① 初中數學常用的十一種思想方法介紹
數學的思想和方法是初中數學的基礎知識。數學學習中要提高我們分析問題的能力,形成用數學的意識決問題,這些都離不開數學思想和數學方法。我們在初中的數學學習中,學到了很多處理數學問題的思想和方法,下面,本人就教學過程中常用的數學思想方法介紹如下:
一、數形結合思想
根據數學問題的條件和結論之間內在聯系,既分析其代數含義,又揭示其幾何意義,使數量關系和圖形巧妙和諧地結合起一,並充分得漏叢薯用這種結合,尋求解題思路,使問題得到解決。
二、聯系與轉化的思想
事物之間是相互聯系,相互制約的。是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。如:代換轉化、已知與未知的轉化特殊與一般的轉化、具體抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
三、分類討論的思想
在數學中,我們常常需要根據研究對象性質的差異,分各種不同的情況予以考查,這種分類思考的方法是一一種重要的數學思想方法。同時也是一種重要的解題策略。
四、待定系數法
當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母的值就可以,為此,把已知道條件代入特定形式的式子中,往往會得到含待定字母的方和或方程組就使問題得到解決。待定系數法是一種重要的數學解題方法,在代數式恆等變形及研究函數中有著廣泛的應用。
五、配方法
把一個代數式設法構造成平方式,然後再進行所需要的變形,配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。
六、換元法
在解題過程中,把某個(或某些)字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題從而過鄭御到化繁為簡、化難為易的'目的。
七、分析法
在研究或證明一個命題時,由結論向己知條件追溯,即從結論升始,推求它成立的充分條件,這個條件的成立如果還不顯然,則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件(或己知的事實)為止,從而使命題得到證明,這種方法叫佬分析法。這種思維過程通常稱為「執果尋因」。初中階段只用分析法求解題,證題的思路,一般不要求用分析法解答或證明命題。
八、綜合法
在研究或證明命題時,如果推理的方向是從已知條件中(或已知事實)開始,逐步推導得到結論,這種方法叫綜合法。這種思維方塊字程通常簡稱為「自由導果」。我們通常解題或證題所用的方法就是綜合法。
九、演繹法
演繹法是由一般事物具有某種性質推出特殊事物也具有某種性質的推理方法,簡而言之,由一般到特殊的推理方法叫做演繹推陳出新理。演繹推陳出新理的主要形式是「三段論」式,即由一個大前提和一個結論組成,三段論的理論依據是邏輯公理。初中階段彩的是演繹推理解答或證明數不命題。
十、歸納法
歸納法是由特殊事物具有某種性質推出一般事物也是具有某種性質的推理方法,簡言之,由特殊到一般的推理方法叫做歸納法,也叫歸納推理。又分為:完全歸納法和不完全歸納法。
十一、類比法
在眾多的客觀事物中,存在著一些相互之間有相似屬性的事物,在兩面三刀個(或兩類)事物之間,根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法叫做類比法,也叫做類比推理。類比法既可能是特殊到特殊返者,也可能是一般到一般的推理。
② 數學八種思維方法
數學八種思維方法:代數思想、數形結合、轉化思想、對應思想方法、假設思想方法、比較思想方法、符號化思想方法、極限思想方法。
這是基本的數學思想之一 ,小學階段的設未知數x,初中階段的一系列的用字母代表數,這都是代數思想,也是代數這門學科最基礎的根!
是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。初高中階段有很多題都涉及到數形結合,比如說解題通過作幾何圖形標上數據,藉助於函數圖象等等都是數形給的體現。
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。
③ 初中數學學習有哪些思維方法可以推薦
初中數學教材中體現出的基本數學思想
數學思想方法是數學學科的精髓,是數學素養的重要內容之一,只有充分掌握領會,才能用效地應用知識,形成能力。那麼,什麼是數學思想呢?數學思想是指現實世界的空間形式和數量關系不反映到人的意識之中,經過思維活動而產生結果,是對數學事實與理論的本質認識。
初中數學整套教材涉及的數學思想三十多種,這里就幾種主要的數學思想作一總結。
一、用字母表示數的思想,這是基本的數學思想之一
在代數第一冊第一章「代數初步知識」中,主要體現了這種思想。例如:
設甲數為a,乙數為b,用代數式表示:(1)甲乙兩數的和的2倍:2(a+b)(2)甲數的1/3與乙數的1/2差:1/3a-1/2b
二、數形結合的思想
「數形結合」是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。實中數學教材中下列內容體現了這種思想。
1、數軸上的點與實數的一一對應的關系。
2、平面上的點與有序實數對的一一對應的關系。
3、函數式與圖像之間的關系。
4、線段(角)的和、差、倍、分等問題,充分利用數來反映形。
5、解三角形,求角度和邊長,引入了三角函數,這是用代數方法解決何問題。6、「圓」這一章中,賀的定義,點與圓、直線與圓、圓與圓的位置關系等都是化為數量關系來處理的。
7、統計初步中統計的第二種方法是繪制統計圖表,用這些圖表的反映數據的分情況,發展趨勢等。實際上就是通過「形」來反映數據扮布情況,發展趨勢等。實際上就是通過「形」來反映數的特徵,這是數形結合思想在實際中的直接應用。
三、轉化思想
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,它是數學基本思想方法之一。下列內容體現了這種思想:
1、分式方程的求解是分式方程轉化為前面學過的一元二次方程求解,這里把待解決的新問題化為已解決的問題來求解,體現了轉化思想。
2、解直角三角形;把非直角三形問題化為直角三角形問題;把實際問題轉化為數學問題。
3、「圓」這一章中,證明圓周角定理進所做的分析:證明弦切角定理的思路:求兩圓的切線長的問題。這些轉化都是通過輔助線來完成的。
4、把三角形或多邊形中的某種線段或面積問題化為相似比問題來解決。
四、分類思想
集合的分類,有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關生活經驗等都是通過分類討論的。
五、特殊與一般化思想
1.「圓」這一章中,證明圓周角定理和弦切角定理時用的是特殊到一般的方法,而相交弦定理及其推論則是一般到特殊的思想運用。
2.「整式乘除」這一章,首先人數和的運算特例中,抽象概括出冪的一般運算性質。例:103 ×103 =(10×10×10)(10×10)=10×10×10×10=105 =103 + 2
a3 ??a3 =a3 + 2 am ??an am + n
乘法公式的推導則是採用一般到特殊的推導過程。
六、類比思想
1. 不等式的性質,一元一次不等式的解法等內容時多採取與等式的性質,一無一次方和的解法等做類比。
2. 通過有理數的相反數、絕對值、運算律等得到實靈敏的相反數、絕對值、運算律等知識。
3.
在二次根式加減的運算中,指出「合並同類二次根式與合並同類項」類似。因此,二次根式的加減可以對比整式的加減進行。
4.
「角的度量、角的比較大小、角的和、差及平他線」,可與線段的相關知識進行類比;度、分、秒的運算可與時、分、秒的運算進行類比。
5. 相似多邊形的性質和相似三角形的性質類比。
七、數式通性
用數的運算所具有的性質,去控索式的同類運算是否也具有這樣的性質,如具有,叫數式通性,整式的乘除這一章中,是由數的性質推知式的性質的;由數的國減推知式的加減的。
八、同類合並思想
這一思想在「整式的加減」這一章中的具體體現是合並同類項。「根式」這一章中的合並同類根式。
九、無逼近思想
在無限不循環小數以及用有理數逼近表示無理數時,體現了無限逼近的思想。
十、對稱變換思想
在
根式乘法、根式除法、√a2 =a(a=0)等內容中,多次運用等價轉化、對稱變化,反用公式的
④ 初中怎樣學好數學的方法技巧
一、課前主動預習
首先初中數學一節課所學習的知識量比小學相比是多得多。再者很多小學階段數學課所學習的內容,只要學生自己看看書完全都可以掌握,但初中階段的數學就完全不同,知識內容多,知識點也較為繁雜,所以需要學生們學會主動去預習,在課前的預習中,主動掌握知識點的脈絡,畫出你已經掌握的和有所疑惑的內容,在可讓有的放矢的學習,有提前預習的脈絡幫助你快速跟上老師講課的節奏,其次在預習中所畫出的未懂內容更能幫助你在課上著重理解和分析老師的思維和方法,這樣才會讓課堂變得高效,也讓數學課的學習是有準備的進行,所以預習是學習初中數學的重要課前准備之一。
二、學會主動思考
筆者的很多學生反映過,他們在初中數學課堂上很多內容都能聽懂,為什麼課下拿到題目還是不會做。其實這個問題在筆者看來,是學生在課堂上聽多思少的原因造成的,很多學生在課堂上只會一味的聽老師所講,從來不會主動去思考老師為什麼會產生這樣的思維方式,而恰恰數學就是培養學生的邏輯思維能力,一旦你只聽不思,只會讓知識的邏輯性關聯性失去必要的思維痕跡,這就造成了你課下拿到題目還是無從下手。所以筆者在這里建議各位同學,在初中數學的課堂上要多思考,要去思考老師為什麼會這樣去處理問題?這個公式是如何推導出來的?等等,一定要善於做一個課堂上的「十萬個為什麼」去思考,這樣才會讓知識的思維邏輯性在腦中留下深刻的印象,也會讓你在拿到題目的時候有主動思考的習慣和處理問題方式的自主能力。
三、善於總結規律
講這一點,筆者先舉一個很多初中學生在數學學習上都會犯的一個錯誤,很多同學是不是同一種類型的題目總是反復錯,經常錯?錯題筆記我也做了,為什麼這種類型題換一種形式,我又錯了?
其實,這種問題的出現,就是學生缺乏總結規律的習慣,一種類型的題目反復錯,經常錯,說明你還沒有掌握做這種題目的規律,你不僅要做錯題筆記,而且還需要將你錯的這種類型的題目都拿出來,類比總結,發現你每次錯在哪兒?是不是哪個知識點的掌握有問題?還是其他原因。要善於總結規律,將同種類型的題目多比對,多總結,總結出一種屬於自己的解題思路和方法,然後再遇到這類問題時利用總結的規律和方法去解決。所以同學們,你不僅要做錯題筆記,而且要善於總結規律,只有不斷總結和歸納,思維才能不斷提升,解題方法才會不斷豐富。
四、拓寬解題思路
這一點是很多初中數學考試分數總處於及格水平的學生的薄弱點,很多學生在面對數學考題時,習慣用常規方法和思路去解決問題,一旦常規方法解決成功後就不管不問了,或者不能解決時直接選擇放棄。而初中數學的很多考題需要學生有著變通的邏輯思維能力,需要你能拓寬解題思路,當你用常規方法解決問題後,應該嘗試能否用其他方式方法解決,試著舉一反三;當你的常規方法不能解決問題時,你應該嘗試用其他思維方式去思考問題。所以,面對初中數學的學習,學生們需要不斷拓寬自己的解題思路,做到一題多解,方法多樣,才能以多變思路應對萬變考題。