導航:首頁 > 方法技巧 > 如何調整統計方法

如何調整統計方法

發布時間:2024-07-20 15:34:34

⑴ 數據統計分析方法如何做好數據統計

數據分析是把隱沒在一大批看來雜亂無章的數據中的信息,集中、萃取和提煉出來,以找出所研究對象的內在規律,並提供決策支持的一系列分析過程。數據統計分析方法已經應用到各行各業,在互聯網電商的運用也非常廣泛。在做網路推廣時,一定要用數據分析作為基礎。沒有數據做支撐的推廣是沒有意義的。在這里介紹一些方法和工具。

1.比較分析法

是統計分析中最常用的方法。是通過有關的指標對比來反映事物數量上差異和變化的方法。指標分析對比分析方法可分為靜態比較和動態比較分析。靜態比較是同一時間條件下不同總體指標比較,如不同部門、不同地區、不同國家的比較,也叫橫向比較;動態比較是同一總體條件不同時期指標數值的比較,也叫縱向比較。這兩種方法既可單獨使用,也可結合使用。

2.分組分析法

統計分析不僅要對總體數量特徵和數棗則扮量關系進行分析,還要深入總體的內部進行分組分析。分組分析法就是根據統計分析的目的要求,把所研究的總體按照一個或者幾個標志劃分為若干個部分,加以整理,進行觀察、分析,以揭示其內在的聯系和規律性。統計分組法的關鍵問題在於正確選擇分組標值和劃分各組界限。

3.回歸分析法

回歸分析法是依據事物發展變化的因果關系來預測事物未來的發展走勢,它是研究變數間相互關系的一種定量預測方法,回歸分析中,當研究的因果關系只涉及因變數和一個自變數時,叫做一元回歸分析;當研究的因果關系涉及因變數和兩個或兩個以上自變數時,叫做多元回歸分析。此外,回歸分析中,又依據描述自變數與因變數之間因果關系的函數表達式是線性的還是非線性的,分為線性回歸分析和非線性回歸分析。

4.因素分析法

因素分析法的最大功用,就是運用盯數數學方法對可觀測的事物在發展中所表現出的外部特徵和聯系進行由表及裡、由此凳灶及彼、去粗取精、去偽存真的處理,從而得出客觀事物普遍本質的概括。其次,使用因素分析法可以使復雜的研究課題大為簡化,並保持其基本的信息量。

⑵ 如何在臨床科研中選用正確的統計分析方法

統計學方法的正確抉擇
一。
統計方法抉擇的條件
在臨床科研工作中,正確地抉擇統計分析方法,應充分考慮科研工作者的分析目的、臨床科研設計方法、搜集到的數據資料類型、數據資料的分布特徵與所涉及的數理統計條件等。
其中任何一個問題沒考慮到或考慮有誤,都有可能導致統計分析方法的抉擇失誤。
此外,統計分析方法的抉擇應在科研的設計階段來完成,而不應該在臨床試驗結束或在數據的收集工作已完成之後。
對臨床科研數據進行統計分析和進行統計方法抉擇時,應考慮下列因素:
1.分析目的
對於臨床醫生及臨床流行病醫生來說,在進行統計分析前,一定要明確利用統計方法達到研究者的什麼目的。
一般來說,統計方法可分為描述與推斷兩類方法。
一是統計描述(descriptivestatistics),二是統計推斷(inferentialstatistics)。
統計描述,即利用統計指標、統計或統計表,對數據資料所進行的最基本的統計分析,使其能反映數據資料的基本特徵,有利於研究者能准確、全面地了解數據資料所包涵的信息,以便做出科學的推斷。
統計表,如頻數表、四格表、列聯表等;
統計,如直方、餅,散點等;
統計指標,如均數、標准差、率及構成比等。
統計推斷,即利用樣本所提供的信息對總體進行推斷(估計或比較),其中包括參數估計和假設檢驗,如可信區間、t檢驗、方差分析、c2檢驗等,如要分析甲葯治療與乙葯治療兩組的療效是否不相同、不同地區某病的患病率有無差異等。
還有些統計方法,既包含了統計描述也包含了統計推斷的內容,如不同變數間的關系分析。
相關分析,可用於研究某些因素間的相互聯系,以相關系數來衡量各因素間相關的密切程度和方向,如高血脂與冠心病、慢性宮頸炎與宮頸癌等的相關分析;
回歸分析,可用於研究某個因素與另一因素(變數)的依存關系,即以一個變數去推測另一變數,如利用回歸分析建立起來的回歸方程,可由兒童的年齡推算其體重。
2.資料類型
資料類型的劃分現多採用國際通用的分類方法,將其分為兩類:數值變數(numericalvariable)資料和分類變數(categoricalvariable)資料。
數值變數是指其值是可以定量或准確測量的變數,其表現為數值大小的不同;
而分類變數是指其值是無法定量或不能測量的變數,其表現沒有數值的大小而只有互不相容的類別或屬性。
分類變數又可分為無序分類變數和有序分類變數兩小類,無序分類變數表現為沒有大小之分的屬性或類別,如:性別是兩類無序分類變數,血型是四類無序分類變數;
有序分類變數表現為各屬性或類別間有程度之分,如:臨床上某種疾病的「輕、中、重」,治療結果的「無效、顯效、好轉、治癒」。
由此可見,數值變數資料、無序分類變數資料和有序分類變數資料又可叫做計量資料、計數資料和等級資料。
資料類型的劃分與統計方法的抉擇有關,在多數情況下不同的資料類型,選擇的統計方法不一樣。
如數值變數資料的比較可選用t檢驗、u檢驗等統計方法;
而率的比較多用c2檢驗。
值得注意的是,有些臨床科研工作者,常常人為地將數值變數的結果轉化為分類變數的臨床指標,然後參與統計分析,如患者的血紅蛋白含量,研究者常用正常、輕度貧血、中度貧血和重度貧血來表示,這樣雖然照顧了臨床工作的習慣,卻損失了資料所提供的信息量。
換言之,在多數情況下,數值變數資料提供的信息量最為充分,可進行統計分析的手段也較為豐富、經典和可靠,與之相比,分類變數在這些方面都不如數值變數資料。
因此,在臨床實驗中要盡可能選擇量化的指標反映實驗效應,若確實無法定量時,才選用分類數據,通常不宜將定量數據轉變成分類數據。
3.設計方法
在眾多的臨床科研設計方法中,每一種設計方法都有與之相適應的統計方法。
在統計方法的抉擇時,必須根據不同的臨床科研設計方法來選擇相應的統計分析方法。
如果統計方法的抉擇與設計方法不一致,統計分析得到的任何結論都是錯誤的。
在常用的科研設計方法中,有成組設計(完全隨機設計)的t檢驗、配對t檢驗、成組設計(完全隨機設計)的方差分析、配伍設計(隨機區組設計)的方差分析等,都是統計方法與科研設計方法有關的佐證。
因此,應注意區分成組設計(完全隨機設計)與配對和配伍設計(隨機區組設計),在成組設計中又要注意區別兩組與多組設計。
最常見的錯誤是將配對或配伍設計(隨機區組設計)的資料當做成組設計(完全隨機設計)來處理,如配對設計的資料使用成組t檢驗、配伍設計(隨機區組設計)使用成組資料的方差分析;
或將三組及三組以上的成組設計(完全隨機設計)資料的比較採用多個t檢驗、三個或多個率的比較採用四格表的卡方檢驗來進行比較,都是典型的錯誤。
如下表:
表1常見與設計方法有關的統計方法抉擇錯誤
設計方法錯誤的統計方法正確統計方法
兩個均數的比較(成組設計、完全隨機設計)成組設計的t檢驗、成組設計的秩和檢驗
多個均數的比較(成組設計、完全隨機設計)多個成組設計的t檢驗完全隨機設計的方差分析及q檢驗、完全隨機設計的秩和檢驗及兩兩比較
數值變數的配對設計成組設計的t檢驗配對t檢驗、配對秩和檢驗
隨機區組設計(配伍設計)多個成組設計的t檢驗、完全隨機設計的方差分析隨機區組設計的方差分析及q檢驗、隨機區組設計的秩和檢驗及兩兩比較
交叉設計成組設計的t檢驗、配對t檢驗、配對秩和檢驗交叉設計的方差分析、交叉設計的秩和檢驗
4.分布特徵及數理統計條件
數理統計和概率論是統計的理論基礎。
每種統計方法都要涉及數理統計公式,而這些數理統計公式都是在一定條件下推導和建立的。
也就是說,只有當某個或某些條件滿足時,某個數理統計公式才成立,反之若不滿足條件時,就不能使用某個數理統計公式。
在數理統計公式推導和建立的條件中,涉及最多的是數據的分布特徵。
數據的分布特徵是指數據的數理統計規律,許多數理統計公式都是在特定的分布下推導和建立的。
若實際資料服從(符合)某種分布,即可使用該分布所具有的數理統計規律來分析和處理該實際資料,反之則不能。
在臨床資料的統計分析過程中,涉及得最多的分布有正態分布、偏態分布、二項分布等。
許多統計方法對資料的分布有要求,如:均數和標准差、t和u檢驗;
方差分析都要求資料服從正態分布,而中位數和四分位數間距、秩和檢驗等,可用於不服從正態分布的資料。
所以,臨床資料的統計分析過程中,應考慮資料的分布特徵,最起碼的要求是熟悉正態分布與偏態分布。
例如:在臨床科研中,許多資料的描述不考慮資料的分布特徵,而多選擇均數與標准差。
如某婦科腫瘤化療前的血象值,資料如下表:
某婦科腫瘤化療前的血象值
指標名例數均數標准差偏度系數P值峰度系數P值
血紅蛋白(g/L)98111.9918.820.1800.4590.0250.958
血小板(×109/L)98173.5887.111.3530.0001.8430.000
白細胞(×109/L)986.79302.7671.2070.0001.2020.013
從上結果可見,若只看三項指標的均數和標准差,臨床醫生也許不會懷疑有什麼問題。
但是經正態性檢驗,病人的血紅蛋白服從正態分布,而血小板和白細胞兩項指標的偏度和峰度系數均不服從正態分布(P<0.05)。
因此,描述病人的血小板和白細胞平均水平正確的指標是中位數,而其變異程度應使用四分位數間距。
除了數據的分布特徵外,有些數理統計公式還有其它一些的條件,如t檢驗和方差分析的方差齊性、卡方檢驗的理論數(T)大小等。
總之,對於臨床科研工作者來說,為正確地進行統計方法的抉擇,首先要掌握或熟悉上述影響統計方法抉擇因素;
其次,還應熟悉和了解常用統計方法的應用條件。
二。
數據資料的描述
統計描述的內容包括了統計指標、統計和表,其目的是使數據資料的基本特徵更加清晰地表達。
本節只討論統計指標的正確選用,而統計表的正確使用請參閱其他書籍。
1.數值變數資料的描述
描述數值變數資料的基本特徵有兩類指標,一是描述集中趨勢的指標,用以反映一組數據的平均水平;
二是描述離散程度的指標,用以反映一組數據的變異大小。
各指標的名稱及適用范圍等見表2。
表2描述數值變數資料的常用指標
指標名稱用途適用的資料
均數(X——)
描述一組數據的平均水平,集中位置正態分布或近似正態分布
中位數(M)與均數相同偏態分布、分布未知、兩端無界
幾何均數(G)與均數相同對數正態分布,等比資料
標准差(S)
描述一組數據的變異大小,離散程度
正態分布或近似正態分布
四分位數間距
(QU-QL)與標准差相同偏態分布、分布未知、兩端無界
極差(R)與標准差相同觀察例數相近的數值變數
變異系數(CV)與標准差相同比較幾組資料間的變異大小
從表中可看出,均數與標准差聯合使用描述正態分布或近似正態分布資料的基本特徵;
中位數與四分位數間距聯合使用描述偏態分布或未知分布資料的基本特徵。
這些描述指標應用時,最常見的錯誤是不考慮其應用條件的隨意使用,如:用均數和標准差描述偏態分布、分布未知或兩端無界的資料,這是目前在臨床研究文獻中較為普遍和典型的錯誤。

閱讀全文

與如何調整統計方法相關的資料

熱點內容
夜釣草魚調漂技巧及方法 瀏覽:450
450除以45簡便方法怎麼寫 瀏覽:657
狗肺的功效與作用及食用方法 瀏覽:223
顱腦增生的症狀和治療方法 瀏覽:363
老人睡不著覺有什麼治的方法嗎 瀏覽:396
聯想電腦與顯示器的連接方法 瀏覽:400
小米5s的mac設置在哪裡設置方法 瀏覽:409
led電子屏安裝方法 瀏覽:801
如何找到學習方法 瀏覽:130
扁蓄食用方法 瀏覽:817
牛肚如何腌制方法 瀏覽:988
古典概型的導入方法有哪些 瀏覽:336
雞腸道發育的最佳方法 瀏覽:618
手機音量鍵在哪裡設置方法 瀏覽:18
101乘以88的簡便方法 瀏覽:457
塑身機使用方法 瀏覽:682
代購郵費的計算方法 瀏覽:435
班主任教學方法的好處 瀏覽:122
硫酸根計算方法毫克每升 瀏覽:551
熱熔塗料標線計算方法 瀏覽:60