『壹』 土壤檢測方法國家標准大全
1 GB 11728-1989土壤中銅的衛生標准
2 GB 12297-1990石灰性土壤有效磷測定方法
3 GB 12298-1990土壤有效硼測定方法
4 GB 15618-1995土壤環境質量標准
5 GB 19062-2003銷毀日本遺棄在華化學武器土壤污染控制標准(試行)
6 GB 19615-2004銷毀日本遺棄在華化學武器環境土壤中污染物含量標准(試行)
7 GB 6260-1986土壤中氧化稀土總量的測定對馬尿酸偶氮氯膦分光光度法
8 GB 7172-1987土壤水分測定法
9 GB 7173-1987土壤全氮測定法(半微量開氏法)
10 GB 7833-1987森林土壤含水量的測定
11 GB 7836-1987森林土壤最大吸濕水的測定
12 GB 7838-1987森林土壤滲透性的測定
13 GB 7839-1987森林土壤溫度的測定
『貳』 土壤檢測是如何檢測的
自然界的土壤由有機質、礦物質、土壤空氣和土壤水分三相物質所組成,所以土壤檢測前需要的准備工作有檢測儀器、土壤取樣器、樣品制備、土壤檢測等基本方法。
如果要檢測一塊苗圃的土地,需要選擇一塊具有代表性的土壤進行檢測,以便保證檢測結果的准確性,土壤檢測一般按六個流程進行。
(1)前期采樣:根據背景資料與現場考察結果,採集一定數量的樣品分析測定。
(2)正式采樣:按照監測方案,實施現場采樣。
(3)補充采樣:正式采樣測試後,發現布設的樣點沒有滿足總體設計需要,則要進行增設采樣點補充采樣。
(4)在樣品交接單送樣者和接樣者雙方同時清點核實樣品,由檢測專家將土壤樣品送到實驗室,樣品交接單由雙方各存一份備查。
(5)按樣品名稱、編號和粒徑分類保存,再轉交給挪亞檢測中心進行檢測。
(6)預留樣品珍稀、特殊、分析取用後的剩餘樣品一般保留半年,有利於苗圃同類狀況可進行有效分析。
(1) 重量法:適用於測定土壤水分 (2) 原子吸收分光光度法:適用於金屬如銅、鉛、鋅、鉻、汞等成分。 (3) 容量法:適用於浸出物中含量較高的成分測定,如Ca2+、Mg2+、Cl-、SO42-等。 (4) 氣相色譜法、高效液相色譜法:適用於有機氯、有機磷、有機汞等農葯的測定。 (5) 離子色譜法:適用於分離十分相近化學物質,並能將分離後的物質直接進行定性和定量分析。 (6) 電化學分析法:適用於土壤被測物中高含量的物質,也可用於痕量物質的分析。
『肆』 土壤污染檢測有哪些方法,哪裡可以做檢測
(1)對角線布點法:適用於污灌農田土壤,對角線分5等份,以等分點為采樣分點。(2)梅花形布點法:適用於面積較小、地勢平坦、土壤組成受污染程度相對比較均勻的地塊,設分點5個左右。(3)棋盤式布點法:適宜中等面積、地勢平坦、土壤不夠均勻的地塊,設分點10個左右;受污泥、垃圾等固體廢物污染的土壤,分點應在20個以上。(4)蛇形布點法:適用於面積較大、土壤不夠均勻且地勢不平坦的地塊,設分點10個左右,多用於農業 污染型土壤。各分點混勻後用四分法取1kg土壤裝入樣品袋,多餘部分棄去。
『伍』 土壤水分測量的幾種方法
1
適用范圍
本標准用於測定除石膏性土壤和有機土(含有機質20%以上的土壤)以外的各類土壤的水分含量。
2
測定原理
土壤樣品在105±2℃烘至恆重時的失重,即為土壤樣品所含水分的質量。
3
儀器、設備
3.1土鑽;
3.2土壤篩:孔徑1mm;
3.3鋁盒:小型的直徑約40mm,高約20mm;
大型的直徑約55mm,高約28mm;
3.4分析天平:感量為0.001g和0.01g;
3.5
小型電熱恆溫烘箱;
3.6乾燥器:內盛變色硅膠或無水氯化鈣。
4
試樣的選取和制備
4.1
風干土樣:選取有代表性的風干土壤樣品,壓碎,通過1mm篩,混合均勻後備用。
4.2
新鮮土樣:在田間用土鑽取有代表性的新鮮土樣,颳去土鑽中的上部浮土,將土鑽中部所需深度處的土壤約20g,捏碎後迅速裝入已知准確質量的大型鋁盒內,蓋緊,裝入木箱或其他容器,帶回室內,將鋁盒外表擦拭乾凈,立即稱重,盡早測定水分。
5
測定步驟
5.1
風干土樣水分的測定
取小型鋁盒在105℃恆溫箱中烘烤約2h,移入乾燥器內冷卻至室溫,稱重,准確至0.001g。用角勺將風干土樣拌勻,舀取約5g,均勻地平鋪在鋁盒中,蓋好,稱重,准確至0.001g。將鋁盒蓋揭開,放在盒底下,置於已預熱至105±2℃的烘箱中烘烤6h。取出,蓋好,移入乾燥器內冷卻至室溫(約需20min),立即稱重。風干土樣水分的測定應做兩份平行測定。
5.2
新鮮土樣水分的測定
將盛有新鮮土樣的大型鋁盒在分析天平上稱重,准確至0.01g。揭開盒蓋,放在盒底下,置於已預熱至105±2℃的烘烤箱中烘烤12h。取出,蓋好,在乾燥器中冷卻至室溫(約需30min),立即稱重。新鮮土樣水分的測定應做三份平行測定。
註:烘烤規定時間後一次稱重,即達「恆重」。
6
測定結果的計算
6.1
計算公式
水分(分析基),%=〔(m1-m2)/(m1-m0)〕×100………………………………(1)
水分(干基),%=〔(m1-m2)/(m2-m0)〕×100………………………………(2)
式中:m0——
烘乾空鋁盒質量,g;
m1——
烘乾前鋁盒及土樣質量,g;
m2——
烘乾後鋁盒及土樣質量,g。
6.2
平行測定的結果用算術平均值表示,保留小數後一位。
6.3
平行測定結果的相差,水分小於5%的風干土樣不得超過0.2%,水分為5~25%的潮濕土樣不得超過0.3%,水分大於15%的大粒(粒徑約10mm)粘重潮濕土樣不得超過0.7%(相當於相對相差不大於5%)。
有tdr
或者是fdr原理fds100土壤水分感測器
fds土壤水分感測器是國內自主開發的產品,我們是國內為數不多的自主開發單位之一。
下面是fd原理土壤水分感測器介紹:
fds100水分感測器是基於介電理論並運用頻域測量技術自主研製開發的,能夠精確測量土壤和其它多孔介質的體積含水量。可與溫室環境監測、土壤墒情採集、自動灌溉控制等系統集成,實現水分的長期動態連續監測。也可與smc系列數據記錄儀組成攜帶型土壤水分測量系統。
主要特點:
響應速度快,重復性好,環境適應性強,防水防潮;
電壓/電流輸出可選,傳輸距離遠;
工作溫度范圍寬,低溫可擴展到-40oc
性價比高;
技術指標:
測量參數
土壤容積含水量vol%
(m3/m3)
供電電壓
5~12vdc
測量范圍
0~100%
工作電流
25ma
精
度
非飽和范圍內為±2%
電纜長度
標准長度1.5m,可定製
重復性
±1%
電極材料
316l不銹鋼
輸出信號
0~1.5vdc或4~20ma
電極長度
6cm
測量區域
95%的影響在¢5×8cm的圓柱體內
密封性
ip68防水防潮
響應時間
外形尺寸
120×45×15mm
『陸』 土壤水分測量的幾種方法是什麼
國內外目前應用的定點土壤水分測定方法很多,主要包括烘乾稱重法、張力計法、射線法(包括中子儀法、γ射線法、計算機斷層掃描法等)、介電特性法[時域反射儀(TDR)法、頻域反射儀(FDR)法、探地雷達(GPR)法]、土壤水分感測器法(如:陶瓷水分感測器、電解質水分感測器、高分子感測器、壓阻水分感測器、光敏水分感測器、微波法水分感測器、電容式水分感測器等)、熱擴散法、核磁共振(NMR)法、分離示蹤劑(PT)法、遙感(RS)法等。其中烘乾稱重法是測定土壤含水量最普遍的方法。探地雷達(GPR)法、遙感(RS)法等在大尺度土壤水分監測中應用有較大優勢。
『柒』 土壤墒情監測方法有哪些
土壤中水分的多少有兩種表示方法:一種是以土壤含水量表示,分重量含水量和容積含水量兩種,二者之間的關系由土壤容重來換算。另一種是以土壤水勢表示,土壤水勢的負值是土壤水吸力。
FDR(FrequencyDomainReflectometry)頻域反射是利用電磁脈沖原理、根據電磁波在介質中傳播頻率來測量土壤的表觀介電常數(ε),從而得到土壤容積含水量(θv)。介紹了FDR系統的測量原理、系統安裝、測量方法及其在土壤水分連續動態監測中的應用,並對實際測量結果進行了校正,可以作為FDR校正的參考。在半乾旱區皇甫川流域的應用實踐表明,FDR具有簡便安全、快速准確、定點連續、自動化、寬量程、少標定等優點,是一種值得推薦的土壤水分測定儀器。TDR(TimeDomainReflector)時域反射是一種快速檢測土壤水分的常見原理,其原理是在一條不匹配的傳輸線上的波形會發生反射。傳輸線上任何一點的波形都是原有波形和反射波形的疊加。TDR原理的設備響應時間約10-20秒,適合移動測量和定點監測。測定結果受鹽度影響很小,TDR缺點是電路比較復雜,設備較昂貴。FDR相比TDR測試原理,幾乎具有TDR的所有優點,探頭形狀非常靈活。比較誇張的甚至可以放在做成犁狀放在拖拉機後面運動中測量。FDR相對TDR需要更少的校正工作。多年以來,FDR原理的土壤水分儀精度上一直難以突破,成為FDR土壤水分儀發展的停滯。經過多年研究,終於突破了這一難點。研究出一款FDR原理的土壤水分儀,精度達到了3%。
『捌』 土壤檢測方法
一、看土壤的顏色
土壤的顏色是反映土壤在肥力上的一個明顯指標,也是一個最容易掌握的方法。一般土壤顏色比較深的都是肥土,顏色較淺的則為瘦土。
二、看土層深淺(耕作層)
土壤肥沃的田塊土層都比較深,深度通常都大於60公分(水田除外),而貧瘠瘦土則非常淺,嚴重地區甚至低於20公分,只是表層有一層土而已。
三、看土壤適耕性
一般土壤肥沃的田塊,土層疏鬆,易於耕作,「干耕像香灰,濕耕如糖化」;而土壤貧瘠的田塊,土層黏犁,耕作費力,「敲敲一個洞,鋤鋤一條縫」。
四、看淀漿及裂紋
肥土不易淀漿,土壤裂紋多而小;瘦土極易淀漿,易板結,土壤裂紋少而大。
五、看水質
水滑膩、黏腳,日照或腳踩時冒大泡的為肥土;水質清淡無色,水田不起泡,或氣泡小而易散的為瘦土。
六、看保水性
水分有下滲,但速度平緩,灌水一次可保持1周左右的為肥土地;灌水後水層不下滲或沿裂紋快速下滲的均為瘦土。
七、看是否夜潮
夜潮是指夜間表土溫度降低,深層土壤中的溫暖水汽上行,遇到低溫表土後凝結成水而濕潤表土的現象。夜潮現象能說明土壤的兩個優點:第一,透氣性強,溫暖水汽可以上行。第二,土層較深,能夠形成溫差。所以,有夜潮現象的土壤基本上都是肥土;無夜潮現象,說明土質板結硬化,均為瘦土。
八、看保肥性
土壤是一種帶負電的膠體,可以交換吸附一些陽離子(就是養分),而達到保肥的作用,這些被吸附的養分在作物生長過程中會逐漸從土壤中釋放出來以供作物吸收利用。肥沃的土壤通常能夠吸附的陽離子較多,肥效持久。而貧瘠的土壤通常陽離子吸附量較少,大部分養分隨水流失,肥效來得快去的快。
『玖』 土壤水分測量的幾種方法
土壤水分測定方法具體介紹:
1、烘乾法:烘乾法是測定土壤水分最普遍的方法,也是標准方法。具體為:從野外獲取一定量的土壤,然後放到105℃的烘箱中,等待烘乾。其中烘乾的標准為前後兩次稱重恆定不變。烘乾後失去的水分即為土壤的水分含量。計算公式為土壤含水量=W/M*100%,M為烘乾前的土壤重量,W為土壤水分的重量,即M與烘乾後土壤重量M』的差值。
2、電阻法:電阻法利用石膏、尼龍、玻璃纖維等的電阻和它們的含水量有關。當把這些中間物加上電極放置在潮濕的土壤中,然後一段時間後,這些東西的含水量達到平衡。由於電阻和含水量間的關系,我們先前標定電阻和百分數間一定的對應關系,然後就可以通過這些組件,得到1~15大氣壓吸力范圍內的水分讀數。
3、中子散射(neutron scattering)法:中子法適合測定野外土壤水分。它根據氫在急劇減低快中子的速度並把它們散射開的原則,現在市面上已經有測定土壤水分的中子水分計。中子水分計有很多方面的優點,但是對有機質土壤有相當的限制,而且它不適宜測定0-15cm的土壤水分含量。
4、γ射線法:與中子儀類似,γ射線透射法利用放射源137Cs放射出γ線,用探頭接收γ射線透過土體後的能量,與土壤水分含量換算得到。
5、TDR(Time Domain Reflectometry)法:TDR法是上世紀80年代發展起來的一種土壤水分測定方法,中文為時域反射儀。這種方法在國外應用相當普遍,國內才剛開始引進,當各部門都相當重視。TDR是一個類似於雷達系統的系統,有較強的獨立性,其結果與土壤類型、密度、溫度基本無關。而且還有很重要的一點就是,TDR能在結冰下測定土壤水分,這是其他方法無法比擬的。另外,TDR能同時監測土壤水鹽含量,且前後兩次測量的結果幾乎沒有差別。這種測定方法的精確度可見一斑。
『拾』 測量土壤含水量的方法有哪些
目前,用於監測土壤含水量的方法很多種,但歸納起來主要有以下幾大類:
(1)烘乾法:又稱重量測定法,即取土樣放入烘箱,烘乾至恆重。此時土壤水分中自由態水以蒸汽形式全部散失掉,再稱重量從而獲得土壤水分含量。烘乾法還有紅外法、酒精燃燒法和烤爐法等一些快速測定法。
(2)中子儀法:將中子源埋入待測土壤中,中子源不斷發射快中子,快中子進入土壤介質與各種原子離子相碰撞,快中子損失能量,從而使其慢化。當快中子與氫原子碰撞時,損失能量最大,更易於慢化,土壤中水分含量越高,氫原子就越多,從而慢中子雲密度就越大。中子儀測定水分就是通過測定慢中子雲的密度與水分子間的函數關系來確定土壤中的水分含量。
(3)γ射線法:與中子儀類似,γ射線透射法利用放射源137Cs放射出γ線,用探頭接收γ射線透過土體後的能量,與土壤水分含量換算得到。
(4)土壤水分感測器法:目前採用的感測器多種多樣,有陶瓷水分感測器,電解質水分感測器、高分子感測器、壓阻水分感測器、光敏水分感測器、微波法水分感測器、電容式水分感測器等等。
(5)時域反射法:即TDR(Time Domain Reflectometry)法,它是依據電磁波在土壤介質中傳播時,其傳導常數如速度的衰減取決於土壤的性質,特別是取決於土壤中含水量和電導率。
(6)頻域反射法:即FDR(Frequency Domain Reflectometry)法,該系統是通過測量電解質常量的變化量測量土壤的水分體積含量,這些變化轉變為與土壤濕度成比例的毫伏信號。