導航:首頁 > 方法技巧 > 論文如何選擇統計方法

論文如何選擇統計方法

發布時間:2023-09-11 11:06:32

㈠ 論文題目再做研究某方面的路徑的話需要用到什麼統計方法

一、統計學論文中的研究方法

1、大量觀察法

這是統計活動過程中搜集數據資料階段(即統計調查階段)的基本方法:即要對所研究現象總體中的足夠多數的個體進行觀察和研究,以期認識具有規律性的總體數量特徵。大量觀察法的數理依據是大數定律,大數定律是指雖然每個個體受偶然因素的影響作用不同而在數量上存有差異,但對總體而言可以相互抵消而呈現出穩定的規律性,因此只有對足夠多數的個體進行觀察,觀察值的綜合結果才會趨向穩定,建立在大量觀察法基礎上的數據資料才會給出一般的結論。統計學的各種調查方法都屬於大量觀察法。
2、統計分組法

由於所研究現象本身的復雜性、差異性及多層次性,需要我們對所研究現象進行分組或分類研究,以期在同質的基礎上探求不同組或類之間的差異性。統計分組在整個統計活動過程中都佔有重要地位,在統計調查階段可通過統計分組法來搜集不同類的資料,並可使抽樣調查的樣本代表性得以提高(即分層抽樣方式);在統計整理階段可以通過統計分組法使各種數據資料得到分門別類的加工處理和儲存,並為編制分布數列提供基礎;在統計分析階段則可以通過統計分組法來劃分現象類型、研究總體內在結構、比較不同類或組之間的差異(顯著性檢驗)和分析不同變數之間的相關關系。統計學中的統計分組法有傳統分組法、判別分析法和聚類分析法等。

3、綜合指標法

統計研究現象的數量方面的特徵是通過統計綜合指標來反映的。所謂綜合指標,是指用來從總體上反映所研究現象數量特徵和數量關系的范疇及其數值,常見的有總量指標、相對指標,平均指標和標志變異指標等。綜合指標法在統計學、尤其是社會經濟統計學中佔有十分重要的地位,是描述統計學的核心內容。如何最真實客觀地記錄、描述和反映所研究現象的數量特徵和數量關系,是統計指標理論研究的一大課題。

㈡ 簡述統計資料的分類,分別敘述各類資料常用的統計分析方法哪些

目前,不少醫學論文中的統計分析存在較多的問題。有報道,經兩位專家審稿認為可以發表的稿件中,其統計學誤用率為90%-95%。為幫助廣大醫務工作者提高統計分析水平,本文將介紹醫學論文中常用統計分析方法的選擇原則及應用過程中的注意事項。 1.t 檢驗
t檢驗是英國統計學家W.S.Gosset 1908年根據t分布原理建立起來的一種假設檢驗方法,常用於計量資料中兩個小樣本均數的比較。理論上,t檢驗的應用條件是要求樣本來自正態分布的總體,兩樣本均數比較時,還要求兩總體方差相等。但在實際工作中,與上述條件略有偏離,只要其分布為單峰且近似正態分布,也可應用

㈢ 如何正確選擇統計方法(to be continued)

資料類型設計方案實驗分組檢驗條件

單變數資料差異比較的分析方法小結

11種形式的列聯表

雙變數(多變數)資料的關聯性分析方法小結

二、計量資料分析常見的統計問題

2.1 忽視t檢驗的前提條件

文題:重症急性胰腺炎並發肝功能不全的臨床研究。實驗數據見表5。原文作者用t檢驗分析此資料。請問:這樣做正確嗎?

辨析:

1.對表5數據進行方差齊性檢驗,可發現兩組患者的血清澱粉酶和肌酐指標不能滿足方差齊性的要求,故不能採用t檢驗進行分析。

正確的做法:採用變數變換使數據服從正態分布且方差齊,然後進行t檢驗,否則,採用非參數檢驗。

2.給出確切的統計量和P值。

2.2 誤用成組設計資料的t檢驗分析配對設計資料

辯析: 1.考慮到對數據進行變換是正確的。但是如果採用成組t檢驗,還需要兩總體方差齊性。 但本研究是配對設計,如果採用成組t檢驗,會降低檢驗效率。應該採用配對t檢驗進行分析。注意配對t檢驗的條件:要對每對數據的差值(d)進行正態性檢驗。如果不滿足,改用Wilcoxon符號秩檢驗。2.應給出確切的統計量和P值。

2.3 忽視方差分析的前提條件

文題:姜黃素抑制晶狀體上皮細胞增殖的信號轉導機制。

問題:作者取健康小牛眼晶狀體的混合消化液消化後,收集細胞,進行傳代培養,取第三代細胞進行實驗。

實驗分3組:空白對照組、模型組、姜黃素組,每組設6個樣本。

請問:採用方差分析正確嗎?

辨析:此實驗分3組,應為單因素三水平設計定量資料,應首先進行「獨立性」、「正態性」和「方差齊性」檢驗,如果滿足方差分析的3個前提條件則用方差分析;如果不滿足,則採用變數變換或秩和檢驗。如果P<0.05,則進行多組均數間的多重比較。

給出確切的統計量和P值。

2.4 誤用t檢驗分析等級資料

文題:止痛如神湯保留灌腸治療CNUP:雙盲隨機安慰劑對照試驗

表4 兩組臨床主要症狀和結腸鏡腸粘膜病變評分

※:與對照組(G2)比較,P>0.05,組間差異無統計學意義;△:與治療前比較,P<0.05,組內差異有統計學意義;▲:與對照組(G2)比較,P<0.05,組間差異有統計學意義。

辨析:

對於腹痛、腹瀉、膿血便、下墜感、充血、水腫、粘膜糜爛、粘膜潰瘍的單項評分組間比較,不宜用t檢驗。因為每項評分為1、2、3等不連續的賦值,數據資料不服從正態分布。應將數據整理成分組無序指標有序的等級資料,宜採用秩和檢驗。

分析「總評分」時,應對數據進行正態性和方差齊性檢驗後,決定選用t檢驗或秩和檢驗。

與對照組(G2)比較,P>0.05,組間差異無統計學意義,不必在備注中表示。

應寫出確切的統計量和P值

2.5 誤用t檢驗處理重復測量的兩因素試驗設計

文題:益氣活血法預防老年患者髖部術後下肢深靜脈血栓形成

統計學處理:採用SPSS10.0統計軟體,兩組間計量資料比較用t檢驗。

辨析:本研究設計類型為:兩因素(處理和時間)重復測量設計資料。

在資料滿足「獨立性」、「正態性」和「方差齊性」的前提條件下,及進行球對稱檢驗,應選用兩因素設計的重復測量的方差分析,選用t檢驗分析該資料是不妥的。

文題:復方苦參注射液對惡性腫瘤患者伽瑪刀放射治療後T淋巴細胞亞群的影響。

設計:作者選取60例惡性腫瘤患者,隨機分成2組。試驗組在伽瑪刀放射治療的同時給予復方苦參注射液20ml加入生理鹽水500ml,靜脈滴注,1次/d,10d為1個療程;對照組僅給予伽瑪刀放射治療。試驗結果見表7。

請問:統計分析方法選用t檢驗正確嗎?

辨析:

1.統計分析錯誤

      本試驗中,每位受試者在試驗前、後兩個不同的時間點上被重復測量了同一個指標的數值,試驗前與試驗後的數據並不相互獨立,這種試驗設計類型屬於具有重復測量的試驗設計,時間是一個與重復測量有關的試驗因素。原作者用t檢驗進行兩兩比較,則割裂了整體設計,不能准確地估計和控制誤差,因而不能得到可靠的結論。

正確的做法:應將表7的形式改成重復測量試驗設計的標准形式,採用與之對應的方差分析進行數據處理。

2.6 誤用配對設計資料的t檢驗處理單因素k(k>3)水平設計的資料

原文題目:「莪術對大鼠在體子宮肌電活動的影響及其機制研究」,文章為觀察莪術水煎劑對未孕大鼠子宮肌電活動的影響,40隻大鼠被隨機分成4組,對照組:按10ml/kg鼠重灌服生理鹽水,莪術組:按10ml/kg鼠重分別灌服25% 、50% 、100%莪術水煎液分成3組。觀察每個大鼠子宮肌電爆發波的峰面積、持續時間和個數。原作者應用配對設計定量資料的t檢驗進行統計處理,資料見表4。

表 莪術水煎劑對大鼠子宮肌電活動的影響(均數±標准差)

辨析:

沒有交待將大鼠按體重等重要的非實驗因素作為配伍條件進行隨機區組。

本資料有四個劑量,屬於單因素四水平設計的定量資料,不可以用成組設計或配對設計的t檢驗。

措施:如果滿足正態性和方差齊性兩個前提條件,應用單因素四水平設計定量資料的方差分析,在得出有統計學意義的結論後,還可進一步採用Dunnett t檢驗或LSD檢驗。

如果在專業上有必要對3項指標同時進行考察,還應選用該設計的定量資料的三元方差分析對資料進行處理。

三、計數資料分析方法的常見問題

3.1 計算相對數時分母太小

文題:疏肝利膽中葯防治膽固醇結石形成的實驗研究。實驗數據見表4。請問:在表達資料方面有何不妥之處?

辨析:

計算相對數時,分母過小,相對數很不穩定,易失真,不但不能正確反映事實真相,還往往會造成錯覺。

在表4中,各組樣本例數都小於20,樣本例數偏小,不宜計算率,直接給出例數就可以。

3.2 誤用χ2 檢驗分析結果變數為有序變數的資料

某醫生用A、B兩葯治療某病各240例,其療效分為四個等級:痊癒、顯效、好轉、無效,見表4。經R×C表χ2檢驗,χ2=53.33 ,P <0.01 ,認為兩組療效之間的差異有統計學意義。

辨析:

本資料屬於單項有序的R×C表,臨床療效有等級之分,對於等級資料可採用Ridit分析或秩和檢驗。而不應用R×C的χ2檢驗,R×C表χ2 檢驗只能檢驗兩組內部構成是否相同或頻數的分布是否相同,不能檢驗療效有無差別。不難看出,若對表4資料任意兩列數字進行對換,可以清楚地發現,χ2值仍為53.33,不會有改變。

3.3 誤用χ2檢驗回答相關性問題

表 不同年齡冠狀動脈粥樣硬化程度的分布

上述資料用χ2檢驗得:χ2 =163.01,P<0.005,結論為:可認為冠狀動脈硬化的程度與年齡有關,結合本資料可見冠狀動脈硬化等級有隨年齡增高而增加的趨勢。

問:處理此資料所用的統計分析方法以及所得出的結論有何不妥之處?

辨析1:

本資料為「雙向有序且屬性不同的二維列聯表資料」,處理這種資料有3個目的,因此,就對應著3套不同的統計分析方法。

分析不同年齡組患者冠狀動脈硬化等級之間有無差別:看作單向有序資料,選用秩和檢驗。

分析年齡與冠脈硬化等級間有無相關關系:選用等級相關。

分析兩者間是否存在線性變化趨勢則應用線性趨勢檢驗。

作者欲考察「兩個有序變數之間是否呈相關關系」,而χ2檢驗結果是P<0.05,說明冠狀動脈硬化患者在不同年齡組的人數分布是不同的。

事實上,若將表中任何兩行的頻數互換或將任何兩列的頻數互換,所得的χ2檢驗的統計量數值是不會變化的,說明χ2檢驗用於處理有序變數形成的二維列聯表資料是不合適的。

辨析2:

欲考察「兩個有序變數之間是否呈相關關系」,應選用分析定性資料的相關分析方法,如:Spearman秩相關分析,Kendall秩相關分析或典型相關分析。

本例採用Spearman秩相關分析,得:rs=0.53215,P<0.0001。

結論為:表中兩個有序變數之間呈正相關關系,即隨著年齡的增加冠狀動脈硬化等級也逐漸增大,兩者之間的相關關系具有統計學意義。

3.4 多值有序變數的高維列聯表資料

3.5 不滿足連續性χ2檢驗條件時未做校正

3.6 十一種形式的列聯表

3.7 誤用χ2檢驗取代Fisher精確檢驗

3.8 對R×C表直接分割進行兩兩比較

四、統計分析方法表述問題

(1)在統計學方法中註明「採用SPSS軟體進行統計學處理」。此表述正確嗎?

辨析:

      從該表述中只能得知原作者採用了什麼統計分析軟體處理數據,沒有交代清楚軟體的版本和序列號;更未體現出文中資料所對應的實驗設計類型和所採用的具體統計分析方法。

(2)在統計學方法中註明「計量資料採用方差分析」。請問:此表述正確嗎?

辨析:

從該表述中只能得知作者處理定量資料用了方差分析,至於這些統計分析方法的選用是否正確,則不得而知。

通常情況下,比較各平均值之間的差別是否具有統計學意義,可能會用到的t檢驗有3種,方差分析有10種之多,他們之間的本質區別體現在定量資料所對應的「實驗設計類型」上。

在表述統計學方法時,應將所用方法寫完整,即在統計分析方法前冠以實驗設計名稱,如配對設計定量資料的t檢驗、成組(或單因素兩水平)設計定量資料的t檢驗或兩因素析因設計定量資料的方差分析。

(3)定性資料一律採用χ2檢驗,對嗎?

辨析:

      事實上,定性資料通常可以編製成11種形式的列聯表。在進行統計分析時,應針對不同形式的列聯表、統計分析目的和資料實際具備的前提條件,選用相應的統計分析方法,不可隨意盲目選用,更不應將χ2檢驗視為處理定性資料的萬能工具。

(4)許多論文中,當統計數據經假設檢驗後,P值僅僅列出P >0.05或P<0.05 、P<0.01便稱結果無顯著差異,或結果非常顯著。

假設檢驗結果正確的表達方法是:

      應寫出描述性統計量,如樣本均數、率、相關系數、回歸系數、相對危險度、半數效量等,及其可信區間、檢驗統計量,如χ2、t、u、F 值等)、P值;然後根據P值大小作出統計學推斷,並作出相應的醫學專業結論。

舉例:

SPSS實現多組率的兩兩比較

pearson卡方

SPSS對原始數據是頻數表的,需進行加權處理(讓軟體橫著看數據)後卡方檢驗。

條件:(1)pearson卡方要求總例數大於40;(2)0 個單元格 (0.0%) 的期望計數小於 5。最小期望計數為 15.25。

資料收集整理來自網路文庫

㈣ 醫學論文中怎樣根據統計資料的類型選擇一種或幾種檢驗方法

剛在那個什麼 創新醫學網 上看見過 醫學論文 寫作輔導的文章 這個知道是不是 你要的答案
統計資料的顯著性檢驗(significant test)方法的選擇是醫學論文中常常遇見的問題,退稿原因中常有顯著性檢驗方法選擇不當。如t檢驗、u檢驗、χ2檢驗等,雖然各有其應用范圍和要求,但也其共同之處。作者可根據統計資料的類型,選擇一種或幾種檢驗方法。但當作者在獲得一組、兩組或兩組以上的數據資料時,選擇何種顯著性檢驗,是至關重要的問題。不同的資料類型其統計指標、統計檢驗的方法是不同的,見表1。
醫學生物研究中,許多指標都是服從正態分布(u分布)的,而隨著樣本含量加大或自由度增大,t分布、χ2分布、F分布都趨向於正態分布見圖1、圖2。
在《中華創傷雜志》第12卷1~6期和增刊中文章所涉及的統計方法(表2),表明了正態分布的廣泛性、常見性。
故當作者獲得數據資料後,首先應進行正態性檢眩�范ㄊ欠為標准正態分布(或近似正態分布)或不屬於正態分布。筆者首先推薦概率單位法。
當統計資料屬於正態分布或近似正態分布時,差異顯著性檢驗方法的選裕�詵合其應用條件下,一般可按表3進行選擇。
顯著性檢驗應用時的主要注意事項:(1)率值或均值在進行顯著性檢驗前,應注意樣本的代表性和可比性。(2)檢驗結果接近顯著性界限時:要多方面考慮,是否確實不存在差異;或是觀察例數不夠,而需加大樣本例剩換是檢驗公式運用不當,可用其他檢驗印證。(3)多個樣本比例數的χ2檢驗,差異顯著性,只能說明多組比例數不同或不完全相同,而不能確定哪個比例數不同,要進一步進行顯著性檢驗才能了解兩個樣本比例數是否構成相同。

表1 一般情況下不同資料的統計指標與檢驗方法的關系

資料類型 統計指標 統計檢驗方法
計量資料 均數、標准差 t檢驗、F檢驗等
計數資料 率、構成比 χ2檢驗等
半定量資料 率、構成比 秩和檢驗、Ridit分析

表2 《中華創傷雜志》第12卷1~6期、
增刊顯著性檢驗方法使用頻數

檢驗方法 應用次數 檢驗方法 應用次數
t檢驗 27 直線相關與回歸分析 5
χ2檢驗 16 擬合線性回歸 1
F檢驗 24 相關分析 6
Q檢驗 2 非參數統計 4
u檢驗 1 未註明方法 6

表3 常用顯著性檢驗方法的選擇

統計資料比較類型 顯著性檢驗
小樣本均數與總體均數相比較 t檢驗
小樣本均數相比較 t檢驗、F檢驗
兩個或多個大樣本均數與
總體均數相比較 u檢驗、t檢驗
大樣本均數相比較 u檢驗、t檢驗
配對計量資料 配對t檢驗
兩個率的比較 u檢驗、χ2檢驗
多個樣本率的的比較 χ2檢驗
配對計數資料兩種屬性的
相關分析及其差別的比較 χ2檢驗

㈤ 醫學科研中常用的統計學方法有哪些

正確的統計學分析一定要建立在明確的研究目的和研究設計的基礎之上,那些事先沒有研究目的和研究設計,事後找來一堆數據進行統計分析都是不可取的。 在醫學論文的撰、編、審、讀過程中經常遇到的問題是研究的題目與課題設計、論文內容不符,包括文章的方法解決不了論文的目的、文章的結果說明不了論文的題目、文章的討論偏離了論文的主題;還有是目的不明確、設計不合理。如題目過小,論文不夠字數,而一些無關緊要的變數指標或結果被分析被討論;又如題目過大,論文的全部內容不足以說明研究的目的,使論文的論點難以立足。 所以,合理明確的論文題目或目的以及研究設計方案是撰、編、審、讀者應當關注的首要問題。此外,樣本含量是否滿足,抽樣是否隨機,偏倚是否控制等,也是不可忽視的問題。

2、建好分析用的資料庫

建好資料庫是正確統計分析的前提和基礎,甚至決定了論文分析結果的成敗。對於編、審、讀者來講,一般由於篇幅的限制,往往得不到資料庫數據,而只有作者在資料庫數據基礎上經統計描述計算後給出的諸如各指標均數 x、標准差 s 或中位數 M、百分位數 Px 的「二手」數據,或將研究對象小或特徵屬性分組,清點各組觀察單位出現的個數或頻數的頻數表數據等。 無論是否能夠得到資料庫數據,作者在統計分析過程中一定依據資料庫數據進行計算,得出結果。如果對「二手」數據或頻數表數據的結果等存在疑惑,編輯、審稿專家或讀者有權要求作者提供資料庫數據以檢查其完整性、准確性和真實性,確保研究數據的質量。假若在投稿須知中對資料庫數據作出必要的要求,無疑對於保證刊物的發表質量有著積極的意義

㈥ 論文常用數據分析方法

論文常用數據分析方法

論文常用數據分析方法,對好的論文分析研究方法應該從哪些方面展開,如何表達才能顯得自己對該論文真的有所理解,應該看哪些書呢?下面我整理了論文常用數據分析方法,一起了解看看吧!

論文常用數據分析方法1

論文常用數據分析方法分類總結

1、 基本描述統計

頻數分析是用於分析定類數據的選擇頻數和百分比分布。

描述分析用於描述定量數據的集中趨勢、波動程度和分布形狀。如要計算數據的平均值、中位數等,可使用描述分析。

分類匯總用於交叉研究,展示兩個或更多變數的交叉信息,可將不同組別下的`數據進行匯總統計。

2、 信度分析

信度分析的方法主要有以下三種:Cronbach α信度系數法、折半信度法、重測信度法。

Cronbach α信度系數法為最常使用的方法,即通過Cronbach α信度系數測量測驗或量表的信度是否達標。

折半信度是將所有量表題項分為兩半,計算兩部分各自的信度以及相關系數,進而估計整個量表的信度的測量方法。可在信度分析中選擇使用折半系數或是Cronbach α系數。

重測信度是指同一批樣本,在不同時間點做了兩次相同的問題,然後計算兩次回答的相關系數,通過相關系數去研究信度水平。

3、 效度分析

效度有很多種,可分為四種類型:內容效度、結構效度、區分效度、聚合效度。具體區別如下表所示:

論文常用數據分析方法2

4、 差異關系研究

T檢驗可分析X為定類數據,Y為定量數據之間的關系情況,針對T檢驗,X只能為2個類別。

當組別多於2組,且數據類型為X為定類數據,Y為定量數據,可使用方差分析。

如果要分析定類數據和定類數據之間的關系情況,可使用交叉卡方分析。

如果研究定類數據與定量數據關系情況,且數據不正態或者方差不齊時,可使用非參數檢驗。

5、 影響關系研究

相關分析用於研究定量數據之間的關系情況,可以分析包括是否有關系,以及關系緊密程度等。分析時可以不區分XY,但分析數據均要為定量數據。

回歸分析通常指的是線性回歸分析,一般可在相關分析後進行,用於研究影響關系情況,其中X通常為定量數據(也可以是定類數據,需要設置成啞變數),Y一定為定量數據。

回歸分析通常分析Y只有一個,如果想研究多個自變數與多個因變數的影響關系情況,可選擇路徑分析。

㈦ 醫學論文寫作中分析數據的統計方法有哪些

科學研究很早就已經從簡單的定性分析深入到細致的定量分析,科研工作者要面對大量的數據分析問題,科研數據的統計分析結果直接影響著論文的結果分析。在醫學科研寫作中,實驗設計的方法直接決定了數據採取何種統計學方法,因為每種統計方法都要求數據滿足一定的前提和假定,所以論文在實驗設計的時候,就要考慮到以後將採取哪種數據統計方法更可靠。醫學統計方法的錯誤千差萬別,其中最主要的就是統計方法和實驗設計不符,造成數據統計結果不可靠。下面,醫刊匯編譯列舉一些常見的可以避免的問題和錯誤:

打開網路APP,查看更多高清圖片
一、數據統計分析方法使用錯誤或不當。醫學論文中,最常見的此類錯誤就是實驗設計是多組研究,需要對數據使用方差分析的時候,而作者都採用了兩樣本的均數檢驗。
二、統計方法闡述不清楚。在同一篇醫學論文中,不同數據要採取不同統計處理方法,這就需要作者清楚地描述出每個統計值採用的是何種統計學方法,但在許多使用一種以上數據統計分析方法的醫學論文中,作者往往只是簡單地把論文採用的數據統計方法進行了整體羅列,並沒有對每個數據結果分析分別交代具體的統計方法,這就很難讓讀者確認某一具體結果作者到底採用的是何種數據分析方法。
三、統計表和統計圖缺失或者重復。統計表或者統計圖可以直觀地讓讀者了解統計結果。一個好的統計表或統計圖應該具有獨立性,即作者即使不看文章內容,也可從統計表或統計圖中推斷出正確的實驗結果。而一些醫學論文只是簡單地堆砌了大量的統計數字,缺乏直觀的統計圖或表;或者雖然也列出了統計表或統計圖,但表或圖內缺項很多,讓讀者難以從中提取太多有用的信息。
另外,也有作者為了增加文章篇幅,同時列出統計表和統計圖,造成不必要的浪費和重復。統計表的優點是詳細,便於分析研究各類問題。統計圖(尤其是條形統計圖)的優點是能夠直觀反映變數的數量差異。
醫學論文中對數據統計結果的解釋,最常見的兩個錯誤就是過度信賴P值(結果可信程度的一個遞減指標)和迴避陰性結果。前一個錯誤的原因是因為一些作者對P值含義理解有誤,把數據的統計學意義和研究的臨床意義混淆。所以醫學研究人員一定要注意不能單純依靠統計值武斷地得出一些結論,一定要把統計結果和臨床實踐結合在一起,這樣才會避免出現類似的錯誤。
至於迴避陰性結果,只提供陽性結果,是因為不少作者在研究設計時,難以擺脫的一種單向的思維定式就是主觀地先認定自己所預想的某種結果結論。在歸納某種結果原因時,從一個方向的實驗就下完美的結論,尤其是如果這個結論可能對實際情形非常有意義時。這樣的思維定勢過於強調統計差異的顯著性,有時會刻意迴避報道差異的不顯著結果,不思考和探究差異不顯著的原因和意義,反而會因此忽視一些重大的科學發現。

閱讀全文

與論文如何選擇統計方法相關的資料

熱點內容
設計師面試的問題及解決方法 瀏覽:739
船櫓使用方法 瀏覽:173
家裡有書虱子怎麼去除最快方法 瀏覽:204
設計興利庫容的常用方法 瀏覽:420
我是怎麼幫人漲粉的方法 瀏覽:257
中醫貼耳朵治療方法 瀏覽:92
機構養老金計算方法 瀏覽:406
力學有哪些研究方法 瀏覽:713
請說明假幣識別的主要方法有哪些 瀏覽:352
瘦肚子的最快方法懶人圖片 瀏覽:726
如何教小朋友認識響板的使用方法 瀏覽:185
簡答題如何培養科學的記憶方法 瀏覽:111
女性排卵期怎麼計算方法 瀏覽:364
角120度角下料計算方法 瀏覽:157
檢測汽車玻璃結冰的最好方法 瀏覽:730
雲南棉柔衛生巾鑒別真假方法 瀏覽:642
小學畫圖解決問題的步驟和方法 瀏覽:639
求職面試正確方法與錯誤方法 瀏覽:917
如何做證明題的方法七年級下冊 瀏覽:477
用什麼方法提dna好 瀏覽:653