『壹』 怎樣快速計算出一個數的平方根立方根
快速計算平方根的公式:20m+n;
譬如求72162的平方根:
要從個位開始將它分塊,每兩位一塊,即7,21,62這樣分。
1、首先開始試商,從最高為試起,先來7,思考什麼數的平方小於7,明顯是2。然後用7減去2的平方,得出的數字3為余數,將要在下一步與後兩位數字合起來用來進行下一步運算。
2、第二步,此時被除的變成了321,此時公式開始派上用場,上一步試出來的商2即為m,至於n是第二步要試的商,而除數就是公式20m+n,切記商與除數的積不要大過被除數。
具體到剛才的數字,除數是321,而被除數則是20×2+n,即40幾,要n×(20×2+n)小於等於321,最合適的就是n=6,即46×6=276,再用321減去276得出結果45用於第三步的試商。
3、第三步,也像第二步一樣試商,只不過此時的被除數變成4562,除數m=20×26+n,n是第三步要試的商。由n×(20×26+n)小於等於4562得出第三步的試商n=8。
4、第四步開始棘手了,因為個位之前的已經試完了,此時,應從小數點之後的十分位開始,如一開始一樣,每兩位分成一塊,這之後,就可以按前面的方法一直試下去了。
(1)快速算立方根方法擴展閱讀:
末位是5的兩位數的平方的演算法:
後兩位統一都是25
15的平方 1*2=2 15*15=225
25的平方 2*3=6 25*25=625
...
...
55的平方 5*6=30 55*55=3025
99的平方 9*10=90 95*95=9025
『貳』 立方根怎麼算
立方根計算公式
3√a
任何數字的立方都是通過乘以三倍數來找到的。例如 求7的立方– 7×7×7 =343
立方體公式是立方求根公式的相反公式。請查看下面的示例:
5的立方 ,= 53 = 5乘以3次 = 125
立方根125 = 3√125 = 5
13 = 1
23 = 8
33 = 27
43 = 64
53 = 125
63 = 216
73 = 343
83 = 512
93 = 729
10 =1000
以上是立方根公式表的全部內容
『叄』 如何手算開立方根
一、分為整數開平方和小數開平方。
1、整數開平方步驟:
(1)將被開方數從右向左每隔2位用撇號分開;
(2)從左邊第一段求得算數平方根的第一位數字;
(3)從第一段減去這個第一位數字的平方,再把被開方數的第二段寫下來,作為第一個余數;
(4)把所得的第一位數字乘以20,去除第一個余數,所得的商的整數部分作為試商(如果這個整數部分大於或等於10,就改用9左試商,如果第一個余數小於第一位數字乘以20的積,則得試商0);
(5)把第一位數字的20倍加上試商的和,乘以這個試商,如果所得的積大於余數時,就要把試商減1再試,直到積小於或等於余數為止,這個試商就是算數平方根的第二位數字;
(6)用同樣方法繼續求算數平方根的其他各位數字。
2、小數部分開平方法:
求小數平方根,也可以用整數開平方的一般方法來計算,但是在用撇號分段的時候有所不同,分段時要從小數點向右每隔2段用撇號分開。
如果小數點後的最後一段只有一位,就填上一個0補成2位,然後用整數部分開平方的步驟計算。
二、
1.根據平方和(立方和)公式手算開平方(開立方)。以往初中教材上必學的手算開平方就是此法,開立方也可類似處理。
2.利用二分法以及不等式兩邊夾,如求2的平方根
1)1^2<2<2^2
2)(1.4)^2<2<(1.5)^2
......
此法運算量大。
3.利用微分求近似值——由於此法誤差不可控,可結合前一方法逐步提高精度,計算量比前一方法小。
4.原始的泰勒展開,計算量大,誤差可控。
5.變形的泰勒展開,計算方法里的。
參考鏈接:數學資源