按照X射線機的結構,X射線機通常分為三類,攜帶型X射線機、移動式X射線機、固定式X射線機。
攜帶型X射線機採用組合式射線發生器,其X射線管、高壓發生器、冷卻系統共同安裝在一個機殼中,也簡單地稱為射線發生器,在射線發生器中充滿絕緣介質。整機由兩個單元構成,即控制器和射線發生器,它們之間由低壓電纜連接。在射線發生器中所充的絕緣介質,較早時為高抗電強度的變壓器油,其抗電強度應不小於30~50kV/2.5mm。現在多數充填的絕緣介質是六氟化硫(SF6),以減輕射線發生器的重量。
X射線機的核心器件是X射線管,普通X射線管主要由陽極、陰極和管殼構成。
x射線是由x射線管加高壓電激發而成,可以通過所加電壓,電流來調節x射線的強度。
對低壓X射線機,輸入X射線管的能量只有很少部分轉換為X射線,大部分轉換成熱,所以對於X射線機來說要保證良好的散熱。
X射線機的主要技術性能可歸納為五個:工作負載特性、輻射強度、焦點尺寸、輻射角、漏泄輻射劑量。在選取X射線機時應考慮上述性能是否適應所進行的工作。 γ射線機用放射性同位素作為γ射線源輻射γ射線,它與X射線機的一個重要不同是γ射線源始終都在不斷地輻射γ射線,而X射線機僅僅在開機並加上高壓後才產生X射線,這就使γ射線機的結構具有了不同於X射線機的特點。γ射線是由放射性元素激發,能量不變。強度不能調節,只隨時間成指數倍減小。
將γ射線探傷機分為三種類型:手提式、移動式、固定式。手提式γ射線機輕便,體積小、重量小,便於攜帶,使用方便。但從輻射防護的角度,其不能裝備能量高的γ射線源。
γ射線機主要由五部分構成:源組件(密封γ射線源)、源容器(主機體)、輸源(導)管、驅動機構和附件。
γ射線機與X射線機比較具有設備簡單、便於操作、不用水電等特點,但γ射線機操作錯誤所引起的後果將是十分嚴重,因此,必須注意γ射線機的操作和使用。按照國家的有關規定,使用γ射線機的單位涉及到放射性同位素,因此,單位必須申領放射性同位素使用許可證,操作人員,應經過專門的培訓,並應取得放射工作人員證。
射線探傷要用放射源發出射線,對人的傷害極大,操作不慎會導致人員受到輻射,患白血病的概率增加。操作人員應穿好防護服,並注意放射源的妥善保存。