A. 特徵值怎麼求的
(λ+2)^2(λ-4)=0,故特徵值λ=4,-2。
A是n階方陣,如果數λ和n維非零列向量x使關系式Ax=λx成立,那麼這樣的數λ稱為矩陣A特徵值,非零向量x稱為A的對應於特徵值λ的特徵向量。式Ax=λx也可寫成( A-λE)X=0。這是n個未知數n個方程的齊次線性方程組,它有非零解的充分必要條件是系數行列式| A-λE|=0。
系數行列式|A-λE|稱為A的特徵多項式,記(λ)=|λE-A|,是一個P上的關於λ的n次多項式,E是單位矩陣。
特徵值性質:
性質1:n階方陣A=(aij)的所有特徵根為λ1,λ2,…,λn(包括重根),則:λ1λ2…λn=|A|。
性質2:若λ是可逆陣A的一個特徵根,x為對應的特徵向量,則1/λ 是A的逆的一個特徵根,x仍為對應的特徵向量。
性質3:若 λ是方陣A的一個特徵根,x為對應的特徵向量,則λ 的m次方是A的m次方的一個特徵根,x仍為對應的特徵向量。
性質4:設λ1,λ2,…,λm是方陣A的互不相同的特徵值。xj是屬於λi的特徵向量( i=1,2,…,m),則x1,x2,…,xm線性無關,即不相同特徵值的特徵向量線性無關。
參考資料:網路-矩陣特徵值