導航:首頁 > 方法技巧 > 初中數學解題方法及技巧教案

初中數學解題方法及技巧教案

發布時間:2024-08-10 13:52:11

Ⅰ 初中數學解題技巧

有關初中數學解題技巧

初中數學里的解題技巧是非常重要的一環,我這里有很實用的初中數學解題技巧教給大家,希望對大家有幫助!

第一部分 初中數學考試答題技巧

一、答題原則

大家拿到考卷後,先看是不是本科考試的試卷,再清點試卷頁碼是否齊全,檢查試卷有無破損或漏印、重印、字跡模糊不清等情況。如果發現問題,要及時報告監考老師處理。

答題時,一般遵循如下原則:

1.從前向後,先易後難。通常試題的難易分布是按每一類題型從前向後,由易到難。因此,解題順序也宜按試卷題號從小到大,從前至後依次解答。當然,有時但也不能機械地按部就班。中間有難題出現時,可先跳過去,到最後攻它或放棄它。先把容易得到的分數拿到手,不要“一條胡同走到黑”,總的原則是先易後難,先選擇、填空題,後解答題。

2.規范答題,分分計較。數學分I、II卷,第I卷客觀性試題,用計算機閱讀,一要嚴格按規定塗卡,二要認真選擇答案。第II卷為主觀性試題,一般情況下,除填空題外,大多解答題一題設若干小題,通常獨立給分。解答時要分步驟(層次)解答,爭取步步得分。解題中遇到困難時,能做幾步做幾步,一分一分地爭取,也可以跳過某一小題直接做下一小題。

3.得分優先、隨機應變。在答題時掌握的基本原則是“熟題細做,生題慢做”,保證能得分的地方絕不丟分,不易得分的地方爭取得分,但是要防止被難題耗時過多而影響總分。

4.填充實地,不留空白。考試閱卷是連續性的流水作業,如果你在試卷上留下的空白太多,會給閱卷老師留下不好印象,會認為你確實不行。另外每道題都有若干采分點,觸到采分點便可給分,未能觸到采分點也沒有倒扣分的規定。因此只要時間允許,應盡量把試題提問下面的空白處寫上相應的公式或定理等有關結論。

5.觀點正確,理性答卷。不能因為答題過於求新,結果造成觀點錯誤,邏輯不嚴密;或在試卷上即興發揮,塗寫與試卷內容無關的字畫,可能會給自己帶來意想不到的損失。胡亂塗寫可以認為是在試卷上做記號,而判作弊。因此,要理性答卷。

6.字跡清晰,合理規劃。這對任何一科考試都很重要,尤其是對“精確度”較高的數理化,若字跡不清無法辨認極易造成閱卷老師的誤判,如填空題填寫帶圈的序號、數字等,如不清晰就可能使本來正確的失了分。 另外,卷面答題書寫的位置和大小要計劃好,盡量讓卷面安排做到 “前緊後松”而不是“前松後緊”。特別注意只能在規定位置答題,轉頁答題不予計分。

二、審題要點

審題包括瀏覽全卷和細讀試題兩個方面。

一是開考前瀏覽。開考前5分鍾開始發卷,大家利用發卷至開始答題這段有限的時間,通過答前瀏覽對全卷有大致的了解,初步估算試卷難度和時間分配,據此統籌安排答題順序,做到心中有數。此時考生要做到“寵辱不驚”,也就是說,看到一道似曾相識的題時,心中不要竊喜,而要提醒自己,“這道題做時不可輕敵,小心有什麼陷阱,或者做的題目只是相似,稍微的不易覺察的改動都會引起答案的不同”。碰到一道從未見過,猛然沒思路的題時,更不要受到干擾,相反,此時應開心,“我沒做過,別人也沒有。這是我的機會。”時刻提醒自己:我易人易,我不大意;我難人難,我不畏難。

二是答題過程中的仔細審題。這是關鍵步驟,要求不漏題,看準題,弄清題意,了解題目所給條件和要求回答的問題。不同的題型,考察不同的能力,具有不同的解題方法和策略,評分方式也不同,對不同的題型,審題時側重點有所不同。

1.選擇題是所佔比例較大(40%)的客觀性試題,考察的內容具體,知識點多,“雙基”與能力並重。對選擇題的審題,要搞清楚是選擇正確陳述還是選擇錯誤陳述,採用特殊什麼方法求解等。

2.填空題屬於客觀性試題。一般是中檔題,但是由於沒有中間解題過程,也就沒有過程分,稍微出現點錯誤就和一點不會做結果相同,“後果嚴重”。審題時注意題目考查的知識點、方法和此類問題的易錯點等。

3.解答題在試卷中所佔分數較多(74分),不僅需要解出結果還要列出解題過程。解答這種題目時,審題顯得極其重要。只有了解題目提供的條件和隱含信息,聯想相關題型的通性通法,尋找和確定具體的解題方法和步驟,問題才能解決。

三、時間分配

近幾年,隨著高考數學試題中的應用問題越來越多,閱讀量逐漸增加,科學地使用時間,是臨場發揮的一項重要內容。分配答題時間的基本原則就是保證在能得分的地方絕不丟分,不易得分的地方爭取得分。在心目

中應有“分數時間比”的概念,花10分鍾去做一道分值為12分的中檔大題無疑比用10分鍾去攻克1道分值為4分的中檔填空題更有價值。有效地利用最好的答題時間段,通常各時間段內的答題效率是不同的,一般情況下,最後10分鍾左右多數考生心理上會發生變化,影響正常答卷。特別是那些還沒有答完試卷的考生會分心、產生急躁心理,這個時間段效率要低於其它時間段。

在試卷發下來後,通過瀏覽全卷,大致了解試題的類型、數量、分值和難度,熟悉“題情”,進而初步確定各題目相應的作答時間。通常一般水平的考生,解答選擇題(12個)不能超過40分鍾,填空題(4個)不能超過15分鍾,留下的時間給解答題(6個)和驗算。當然這個時間安排還要因人而異。

在解答過程中,要注意原來的時間安排,譬如,1道題目計劃用3分鍾,但3分鍾過後一點眉目也沒有,則可以暫時跳過這道題;但若已接近成功,延長一點時間也是必要的。需要說明的是,分配時間應服從於考試成功的目的,靈活掌握時間而不墨守最初安排。時間安排只是大致的整體調度,沒有必要把時間精確到每1小題或是每1分鍾。更不要因為時間安排過緊,造成太大的心理壓力,而影響正常答卷。

一般地,在時間安排上有必要留出5—10分鍾的檢查時間,但若題量很大,對自己作答的准確性又較為放心的話,檢查的時間可以縮短或去除。但是需要注意的是,通常數學試卷的設計只有少數優秀考生才可能在規定時間內答完。

四、大題和難題

一張考卷必不可少地要有大題、難題以區分考生的知識和能力水平,以便拉開檔次。一般大題、難題分值都較高,遇到難題,要盡量放到最後去攻克;如果別的題目全部做完而且檢查無誤,而又有一定時間的話,就應想辦法攻克難題。不是每個人都能得150的,先把會的做完,也可以給自己奠定心裡優勢。

五、各種題型的解答技巧

1.選擇題的答題技巧

(1)掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題乾的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。

(2)特值法。在選擇支中分別取特殊值進行驗證或排除,對於方程或不等式求解、確定參數的取值范圍等問題格外有效。

(3)反例法。把選擇題各選擇項中錯誤的答案排除,餘下的便是正確答案。

(4)猜測法。因為數學選擇題沒有選錯倒扣分的規定,實在解不出來,猜測可以為你創造更多的得分機會。除須計算的題目外,一般不猜A。

2.填空題答題技巧

(1)要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能准確無誤、清晰回憶。對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了並集等等。

(2)一般第4個填空題可能題意或題型較新,因而難度較大,可以酌情往後放。

3.解答題答題技巧

(1)仔細審題。注意題目中的關鍵詞,准確理解考題要求。

(2)規范表述。分清層次,要注意計算的准確性和簡約性、邏輯的條理性和連貫性。

(3)給出結論。注意分類討論的問題,最後要歸納結論。

(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。

六、如何檢查

在考試中,主動安排時間檢查答卷是保證考試成功的`一個重要環節,它是防漏補遺、去偽存真的過程,尤其是考生如果採用靈活的答題順序,更應該與最後檢查結合起來。因為在你跳躍式往返答題過程中很可能遺漏題目,通過檢查可彌補這種答題策略的漏洞。

檢查過程的第一步是看有無遺漏或沒有做的題目,發現之後,應迅速完成或再次思考解法。對各類題型的做答過程和結果,如果有時間要結合草稿紙的解題過程全面復查一遍,時間不夠,則重點檢查。

選擇題的檢查主要是查看有無遺漏,並復查你心存疑慮的題目。但是若沒有充分的理由,一般不要改變你依據第一感覺作出的判斷。

對解答題的檢查,要注意結合審查草稿紙的演算過程,改正計算和推理中的錯誤。另外要補充遺漏的理由和步驟,刪去或修改錯誤或不準確的觀點。

計算題和證明題是檢查的重點,要仔細檢查是否完成了題目的全部要求;若時間倉促,來不及驗算的話,有一些簡單的驗證方法:一是查單位是否有誤;二是看計算公式引用有無錯誤;三是看結果是否比較“像”,這里所說的“像”是依靠經驗判斷,如應用題的答案是否符合實際意義;數字結論是否為整數、自然數或有規則的表達式,若結論為小數或無規則的數,則要重新演算,最好能用其他方法再試著去做

七、強調的一點是草稿紙,這是考試時和試卷同等重要的東西。

同學們拿到草稿紙後,請先將它三折。然後按順序使用。草稿紙上每道題之間留空,標清題號。字跡要做到能夠准確辨認,切不可胡寫亂畫。這樣做的好處是:

1. 草稿紙展現的是你的答題思路。草稿紙清晰,答題思路也會清晰,最起碼你清楚你已經做到了哪一步。如果草稿混亂的話,這一步推出來了,往往又忘了上一步是怎麼得到的。

2. 對於前面提到的暫時不會,回頭再做的題,由於你第一次做本題時已經進行了一定的思維過程。第二次做時如果重頭再思考非常浪費時間。利用草稿紙,可以迅速找到上次的思維斷點。從而繼續攻破。關鍵結論要特殊標記。

3. 檢查過程中,草稿紙更是最好的幫手。如果連演算過程都可從草稿紙上清晰找到的話,無疑會節省大量時間。

第二部分 提高解題速度的八步驟

在考試時,我們常常感到時間很緊,試卷還沒來得及做完,就到收卷時間了,雖然有些試題,只要再努一把力,我們是有可能做出來的。這其中的原因之一,就是解題速度太慢。

幾乎每個學生都知道,要想取得好成績,必須努力學習,只有加強練習,多做習題,才能熟能生巧。可是有些學生天天趴在那裡做題,但解出的題量卻不多,花了大量的時間,卻沒有解出大量的習題,難道不應找一找原因嗎?何況,我們並不比別人的時間更多。試想,如果你的解題速度提高10倍,那會是怎樣一種情景?解題速度提高10倍?可能嗎?答案是肯定的,完全可能。關鍵在於你想與不想了。

那麼,究竟怎樣才能提高解題速度呢?

首先,應十分熟悉習題中所涉及的內容,做到概念清晰,對定義、公式、定理和規則非常熟悉。你應該知道,解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。我指導學生按此方法學習,幾乎所有的學生都大大提高了解題的速度,其效果非常之好。

第二,還要熟悉習題中所涉及到的以前學過的知識和與其他學科相關的知識。例如,有時候,我們遇到一道不會做的習題,不是我們沒有學會現在所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是數學題中要用到的一個物理概念,而我們對此已不是十分清晰了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。這時我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然後再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。

第三,對基本的解題步驟和解題方法也要熟悉。解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。

第四,要學會歸納總結。在解過一定數量的習題之後,對所涉及到的知識、解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對於類似的習題一目瞭然,可以節約大量的解題時間。

第五,應先易後難,逐步增加習題的難度。人們認識事物的過程都是從簡單到復雜,一步一步由表及裡地深入下去。一個人的能力也是通過鍛煉逐步增長起來的。若簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。養成了習慣,遇到一般的難題,同樣可以保持較高的解題速度。而我們有些學生不太重視這些基本的、簡單的習題,認為沒有必要花費時間去解這些簡單的習題,結果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。

其實,解簡單容易的習題,並不一定比解一道復雜難題的勞動強度和效率低。比如,與一個人扛一大袋大米上五層樓相比,一個人拎一個小提包也上到五層樓當然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那麼,拎包人比扛米人的勞動強度大。所以在相同時間內,解50道、100道簡單題,可能要比解一道難題的勞動強度大。再如,若這袋大米的重量為100千克,由於太重,超出了扛米人的能力,以至於扛米人費了九牛二虎之力,卻沒能扛到五樓,雖然勞動強度很大,卻是勞而無功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五樓,勞動強度也許並不很大,而效率之高卻是不言而喻的。由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習題,其收獲也許會更大。因此,我們在學習時,應根據自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。

第六,認真、仔細地審題。對於一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,並從中找出隱含條件。讀題一旦結束,哪些是已知條件?求解的結論是什麼?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應該已經結成了一張網,並有了初步的思路和解題方案,然後就是根據自己的思路,演算一遍,加以驗證。有些學生沒有養成讀題、思考的習慣,心裡著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。很多時候學生來問問題,我和他一起讀題,讀到一半時,他說:“老師,我會了。”所以,在實際解題時,應特別注意,審題要認真、仔細。

第七,學會畫圖。畫圖是一個翻譯的過程。讀題時,若能根據題義,把對數學(或其他學科)語言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目瞭然。尤其是對於幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。所以,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過程和條件,對於提高解題速度非常重要。畫圖時應注意盡量畫得准確。畫圖准確,有時能使你一眼就看出答案,再進一步去演算證實就可以了;反之,作圖不準確,有時會將你引入歧途。

最後,對於常用的公式,如數學中的乘法公式、三角函數公式,常用的數字,如11~25的平方,特殊角的三角函數值,化學中常用元素的化學性質、化合價以及化學反應方程式等等,都要熟記在心,需用時信手拈來,則對提高演算速度極為有利。

總之,學習是一個不斷深化的認識過程,解題只是學習的一個重要環節。你對學習的內容越熟悉,對基本解題思路和方法越熟悉,背熟的數字、公式越多,並能把局部與整體有機地結合為一體,形成了跳躍性思維,就可以大大加快解題速度。

;

Ⅱ 初中數學的解題方法和技巧總結

初中數學要怎麼解題,實用有效的技巧是什麼?想了解的小夥伴看過來,下面由我為你精心准備了「初中數學的解題方法和技巧總結」僅供參考,持續關注本站將可以持續獲取更多的內容!

初中數學的解題方法和技巧【一】

對於常用的公式

如咐滑數學中的乘法公式、三角函數公式,常用的數字,如11~25的平方,特殊角的三角函數值,化學中常用元素的化學性質、化合價以及化學反應方程式等等,都要熟記在心,需用時信手拈來,則對提高演算速衡凳臘度極為有利。

總之,學習是一個不斷深化的認識過程,解題只是學習的一個重要環節。你對學習的內容越熟悉,對基本解題思路和方法越熟悉,背熟的數字、公式越多,並能把局部與整體有機地結合為一體,形成了跳躍性思維,就可以大大加快解題速度。

初中數學解題方法之學會畫圖

數學的解題中對於學會畫圖是有必要的,希望同學們很好的學會畫圖。

畫圖是一個翻譯的過程。讀題時,若能根據題義,把對數學(或其他學科)語言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目瞭然。尤其是對於幾何題,包括解析幾何題,若不會畫圖,有時簡直粗碼是無從下手。所以,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過程和條件,對於提高解題速度非常重要。

畫圖時應注意盡量畫得准確。畫圖准確,有時能使你一眼就看出答案,再進一步去演算證實就可以了;反之,作圖不準確,有時會將你引入歧途。

初中數學解題方法之審題

對於一道具體的習題,解題時最重要的環節是審題。

認真、仔細地審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,並從中找出隱含條件。讀題一旦結束,哪些是已知條件?求解的結論是什麼?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應該已經結成了一張網,並有了初步的思路和解題方案,然後就是根據自己的思路,演算一遍,加以驗證。有些學生沒有養成讀題、思考的習慣,心裡著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。很多時候學生來問問題,我和他一起讀題,讀到一半時,他說:「老師,我會了。」

所以,在實際解題時,應特別注意,審題要認真、仔細。

初中數學解題方法之增加習題的難度,人們認識事物的過程都是從簡單到復雜,一步一步由表及裡地深入下去。

增加習題的難度

應先易後難,逐步增加習題的難度。一個人的能力也是通過鍛煉逐步增長起來的。若簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。養成了習慣,遇到一般的難題,同樣可以保持較高的解題速度。而我們有些學生不太重視這些基本的、簡單的習題,認為沒有必要花費時間去解這些簡單的習題,結果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。

其實,解簡單容易的習題,並不一定比解一道復雜難題的勞動強度和效率低。比如,與一個人扛一大袋大米上五層樓相比,一個人拎一個小提包也上到五層樓當然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那麼,拎包人比扛米人的勞動強度大。所以在相同時間內,解50道、100道簡單題,可能要比解一道難題的勞動強度大。再如,若這袋大米的重量為100千克,由於太重,超出了扛米人的能力,以至於扛米人費了九牛二虎之力,卻沒能扛到五樓,雖然勞動強度很大,卻是勞而無功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五樓,勞動強度也許並不很大,而效率之高卻是不言而喻的。由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習題,其收獲也許會更大。

因此,我們在學習時,應根據自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。

初中數學的解題方法和技巧【二】

培養初中數學解題思維

培養和鍛煉初中數學的解題方法和技巧:多做有針對性同時難度適當的同步練習,循序漸進,周而復始。學數學一定要做習題,並且應該適當地多做些。做習題的目的首先是熟練和鞏固學習的知識;其次是初步啟發靈活應用知識和培養獨立思考的能力;

第三是融會貫通,把不同內容的初中數學知識溝通起來。在做習題時,要認真審題,認真思考,應該用什麼方法做?能否有簡便解法?做到邊做邊思考邊總結,通過練習加深對知識的理解。

重視課堂效率

上初中數學課時,最重要的我覺得只有一個字:跟。

1、跟書本

隨時知道老師講解的涉及哪些知識點。

2、跟老師

跟隨老師的板書及講解,少量選擇記筆記,並且記筆記盡量簡單快速。(後期完善)

3、跟思維

跟思維無疑是最重要的,跟上思維,就意味著你懂了。仔細聽老師的分析過程,跟隨老師的思維,同時自己適當拓展新的方法,個人認為,思路最重要,畢竟自己想出來和老師給你點出來有很大差別。

4、數形結合思想方法,數形結合思想是說數的問題可以通過對圖形的分析來解決,形的問題也可通過對數的研究來思考。

5、化歸思想方法,化歸思想是說在解決實際問題時常常需要進行等價轉換,把生疏的題目轉化成熟悉的題目,通過特殊到一般,歸納出事物的規律,並能進行適當的變式變形。

6、分類討論思想,分情況討論思想就是當一個問題用統一的方法不能繼續做下去的時候,需要對所研究的問題分成若干個情況分別進行研究的思想方法。

7、函數與方程思想方法,函數與方程思想就是對於有些數學問題要學會用變數和函數來思考,學會轉化未知與已知的關系。

初中數學的解題方法和技巧【三】

課前一定要預習

預習到什麼程度因人而異,但是最低的要求是必須知道:這節課講的什麼內容,重點是什麼、難點是什麼,自己有哪些不明白的以及這部分知識跟過去所學的那些內容會有一些關聯,以及過去所學的那些基礎內容掌握的是否足夠等等。

認真聽講

這是所有人都知道的但是我們又可以非常肯定很多人根本做不到的問題!

課堂的聽課質量對整個學習的影響是非常大的,課上的學習如果沒有效率,那麼課後你可能需要花費成倍的時間都未必補得回來、補得全面。

所以聽課質量真的能夠反映出一個人的學習能力——最起碼反映出一個人會不會學習。

認真完成作業

老生常談的問題了。

但是什麼叫「認真」呢?

我認為最重要的是在做作業之前一定要先復習一下課本,然後再做,而做的過程中腦子是要保持「在線」的,除了做題的本身,還要去思考:去思考這題考察的是什麼,容易出錯的地方在哪,需要注意什麼,知識點還可以怎麼考察等等。

必要的刷題和總結

刷題就不說什麼了,想要學好初學,除了個別天賦奇高的之外,對於絕大多數學生而言是離不開做題的。

以初一數學為例:有理數的計算能力,對於多數學生而言,其掌握的程度跟他們的練習程度有直接的關系。

而光刷習題顯然也是不行的,高效的學習方法是離不開「總結歸納」的,而這其中最為重要的兩個部分分別是:

(1)錯題整理;

(2)知識點梳理。

這兩個工作做起來確實是比較繁瑣的,但是它們對學生成績的提高、知識的掌握真的是有非常積極的意義的!

不懂就問

我可以保證,90%以上的學生明知道在學習上應該「不懂就問」,但是他們絕對是做不到這點的。

很多孩子會覺得請教老師問題是一件很丟人的事情,那一刻他們會覺得「老師會不會笑話我笨?」、「老師是不是會批評我上課沒好好聽?」……

如果他們會採取別的辦法,比如問同學、問家長或者網上查便罷了,最怕的是他們就此放過這些問題,那麼這樣就會一次又一次的錯過挽救、彌補知識漏洞的機會,然後問題就像滾雪球一樣……

所以不用擔心,預期擔心這個擔心那個,不如現在就找到下個學期的課本先預習起來!

Ⅲ 初中數學解題方法與技巧

初中數學解題方法與技巧如下:

每個幾何定理都有與它相對應的幾何圖形,我們 把它叫做基本圖形,添輔助線往往是具有基本圖形的性質而基本圖形不完整時補完整基本圖形,因此「添線」應該叫做「補圖」!這樣可防止亂添線,添輔助線也有規律可循。

復合應用題解題思路:

1、理解題意,就是弄清應用題中的已知條件和要求問題。

2、分析數量關系,就是分析已知數量與未知數數量,已知數量與未知數數量間的關系,找到解題途徑,確定先算什麼,再算什麼,最好算什麼。

3、列式解答,就是根據分析,列出算式並計算出來。

4、驗算並給出答案,就是檢驗解答過程中是否合理,結果是否正確,與原題的條件是否相符,最後寫出答案。

Ⅳ 初中數學解題技巧與方法

我在這里整理了初中數學常用的解題法和不同題型解題法,希望能幫助到大家。

初中數學常用解題法

1、配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

不同題型的解題法

選擇題:

在做選擇題可運用各種解題的方法:如直接法、特殊值法、排除法、驗證法、圖解法、假設法、動手操作法(比如折一折,量一量等方法),對於選擇題中有「或」的選項一定要警惕,看看要不要取捨。

填空題:

注意一題多解等特殊情況。

考慮各種簡便方法解題。選擇題、填空題更是如此(直接法最後考慮)尤其是選擇題,有些可用排除法、特殊值法、畫圖像解答,不必每題都運算 。

解答題:

1.注意規范答題,過程和結論都要書寫規范。認真審題,不慌不忙,先易後難,不能忽略 題目中的任何一個條件。

2.計算題一定要細心,最後答案要最簡,要保證絕對正確。

3.先化簡後求值問題,要先化到最簡,代入求值時要注意:分母不為零;適當考慮技巧,如整體代入。

4.解直角三角形問題。注意交代輔助線的作法,解題步驟。關注直角、特殊角。取近似值時一定要按照題目要求。

5.實際應用問題,題目長,多讀題,根據題意,找准關系,列方程、不等式(組)或函數關系式。最後一定要檢驗方程的解。

6.證明題:切線證明要寫出輔助線的作法,輔助線要用虛線;遇到線段比例式及乘積式,就要證線段所在的三角形相似,同時注意線段的等量代換(注意線段倍數關系)。

7.方案設計題:要看清楚題目的設計要求,設計時考慮滿足要求的最簡方案,不要考慮復雜、追求美觀的方案。

8.若壓軸題最後一問確實無從下手,可以放棄,不如把時間放在檢驗別的題目上,對於存在性問題,要注意可能有幾種情況不要遺漏。對於動點問題,注意要通過多畫草圖的方法把運動過程搞清楚,也要考慮可能有幾種情況。

解各類大題目時腦子里必須反映出該題與平時做的哪道題類似,應反映出似曾相識,又非曾相識的感覺。

一解題方法歸納:1.配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2.因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法,在代數、幾何、三角函數等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3.換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4.判別式法與韋達定理

一元二次方程aX²+bX+c=0(a、b、c∈R,a≠0)根的判別式△=b²-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至解析幾何、三角函數運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5.待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的重要方法之一。

6.構造法

在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

7.反證法

反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。

用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。

歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

8.等(面或體)積法

平面(立體)幾何中講的面積(體積)公式以及由面積(體積)公式推出的與面積(體積)計算有關的性質定理,不僅可用於計算面積(體積),而且用它來證明(計算)幾何題有時會收到事半功倍的效果。運用面積(體積)關系來證明或計算幾何題的方法,稱為等(面或體)積法,它是幾何中的一種常用方法

用歸納法或分析法證明幾何題,其困難在添置輔助線。等(面或體)積法的特點是把已知和未知各量用面積(體積)公式聯系起來,通過運算達到求證的結果。所以用等(面或體)積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

9.幾何變換法

在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。

幾何變換包括:(1)平移;(2)旋轉;(3)對稱。

10.客觀性題的解題方法

選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。

一通過實例介紹常用方法:(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

閱讀全文

與初中數學解題方法及技巧教案相關的資料

熱點內容
倒水壺的正確使用方法 瀏覽:956
電池自耗電量計算方法 瀏覽:928
無線滑鼠中鍵的解決方法 瀏覽:261
鴿子注射方法視頻 瀏覽:15
玻璃壓條怎麼安裝方法 瀏覽:268
亮片使用方法 瀏覽:218
常用的防腐方法哪四種 瀏覽:972
紅米手機小視頻設置在哪裡設置方法 瀏覽:579
中央空調與地暖管道連接方法 瀏覽:817
梨怎麼釀酒方法步驟 瀏覽:893
樂視手機隱藏鍵在哪裡設置方法 瀏覽:530
格鬥老華體能訓練方法 瀏覽:311
千屈菜種植方法 瀏覽:289
練形的方法有哪些 瀏覽:622
鷹嘴豆怎麼做好吃又簡單的方法 瀏覽:436
眼睛有重影治療方法 瀏覽:794
分析題計算方法 瀏覽:6
工傷疤痕面積計算方法 瀏覽:828
如何快速調整呼吸方法 瀏覽:632
87乘60的簡便計算方法 瀏覽:46