1.轉矩控制:轉矩控制方式是通過外部模擬量的輸入或直接的地址的賦值來設定電機軸對外的輸出轉矩的大小,具體表現為例如10V對應5Nm的話,當外部模擬量設定為5V時電機軸輸出為2.5Nm。
如果電機軸負載低於2.5Nm時電機正轉,外部負載等於2.5Nm時電機不轉,大於2.5Nm時電機反轉(通常在有重力負載情況下產生)。可以通過即時的改變模擬量的設定來改變設定的力矩大小,也可通過通訊方式改變對應的地址的數值來實現。
2.位置控制:位置控制模式一般是通過外部輸入的脈沖的頻率來確定轉動速度的大小,通過脈沖的個數來確定轉動的角度,也有些伺服可以通過通訊方式直接對速度和位移進行賦值。由於位置模式可以對速度和位置都有很嚴格的控制,所以一般應用於定位裝置。應用領域如數控機床、印刷機械等等。
3.速度模式:通過模擬量的輸入或脈沖的頻率都可以進行轉動速度的控制,在有上位控制裝置的外環PID控制時速度模式也可以進行定位,但必須把電機的位置信號或直接負載的位置信號給上位反饋以做運算用。
位置模式也支持直接負載外環檢測位置信號,此時的電機軸端的編碼器只檢測電機轉速,位置信號就由直接的最終負載端的檢測裝置來提供了,這樣的優點在於可以減少中間傳動過程中的誤差,增加了整個系統的定位精度。
(1)如何控制馬達的方法擴展閱讀:
伺服電機(servo motor )是指在伺服系統中控制機械元件運轉的發動機,是一種補助馬達間接變速裝置。
伺服電機可使控制速度,位置精度非常准確,可以將電壓信號轉化為轉矩和轉速以驅動控制對象。伺服電機轉子轉速受輸入信號控制,並能快速反應,在自動控制系統中,用作執行元件,且具有機電時間常數小、線性度高、始動電壓等特性,可把所收到的電信號轉換成電動機軸上的角位移或角速度輸出。
㈡ 液壓馬達如何控制轉速
液壓馬達有兩種控制轉速的方法,一是用節流閥加溢流閥控制,二是用變頻來改變電機轉速。
將液壓泵提供的液壓能轉變為機械能的能量轉換裝置,由操控閥控制進入液壓馬達的液壓油流量,由於壓力油作用,受力不平衡使轉子產生轉矩。葉片式液壓馬達的輸出轉矩與液壓馬達的排量和液壓馬達進出油口之間的壓力差有關,其轉速由輸入液壓馬達的流量大小來決定。
變頻技術的核心是變頻器,通過對供電頻率的轉換來實現電動機運轉速度率的自動調節。
(2)如何控制馬達的方法擴展閱讀
齒輪馬達
在結構上為了適應正反轉要求,進出油口相等、具有對稱性、有單獨外泄油口,將軸承部分的泄漏油引出殼體外;為了減少啟動摩擦力矩,採用滾動軸承;為了減少轉矩脈動,齒輪液壓馬達的齒數比泵的齒數要多。
齒輪液壓馬達由干密封性差、容積效率較低、輸入油壓力不能過高、不能產生較大轉矩。並且瞬間轉速和轉矩隨著嚙合點的位置變化而變化,因此齒輪液壓馬達僅適合於高速小轉矩的場合。一般用於工程機械、農業機械以及對轉矩均勻性要求不高的機械設備上。
高速馬達
額定轉速高於500r/min的馬達屬於高速馬達。高速馬達的基本形式有齒輪式、葉片式和軸向柱塞式。它們主要特點是轉速高,轉動慣量小,便於啟動、制動、調速和換向。
低速馬達
轉速低於500r/min的液壓馬達屬於低速液壓馬達。它的基本形式是徑向柱塞式。
低速液壓馬達的主要特點是:排量大,體積大,轉速低,可以直接與工作機構連接,不需要減速裝置,使傳動機構大大簡化,低速液壓馬達的輸出扭矩較大,可達幾千到幾萬Nm,因此又稱為低速大扭矩液壓馬達。