① 飼料級氯化鈷檢測的分析步驟
一 適用范圍:純原料 二 儀器設備: 1. 50 mL量筒 2. 5mL移液管 3. 250mL錐形瓶 4.萬分之天平 三 葯品制備 1. 鹽酸羥胺 2. 硫氰酸銨 3. 丙酮 4. 乙酸銨飽和溶液 5.0.05mol/L乙二胺四乙酸二鈉溶液
准確稱取EDTA-2Na18.612g加熱溶於水中,冷卻定容至1000ml。
四 標定
0.05mol/乙二胺四乙酸二鈉溶液:
稱取1g於800℃下灼燒至恆重的基準氧化鋅,稱准至0.0002g。用少量水濕潤,加鹽酸液(20%)2ml,使樣品溶解,移入250ml容量瓶中,稀釋至刻度,搖勻,取20ml(Va)加70ml水,用氨水溶液(10%)中和至PH=7-8,加10ml氨-氯化銨緩沖溶液(PH=10)及少許鉻黑
T指示劑,用配好的EDTA-2Na溶液滴定至溶液變為純藍色,同時作空白實驗。 C(EDTA-2Na)= m×Va (V-Vb)×0.08138×250
m—氧化鋅的重量
V—滴定消耗EDTA-2Na標准溶液的體積; Va—移取樣品溶液的體積;
Vb—空白滴定消耗EDTA-2Na標准溶液的體積;
0.08138—與EDTA-2Na標准溶液相當的以克表示的氧化鋅的質量。
五 方法:
准確稱取樣品1.5g於濾紙上,將濾紙放置在250ml錐形瓶上; 2.分次加入蒸餾水共計50 mL,使其全部溶解過濾到錐形瓶中; 3.加0.25 g鹽酸羥胺,10 g硫氰酸銨,4 mL乙酸銨飽和溶液,搖勻; 4.加50 mL丙酮,用EDTA-2Na標准溶液滴定,使溶液藍色全部消失即為終點。 六 計算:
Co%=C×V×0.05893×100/m
C--EDTA-2Na標准溶液的濃度;
V--滴定試樣消耗EDTA-2Na標准溶液的體積;
m--樣品的重量;
0.05893--每毫摩爾鈷的克數;
兩次平行測定結果之差不大於0.2%取其算術平均值為測定結果。
參考:1.飼料分析及飼料質量檢測技術 北京農業大學出版社 P161-163
2.中國化工產品分析方法手冊(無機手冊)農業出版社 P1103-1104,1196
② EDTA滴定 硫酸鈷
你對待測溶液的濃度應該要有個大致的估計,這樣才能控制滴定劑,保證准確;1毫升不用控製得太准確,大概1毫升就可以了,只要指示劑和緩沖劑加得不要過早或過晚。
過早會造成終點判斷誤差,過晚可能就已經過了滴定終點了。
③ 為什麼鋅離子測定用直接滴定而鈷離子用返滴定
在絡合滴定中,鋅離子測定用直接滴定而鈷離子用返滴定的原因為:
絡合反應或者配體從絡離子中解離出來,速度是比較慢的,也就是反應比較慢。尤其是比較硬的酸,其反應速度更慢。鋅離子為二價,而鈷離子為三價,離子半徑很小,因此鈷離子明顯是更硬的酸,其與EDTA的反應速度太慢,往往會影響終點的判斷。
而採用返滴定法就可以避免上述問題,返滴定法中EDTA過量,充分與鈷離子絡合後形成絡離子,再用鋅鹽返滴剩餘的EDTA。其它類似的離子還有鋁離子和三價鐵離子等。
④ 硼醯化鈷、新癸酸鈷
這兩者都是提高鋼絲粘合的,不過硼醯化鈷的反應活性比新癸酸鈷強一些。
⑤ 我現在要用EDTA滴定七水合硫酸鈷
你引用的「國標」中所說【滴定終點前一毫升,加入緩沖溶液和指示劑】的說法引用得恐怕不準確,應該是【在開始滴定前即加入一定量規定pH值的緩沖溶液】,因為一定的反應需要有一定的環境,絡合滴定必須在有一定pH值的環境下操作,否則滴定得到的結果就完全不是那麼回事兒了,這個可以在大學的教科書《分析化學》中查到理論根據。」國標「固然有使用很不方便的地方,但當不會出現這種具有原理上謬誤的條款。
至於指示劑,【可以在滴定前加入】,因為EDTA與被測離子的結合能力要遠大於指示劑與被測離子的,指示劑與被測離子的結合物被EDTA置換得也很迅速,且不像氧化-還原反應那樣指示劑可能因加入過早被滴定劑破壞,消耗一定數量的滴定劑而對測定結果產生較為嚴重的誤差,所以不需要【滴定終點前一毫升,加入緩沖溶液和指示劑】。
純硫酸鈷的測定可以用絡合滴定法,要求較高的話可以用電解重量法。
絡合滴定法以EDTA為滴定劑測定硫酸鈷的方法很多,我們往往是用H2O2先將可能存在的Co3+還原為Co2+,加pH5.5的NaAc-HAc緩沖溶液,XO為指示劑,滴定至紫紅色變為黃色。
本問題有不懂的地方追問,其它問題使用」站內簡訊「。
⑥ edta滴定硫酸鈷,紫脲酸銨為指示劑的原理
edta滴定硫酸鈷,紫脲酸銨為指示劑的原理是產生大量氫離子,所以會使溶液變色。所以edta滴定硫酸鈷,紫脲酸銨做為指示劑
⑦ 任務鈷礦石分析方法的選擇
任務描述
自然界已知含鈷礦物有100多種,但具有工業價值的礦物僅十餘種。鈷在地殼中的含量約23×10-6,多伴生於鎳、銅、鐵、鉛、鋅等礦床中。本任務對鈷的化學性質、鈷礦石的分解方法、鈷的分析方法選用等進行了闡述。通過本任務的學習,知道鈷的化學性質,能根據礦石的特性、分析項目的要求及干擾元素的分離等情況選擇適當的分解方法,學會基於被測試樣中鈷含量的高低不同以及對分析結果准確度的要求不同而選用適當的方法,能正確填寫樣品流轉單。
任務分析
一、鈷的性質
1.物理性質
鈷(Co),原子序數是27,相對原子質量58.93,密度8.9g/cm3,熔點1495℃,沸點2930℃,具有光澤的鋼灰色金屬,比較硬而脆。鈷是鐵磁性的,在硬度、抗拉強度、機械加工性能、熱力學性質、電化學行為方面,與鐵和鎳相類似,屬於鐵系元素。加熱到1150℃時磁性消失。
2.化學性質
鈷的化合價為+2價和+3價。在常溫下不和水作用,在潮濕的空氣中也很穩定。一般情況下與氧、硫、氯等非金屬不起作用,但在高溫下發生氧化作用,與氧、硫、氯、溴等發生劇烈反應,生成相應化合物。在空氣中加熱至300℃以上時氧化生成CoO,在白熱時燃燒成Co3O4。氫還原法製成的細金屬鈷粉在空氣中能自燃生成氧化鈷。
由電極電勢看出,鈷是中等活潑的金屬。其化學性質與鐵、鎳相似。
鈷可溶於稀酸中,在發煙硝酸中因生成一層氧化膜而被鈍化,在濃硝酸中反應激烈,在鹽酸和硫酸中反應很緩慢,鈷會緩慢地被氫氟酸、氨水和氫氧化鈉侵蝕。鈷在鹼溶液中比鐵穩定,鈷是兩性金屬。
二、鈷元素在地殼中的分布、賦存狀態及其鈷礦石的分類
鈷在地殼中含量為23×10-6,很少有較大的鈷礦床,明顯比鐵少得多,而且鈷和鐵的熔點不相上下,因此註定它比鐵發現得晚。1735 年,瑞典的布朗特在煅燒鈷礦時得到鈷。
Co(Ⅱ)的化合物有氧化鈷、氫氧化鈷、氯化鈷、硫酸鈷、碳酸鈷、草酸鈷等;Co(Ⅲ)的化合物有氧化高鈷;鈷的配合物有氨配合物([Co(NH3)6]3+、氰配合物[Co(CN)6]4-、硫氰配合物[Co(SCN)4]2-、羰基配合物[Co(CO)4]-、硝基[Co(NO3)4]2-或亞硝基配合物[Co(NO2)6]3-。
鈷在礦物中與砷和硫結合,主要礦物有硫鈷礦Co3S4,含鈷57.99%;砷鈷礦CoAS2,含鈷28.20%;輝砷鈷礦CoAsS,含鈷35.50%;硫銅鈷礦CuCo2S4,含鈷38.06%;鈷黃鐵礦(Fe,Co )S2,含鈷32.94%;方鈷礦 CoAS3,含鈷20.77%;鈷土礦 CoMn2O5· 4H2O,含鈷 18.37%;鈷華 Co(AsO4)3·8H2O,含鈷 9.51%;菱鈷礦 CoCO3,含鈷49.55%;赤礬CoSO4,含鈷20.97%。
單獨的鈷礦床一般為砷化鈷、硫化鈷和鈷土礦三種,前兩種的工業要求大體相同。硫化礦(包括砷化礦)中的鈷邊界品位達0.02%、工業品位為0.03%~0.06%;鈷土礦中的鈷邊界品位為0.30%,工業品位為0.50%。
與鈷共存的元素主要為鐵和鎳。礦石中的銅、鎳作為伴生元素回收。對於伴生的其他元素,也應查明含量及賦存狀態以便考慮能否綜合利用。
三、鈷礦石的分解方法
鈷礦試樣一般可用鹽酸和硝酸分解,必要時可用焦硫酸鉀和碳酸鈉熔融。如試樣為硅酸鹽時,可加氟化物或氫氟酸助溶。不被氫氟酸分解的含鈷礦石,可以用過氧化鈉或氫氧化鈉-硝酸鉀熔融。
砷鈷礦試樣需要用硝酸和硫酸加熱到冒煙使其分解。當試樣中含有大量硫或砷時,宜先灼燒除去大部分的硫或砷,然後再用鹽酸或王水分解。
四、鈷的分離富集方法
鈷沒有簡便而選擇性好的分離方法。目前常用的分離方法主要有氨水沉澱法、1-亞硝基-2-萘酚沉澱法、銅鐵試劑沉澱法、萃取分離法、離子交換法等。
氨水沉澱法是在銨鹽存在下,用氨水將溶液 pH 調至8~9,Hg2+、Be2+、Fe3+、Al3+、Cr(Ⅲ)、Bi3+、Sb3+、Sn4+、Ti4+、Zr4+、Hf4+、Th4+、Mn4+、Nb5+、Ta5+、U(Ⅵ)及稀土離子定量沉澱,Mn2+、Fe2+、Pb2+部分沉澱,Ca2+、Sr2+、Ba2+、Mg2+、Co2+、Ag+、Cu2+、Cd2+、Ni2+、Zn2+留於溶液中。
在稀鹽酸溶液中,用1-亞硝基-2-萘酚沉澱鈷,是較完全的,但不能用作分離方法。因鐵、銅、鉍、銀、鉻、鋯、鈦、鉬、釩、錫和硝酸等都有干擾。鋁、鈹、鉛、鎘、錳、鎳、汞、砷、銻、鋅、鈣、鎂和磷則不幹擾。用氧化鋅可以沉澱鋁、鈦、釩、鉻、鐵、砷、鋯、錫、鎢、鈾、磷和大部分銅、鋁、硅。所以用1 -亞硝基-2 -萘酚沉澱鈷之前,常用氧化鋅分離干擾元素。但用氧化鋅沉澱分離干擾元素,常須沉澱二次或三次,這樣就使1-亞硝基-2-萘酚沉澱鈷的方法失去優越性。
銅鐵試劑在酸性溶液中,定量沉澱Fe、Ti、Zr、V(Ⅴ)、U(Ⅳ)、Sn(Ⅳ)、Nb和Ta,可與Al、Cr、Mn、Ni、Co、Zn、Mg和P分離。銅鐵試劑沉澱可用四氯化碳萃取除去。因銅鐵試劑不影響1-亞硝基-2-萘酚沉澱鈷,故銅鐵試劑分離可與1-亞硝基-2-萘酚沉澱鈷結合應用。
用亞硝酸鉀使鈷成亞硝酸鈷鉀沉澱,是一較實用的分離鈷的方法。雖然沉澱的溶解度較大,與大量鎳的分離不完全,沉澱不能作為稱量形式等都是缺點,但此方法選擇性較高,能使幾毫克鈷與大量鐵、銅、鎳,鋁、銻、鉍、鎘、鉻、錳、鋁、鈦、錫、鎢、鈮、鉭、釩、鋅和鋯等元素分離。砷的干擾可預先揮發除去。鈣、鍶、鋇、鉛可以硫酸鹽形式除去。KNO2沉澱法是在乙酸溶液中,鈷與KNO2形成亞硝酸鈷鉀(K3[Co(NO2)6] )沉澱,在酒石酸存在下,Ni、Cr、Al、Fe、Ti、Zr,Nb、Ta、W、Mo及硫化氫組元素不幹擾,Ca、Sr、Ba、Pb干擾此法自Ni中分離的Co,可以硫酸鹽形式沉澱除去。沉澱並不純凈,可能夾帶有W、Ni、Fe等元素。
萃取分離鈷的方法很多,但多數選擇性不高。
用丙酮∶水∶鹽酸=34∶4∶2(體積之比)混合溶液為展開劑,用紙色譜可使鈷與鐵、鈦、銅、錳、鋅、鉻、鎳、釩和鈾等元素分離。此方法已應用於礦石分析。
1-亞硝基-2-萘酚萃取法是在pH=3~7介質中,鈷與試劑形成橙紅色配合物,用苯定量萃取,大量Fe3+用氟化物掩蔽,加入檸檬酸鹽可防止其他金屬離子水解。在配合物形成後,再提高酸度,Ni、Cu、Cr、Fe等配合物立即被破壞,而鈷配合物仍穩定,從而提高萃取的選擇性。方法可用於痕量鈷的萃取分離。鈷的硫氰酸鹽二安替比林配合物可被MIBK定量萃取。Co(Ⅱ)-PAN的配合物也能被三氯甲烷萃取。
介質為HCl(3+1)的試液通過強鹼性陰離子交換柱,Cu、Zn、Fe的氯陰離子被吸附於柱上,Ni、Mn、Cr流出。然後用HCl(1+2)洗脫鈷,Cu、Zn、Fe仍留於柱上。
五、鈷的測定方法
目前仍在用的測定鈷的方法有容量法、極譜法、光度法、原子吸收光譜法和等離子體發射光譜法等。
礦石中鈷的含量一般較低,經常應用比色法進行測定。鈷的比色法很多,最常用的有亞硝基-R-鹽(亞硝基紅鹽)和2-亞硝基-1-萘酚萃取比色法。其他有硫氰酸鹽法、5-Cl-PADAB光度法和PAR比色法、過氧化氫-EDTA比色法等。
亞硝基-R-鹽(亞硝基紅鹽)比色法的優點是在一般情況下不需分離鐵、銅、鎳等元素而直接進行測定;簡便、快速,准確度也較高。採用差示比色,可測定高含量鈷。2-亞硝基-1-萘酚法由於經過萃取,有較高的靈敏度,適用於銅鎳礦中鈷的測定。硫氰酸鹽法由於銅和鐵的干擾,需要掩蔽或分離,目前應用較少。過氧化氫-EDTA比色法是在pH=8的氨性溶液中,用過氧化氫將鈷氧化至三價與EDTA生成紫紅色配合物,藉以比色測定高含量鈷。10mg Fe,12mg Mn,5mg Cu或Ni,1gmgSO4及2g NaCl均不幹擾鈷的測定。
用三氯甲烷萃取鈷與二安替比林甲烷-硫氰酸鹽形成的三元配合物,使鈷與大量銅、鎳分離後,再用PAR比色法測定鈷。此法靈敏度較高,適用於組成復雜的試樣中或大量銅、鎳存在下微克量鈷的測定。
對高含量鈷的測定宜採用容量法。容量法有EDTA法、電位滴定法和碘量法。EDTA法由於銅、鎳、鐵、鋁、鋅等共存離子的干擾,須用亞硝酸鈷鉀或其他方法將鈷與干擾元素分離後再進行滴定。
1.亞硝基-R-鹽(亞硝基紅鹽)比色法
在pH=5.5~7.0的醋酸鹽緩沖溶液中,鈷與亞硝基-R-鹽(1-亞硝基-2萘酚-3,6-二磺酸鈉)形成可溶性紅色配合物。
2.電位滴定法
在氨性溶液中,加入一定量的鐵氰化鉀,將Co(Ⅱ)氧化為Co(Ⅲ),過量的鐵氰化鉀用硫酸鈷溶液滴定,按電位法確定終點。其反應式如下:
岩石礦物分析
本法適用於含1.0% 以上鈷的測定。
3.EDTA容量法
鈷與EDTA形成中等穩定的配合物(lgK=16.3)。能在pH為4~10范圍內應用不同的指示劑進行鈷的配位滴定。
鐵、鋁、錳、鎳、銅、鉛、鋅等金屬離子干擾測定,因此必須將它們除去或掩蔽。對於只含鐵、銅、鈷等較單純的試樣,可用氟化物掩蔽鐵、硫脲掩蔽銅而直接進行測定。多金屬礦則應在乙酸介質中,用亞硝酸鉀沉澱鈷與其他干擾元素分離後,再進行測定。
常用的滴定方法有:以PAN [1-(2-吡啶偶氮)-2-萘酚]為指示劑,用銅鹽溶液回滴;以二甲酚橙為指示劑,用EDTA標准溶液滴定被鈷所置換出的EDTA-鋅中的鋅。
使用PAN作指示劑銅鹽回滴法時,所加的EDTA量可根據鈷量而稍微過量,這樣終點更加明顯。在常溫下反應較慢,應在70℃至近沸狀態下進行滴定。加入有機溶劑(甲醇、異丙醇等),可使終點顏色變化敏銳。
以二甲酚橙為指示劑,不能用EDTA標准溶液直接滴定。因為鐵、鋁、銅、鈷和鎳等能封閉二甲酚橙,雖然用三乙醇胺能掩蔽痕量的鐵、鋁,用鄰啡羅啉能抑制銅、鈷對二甲酚橙的封閉作用,但還不夠理想,故改用置換滴定法,以克服這一缺點。
本法適用於含0.5% 以上鈷的測定。
4.原子吸收光譜法
每毫升溶液中,含10mg鐵,9mg鎳,40mg錫,3mg銀,0.8mg鋁,0.64mg釩、鋁、鈦,0.6mg鉻,6.4mg 鈉,0.4mg 鉀,0.2mg 銅,0.16mg 錳,0.1mg 砷、銻,40μg 鎂,80μg鍶、磷,80μg 鎢,50μg 鉛,48μg 鋇,40μg 鋅、鎘、鉍、鈣,23μg 鈹均不幹擾測定。二氧化硅含量超過40μg/mL干擾測定,當加入高氯酸冒煙處理後,含量達0.8mg/mL亦不幹擾測定。小於15%(體積分數)硝酸,小於5%(體積分數)鹽酸、硫酸不影響測定,高氯酸含量達16%(體積分數)亦不影響測定。磷酸嚴重干擾測定。
方法靈敏度為0.085μg/mL(1% 吸收),最佳測定范圍為2~10μg/mL。
本法適用於鎳礦及鐵礦中鈷的測定。
5.碘量法
Co(Ⅱ)在含有硝酸銨的氨性溶液(pH為9~10)中能被碘氧化成Co(Ⅲ),並與碘生成穩定的硝酸-碘五氨絡鈷的綠色沉澱。過量的碘以澱粉作指示劑,用亞砷酸鈉標准溶液滴定。其反應式如下;
岩石礦物分析
岩石礦物分析
鐵、鋁在氨性溶液中能生成氫氧化物沉澱且易吸附鈷,同時鐵的氫氧化物又影響終點的判斷,加入檸檬酸銨-焦磷酸鈉混合溶液可消除100mg以下鐵、鋁的干擾。2mg錳的影響測定,銅、鎳、鎘、鋅在100mg以下不幹擾。
本法適用於5% 以上鈷的測定。
6.ICP-AES法
ICP-AES法(等離子體發射光譜法)可以同時測定樣品中多元素的含量。當氬氣通過等離子體火炬時,經射頻發生器所產生的交變電磁場使其電離、加速並與其他氬原子碰撞。這種連鎖反應使更多的氬原子電離形成原子、離子、電子的粒子混合氣體——等離子體。等離子體火炬可達6000~8000 K的高溫。過濾或消解處理過的樣品經進樣器中的霧化器被霧化並由氬載氣帶入等離子體火炬中,氣化的樣品分子在等離子體火炬的高溫下被原子化、電離、激發。不同元素的原子在激發或電離時發射出特徵光譜,所以等離子體發射光譜可用來定性樣品中存在的元素。特徵光譜的強弱與樣品中原子濃度有關與標准溶液進行比較,即可定量測定樣品中各元素的含量。
含鈷礦樣經過鹽酸、硝酸分解後,在選定的測量條件下以ICP-AES測定溶液中的Cu、Pb、Zn、Co、Ni等元素的含量。
本法適用於0.10%~20.00% 之間鈷的測定。
六、鈷礦石的分析任務及其分析方法的選擇
在生產實踐中,因不同的鈷礦產品所含雜質元素的組成不同,考慮到其對生產工藝的影響,在對鈷礦樣進行檢驗時,對雜質元素的檢測也要選擇合適的方法進行測定。
對於主品位鈷的測定,如果樣品中鈷含量低於1.00% 以下,一般採用光度法測定,現在通常使用的方法是亞硝基-R-鹽光度法,該方法穩定可靠,樣品經過處理以後可以直接進行測定。鈷含量超過1.00% 時,將樣品適當處理以後,可以使用電位滴定法測定,該方法特別適用於含鈷量比較高的礦物。
鈷礦石中的常見鈣、鎂、鉛、鋅、鎘、銅等元素含量低時可以採用原子吸收法進行測定,含量高時可以使用EDTA滴定法測定;高含量銅亦可用碘量法進行氧化還原滴定;鐵可以用磺基水楊酸光度法或重鉻酸鉀容量法進行測定;鋁一般用鉻天青光度法測定;二氧化硅用硅鉬藍光度法測定;鎳用丁二酮肟光度法測定;磷、砷可用鉬藍光度法測定。其他元素一般在礦物中含量不高,對生產的影響不大,在作為原料檢測時可以酌情考慮是否需要檢測。
技能訓練
實戰訓練
1.學生實訓時按每組5~8人分成幾個小組。
2.每個小組進行角色扮演,利用所學知識並上網查詢相關資料,完成鈷礦石委託樣品從樣品驗收到派發樣品檢驗單工作。
3.填寫附錄一中質量表格1、表格2。