導航:首頁 > 方法技巧 > 如何證明數學的方法

如何證明數學的方法

發布時間:2023-08-30 09:18:43

A. 有哪些數學證明方法

數學歸納法 反證法 邏輯法 假設法 推理法等等

B. 如何證明復雜的數學定理,例如費馬大定理或龐加萊猜想

證明復雜的數學定理通常需要經過多年的努力和研究,需要運用高深的數學理論和工具,需要具有極高的數學能力和創造力。以下是證明數學定理的一般步驟:

C. 初中數學證明題技巧 如何做數學證明題

1、證明兩線段相等

1.兩全等三角形中對應邊相等。

2.同一三角形中等角對等邊。

3.等腰三角形頂角的平分線或底邊的高平分底邊。

4.平行四邊形的對邊或對角線被交點分成的兩段相等。

5.直角三角形斜邊的中點到三頂點距離相等。

6.線段垂直平分線上任意一點到線段兩段距離相等。

7.角平分線上任一點到角的兩邊距離相等。

8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。

9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。

10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。

11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。

*12.兩圓的內(外)公切線的長相等。

13.等於同一線段的兩條線段相等。

2、證明兩個角相等

1.兩全等三角形的對應角相等。

2.同一三角形中等邊對等角。

3.等腰三角形中,底邊上的中線(或高)平分頂角。

4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。

5.同角(或等角)的餘角(或補角)相等。

6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。

7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。

8.相似三角形的對應角相等。

9.圓的內接四邊形的外角等於內對角。

10.等於同一角的兩個角相等。

3、證明兩條直線互相垂直

1.等腰三角形的頂角平分線或底邊的中線垂直於底邊。

2.三角形中一邊的中線若等於這邊一半,則這一邊所對的角是直角。

3.在一個三角形中,若有兩個角互余,則第三個角是直角。

4.鄰補角的平分線互相垂直。

5.一條直線垂直於平行線中的一條,則必垂直於另一條。

6.兩條直線相交成直角則兩直線垂直。

7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。

8.利用勾股定理的逆定理。

9.利用菱形的對角線互相垂直。

10.在圓中平分弦(或弧)的直徑垂直於弦。

11.利用半圓上的圓周角是直角。

4、證明兩直線平行

1.垂直於同一直線的各直線平行。

2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。

3.平行四邊形的對邊平行。

4.三角形的中位線平行於第三邊。

5.梯形的中位線平行於兩底。

6.平行於同一直線的兩直線平行。

7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行於第三邊。

5、證明線段的和差倍分

1.作兩條線段的和,證明與第三條線段相等。

2.在第三條線段上截取一段等於第一條線段,證明餘下部分等於第二條線段。

3.延長短線段為其二倍,再證明它與較長的線段相等。

4.取長線段的中點,再證其一半等於短線段。

5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。

6、證明 角的和差倍分

1.與證明線段的和、差、倍、分思路相同。

2.利用角平分線的定義。

3.三角形的一個外角等於和它不相鄰的兩個內角的和。

7、證明線段不等

1.同一三角形中,大角對大邊。

2.垂線段最短。

3.三角形兩邊之和大於第三邊,兩邊之差小於第三邊。

4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。

5.同圓或等圓中,弧大弦大,弦心距小。

6.全量大於它的任何一部分。

8、證明兩角的不等

1.同一三角形中,大邊對大角。

2.三角形的外角大於和它不相鄰的任一內角。

3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。

*4.同圓或等圓中,弧大則圓周角、圓心角大。

5.全量大於它的任何一部分。

9、證明比例式或等積式

1.利用相似三角形對應線段成比例。

2.利用內外角平分線定理。

3.平行線截線段成比例。

4.直角三角形中的比例中項定理即射影定理。

5.與圓有關的比例定理---相交弦定理、切割線定理及其推論。

6.利用比利式或等積式化得。

10、證明四點共圓

1.對角互補的四邊形的頂點共圓。

2.外角等於內對角的四邊形內接於圓。

3.同底邊等頂角的三角形的頂點共圓(頂角在底邊的同側)。

4.同斜邊的直角三角形的頂點共圓。

5.到頂點距離相等的各點共圓

D. 解數學證明題的技巧有哪些

證明題有三種思考方式

● 正向思維

對於一般簡單的題目,我們正向思考,輕而易舉可以做出。這里就不詳細講述了。


● 逆向思維

顧名思義,就是從相反的方向思考問題。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯。

同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。

例如:

可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去…

這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。


● 正逆結合

對於從結論很難分析出思路的題目,可以結合結論和已知條件認真的分析。

初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。

給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。


證明題要用到哪些原理

要掌握初中數學幾何證明題技巧,熟練運用和記憶如下原理是關鍵。

下面歸類一下,多做練習,熟能生巧,遇到幾何證明題能想到採用哪一類型原理來解決問題。

一、證明兩線段相等

1.兩全等三角形中對應邊相等。

2.同一三角形中等角對等邊。

3.等腰三角形頂角的平分線或底邊的高平分底邊。

4.平行四邊形的對邊或對角線被交點分成的兩段相等。

5.直角三角形斜邊的中點到三頂點距離相等。

6.線段垂直平分線上任意一點到線段兩段距離相等。

7.角平分線上任一點到角的兩邊距離相等。

8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。

9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。

10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。

11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。

12.兩圓的內(外)公切線的長相等。

13.等於同一線段的兩條線段相等。

二、證明兩個角相等

1.兩全等三角形的對應角相等。

2.同一三角形中等邊對等角。

3.等腰三角形中,底邊上的中線(或高)平分頂角。

4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。

5.同角(或等角)的餘角(或補角)相等。

6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。

7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。

8.相似三角形的對應角相等。

9.圓的內接四邊形的外角等於內對角。

10.等於同一角的兩個角相等。

三、證明兩條直線互相垂直

1.等腰三角形的頂角平分線或底邊的中線垂直於底邊。

2.三角形中一邊的中線若等於這邊一半,則這一邊所對的角是直角。

3.在一個三角形中,若有兩個角互余,則第三個角是直角。

4.鄰補角的平分線互相垂直。

5.一條直線垂直於平行線中的一條,則必垂直於另一條。

6.兩條直線相交成直角則兩直線垂直。

7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。

8.利用勾股定理的逆定理。

9.利用菱形的對角線互相垂直。

10.在圓中平分弦(或弧)的直徑垂直於弦。

11.利用半圓上的圓周角是直角。

四、證明兩直線平行

1.垂直於同一直線的各直線平行。

2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。

3.平行四邊形的對邊平行。

4.三角形的中位線平行於第三邊。

5.梯形的中位線平行於兩底。

6.平行於同一直線的兩直線平行。

7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行於第三邊。

五、證明線段的和差倍分

1.作兩條線段的和,證明與第三條線段相等。

2.在第三條線段上截取一段等於第一條線段,證明餘下部分等於第二條線段。

3.延長短線段為其二倍,再證明它與較長的線段相等。

4.取長線段的中點,再證其一半等於短線段。

5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。

六、證明角的和差倍分

1.與證明線段的和、差、倍、分思路相同。

2.利用角平分線的定義。

3.三角形的一個外角等於和它不相鄰的兩個內角的和。

七、證明線段不等

1.同一三角形中,大角對大邊。

2.垂線段最短。

3.三角形兩邊之和大於第三邊,兩邊之差小於第三邊。

4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。

5.同圓或等圓中,弧大弦大,弦心距小。

6.全量大於它的任何一部分。

八、證明兩角的不等

1.同一三角形中,大邊對大角。

2.三角形的外角大於和它不相鄰的任一內角。

3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。

4.同圓或等圓中,弧大則圓周角、圓心角大。

5.全量大於它的任何一部分。

九、證明比例式或等積式

1.利用相似三角形對應線段成比例。

2.利用內外角平分線定理。

3.平行線截線段成比例。

4.直角三角形中的比例中項定理即射影定理。

5.與圓有關的比例定理---相交弦定理、切割線定理及其推論。

6.利用比利式或等積式化得。

十、證明四點共圓

1.對角互補的四邊形的頂點共圓。

2.外角等於內對角的四邊形內接於圓。

3.同底邊等頂角的三角形的頂點共圓(頂角在底邊的同側)。

4.同斜邊的直角三角形的頂點共圓。

5.到頂點距離相等的各點共圓。

E. 尋求所有常用的數學證明方法

證明命題的方法:
大多數命題都取下面兩種形式中的一種:
「若P,則Q」
P=>Q
「P,當且僅當Q」
P<=>Q
要證後一種。我們先證「P蘊涵Q」再證「Q蘊涵P」即可。
而證明「P蘊涵Q」通常有三種方法:
1。最直接的方法是,假設P使真的在設法去推導Q是真的。這里不必擔心P是假的的情況。因為「P蘊涵Q」自然是真的。(這涉及蘊涵的概念,相信你是清楚的)
2。第二種方法是寫出它的逆否「(非Q)蘊涵(非P)」然後證明它。
這時我們假定(非Q)是真的,然後設法推證非P是真的。
3。歸謬法。(反證法就是歸謬法!!!)
想真正弄清反證法,我們還得做些准備。
先看看什麼是矛盾吧,它的定義是精確的。
觀察P與(非P)這個命題。用真值表。
P
非P
P與(非P)
T
F
F
F
T
F
我們發現,無論P是T還是F,命題P與(非P)永遠是F.這時我們說P與(非P)是一個矛盾。
再看一個真值表,討論P與(非Q).
P
Q
非Q
P與(非Q)
非[P與(非Q)]
P蘊涵Q
T
T
F
F
T
T
T
F
T
T
F
F
F
T
F
F
T
T
F
F
T
F
T
T
我們發現非[P與(非Q)]和P蘊涵Q同T同F,他們是邏輯等價的。
現在我們可以討論反證法了。
運用反證法。假設P和非Q都是真的。然後尋找一個矛盾。由此斷定我們的假設是假的。即「非[P與(非Q)]」是真的。而這與
「P蘊涵Q
」等價。從而證明了P蘊涵Q真。
具體的證明需要運用具體數學知識,以上只是最一般的方法以及邏輯原理。

閱讀全文

與如何證明數學的方法相關的資料

熱點內容
韭花帖的正確臨寫方法 瀏覽:40
鈣片含量檢測方法 瀏覽:433
子宮托垂的治療方法 瀏覽:865
淺小葉型肺氣腫的治療方法 瀏覽:649
12x3x5用簡便方法計算 瀏覽:686
大黑鷹的使用方法 瀏覽:961
大紅袍安裝方法 瀏覽:391
安裝金紗窗最簡單的方法 瀏覽:95
小女孩扎短長頭發方法簡單又漂亮 瀏覽:885
胸大肌杠鈴鍛煉方法 瀏覽:372
快速去除果凍的方法 瀏覽:989
維護水的正確使用方法 瀏覽:460
沖壓件剪切計算方法 瀏覽:671
打通手足經絡脹疼方法有哪些 瀏覽:450
粉底凝霜使用方法 瀏覽:987
拋物線安裝方法 瀏覽:153
用什麼土方法治腳氣最好 瀏覽:415
腎損傷的治療方法 瀏覽:366
快速清除眼袋小方法 瀏覽:899
鑒別信息的真偽的基本方法 瀏覽:378