⑴ 求不定積分的幾種運算方法
一、積分公式法
直接利用積分公式求出不定積分。
二、換元積分法
換元積分法可分為第一類換元法與第二類換元法。
1、第一類換元法(即湊微分法)
通過湊微分,最後依託於某個積分公式。進而求得原不定積分。
2、註:第二類換元法的變換式必須可逆,並且在相應區間上是單調的。
第二類換元法經常用於消去被積函數中的根式。當被積函數是次數很高的二項式的時候,為了避免繁瑣的展開式,有時也可以使用第二類換元法求解。常用的換元手段有兩種:
(1) 根式代換法,
(2) 三角代換法。
在實際應用中,代換法最常見的是鏈式法則,而往往用此代替前面所說的換元。
三、分部積分法
設函數和u,v具有連續導數,則d(uv)=udv+v。移項得到udv=d(uv)-v,兩邊積分,得分部積分公式:∫udv=uv-∫v ⑴。
稱公式⑴為分部積分公式。如果積分∫v易於求出,則左端積分式隨之得到。
分部積分公式運用成敗的關鍵是恰當地選擇u,v。
即一個定積分式的值,就是原函數在上限的值與原函數在下限的值的差。
這個理論,揭示了積分與黎曼積分本質的聯系。因此,牛頓-萊布尼茲公式也被稱作微積分基本定理。