① 怎麼運用簡便演算法
簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百;
2、補上一個數,能夠與其他數湊整,最後再減去這個數。
分組湊整法
在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
減法的性質:a-b-c=a-(b+c)。
提公因數法
使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;
如果沒有公因數,可以根據乘法結合律變化出公因數。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
② 如何進行簡便運算
簡便運算,就是利用運算定律或者是運算性質,巧用特殊數之間的特性進行巧算
乘法分配律為:兩個數的和與一個數相乘,先將它們與這個數分別相乘,再相加,積不變.即:(a+b)×c=a×c+b×c.反過來則:a×c+b×c=(a+b)×c
簡便計算常用方法:
1、利用運算定律。利用加法的交換律和結合律,乘法的交換律、結合律和分配律,可以使計算簡便。
2、分解因數。有的特殊數相乘是可以得到整數的,比如25和4,125和8等等,在我們遇到這些數字時,可以想辦法把它們變成能得到整數的數字。
3、數字變形。有的列式中的數字不能用簡便方式,但是我們把一些數字變形後就可以採用簡便方式,這時我們就要給數字變形了。
4、等差數列。有些算式的相鄰數字的差是相同的,這時我們可以採用等差數列公式算式。
5、設數法。有些算式中,有的數字是相同的,但是式子又比較長,這時我們可以把相同的數字組成的算式設為一個字母,然後把式子中相應的換成字母,再計算,就簡便多了。
6、湊整法。有些小數與整數相差很少,又有規律,這是我們可以湊成整數計算。
7、拆分法。拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
③ 用簡便方法計算
「簡便運算」是四則混合運算中的一種特殊運算方式,其作用是:讓學生在短暫的時間內快速地算出正確答案。簡便運算與四則混合運算的演算法是有區別的,它不按四則混合運算的運算順序進行運算,而是運用各種運算性質和運算定律進行運算,是一種特別的運算方式。 「簡便運算」的試題種類很多,一般可分為兩大類:用「運算定律」和「運算性質」進行運算 (一)運用「運算定律」進行運算 (1)運用「加法交換律和結合律」進行運算。
2 123+98+77 =(123+77)+98 =200+98 (先交換) =298 (後結合) (2)運用「乘法交換律、結合律和分配律」運算。 ①運用「乘法交換律和結合律」運算。 125×37×8=125×8×37=37000 這種試題是先應用交換律,後應用結合律,減少了計算的復雜性,保證了計算的准確性。 ②運用「乘法分配律」運算。 A 27×6+27×4=27×(6+4) =27×10 =
270 這類試題是開放型的,有的雖然不能直接運用乘法分配律進行運算,但是可以應用乘法分配律進行同化方式或順運方式進行運算。 (二)運用「運算性質」進行運算 (1)運用「加法運算性質」進行運算。如: ①168+98=168+100-2=266 ②168+103=168+100+3=271 這類試題的簡算方法是:找出兩個加數的特徵把其中一個加數看著是比它較接近的整十、整百或整千數來相加,然後看是「多加幾,就減去幾;少加幾,就再加上幾」。 (2)運用「減法運算性質」進行運算。如: ①327-99=327-100+1=228 ②458-103=458-100-3=355 這類試題的簡算方法是:看減數的特徵把它看作是一個與它比較接近的整數
3 的整十、整百或整千數來減,然後看是「多減幾」還是「少減幾」,如果是多減幾,就再加幾;如果是少減幾,就再減幾。 ③ 178-47-53=178-(47+53)=78 這類試題的簡算方法是:(算理)一個數連續減去兩個數,可以寫成這個數減去後兩個數的和,但是必須注意,要先找出「後兩個數」的特徵,即它們相加的結果是不是整十、整百或整千數等。如果是就可以用這個方法進行簡便運算。 (3)運用「乘法運算性質」進行運算。如: 25×32=25×4×8=100×8=800 108×24=(100+8)×24=100×24+8×24=2592 這類試題的簡算方法是:先看算式中兩個因數的特徵,看看其中哪一個因數根據需要按「積的形式」或「和的形式」折分後,與另一個因數相乘,可以使計算簡便,就選擇那種方式。 (4)運用「除法運算性質」進行運算。如: 12500÷25÷5=12500÷(25×5)=12500÷1225=100 900÷36=900÷9÷4=25 這類試題的簡算方法是:第一種試題(算理):一個數連續除以兩個數,可以改寫成這個數除以後兩個數的積;第二種試題的簡算方法是根據需要把除數折分成兩個因數的積,使計算簡便。
總之,在四則混合運算中,簡便運算試題的類型不外乎這幾種形式,只要學生掌握四則混合運算順序,同時掌握好上述簡便演算法,就可以保證計算的時效。
④ 數學簡便計算,有哪幾種方法
一、整體簡便計算。整個一道算式可以用簡便方法計算,這種形式最為常見。例如:
=1.14×10
=11.4
二、局部簡便計算。一道算式中局部可以進行簡便計算,這種形式也不少見。
三、中途簡便計算。開始計算並不能簡便計算,而經過一兩步後卻能進行簡便計算,這種情況最容易忽視。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重復簡便計算。在一道題里不止一次地進行簡便計算,這種情況往往不注意後一次簡便計算。例如:
=8×55×0.125
=8×0.125×55 第二次
=1×55
=55
一簡算的根據 a、乘法運算定律 b、加法運算定律 c、減法、除法的運算性質
二簡算的類型 a、直接簡算 b、部分簡算 c、轉化簡算 d、過程簡算
三簡算的幾種公式:
加法:a+b+c=a+(b+c)(加法結合律)
乘法:a×b×c=a×c×b(乘法交換律) a×b×c=a×(b×c)(乘法結合律) (a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
減法:a-b-c=a-c-b(減法交換律) a-b-c=a-(b+c)(減法結合律)
除法:a÷b÷c=a÷c÷b(除法交換律) a÷b÷c=a÷(b×c)(除法結合律) (a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除數是兩個數的差或和的情況下才能進行分配
希望幫到你 望採納 謝謝 加油
⑤ 如何簡便計算
有很多簡便計算的方法,以下是一些常見的技巧:
1. 估算:當你需要快速計算一個數時,用估算是一個很好的方法。例如,當你需要找到一個購物清單的大致總價時,你可以估算每個項目的價頃液判值,並埋差在頭腦中相加。當你需要快速做出決策時,估算也是一個很有用的技巧。
2. 利用約數:當你需要進行除法運算時,先考慮是否存在一個約數。例如,如果你需要計算72 ÷ 4,你可以想雀改到4是72的約數,因此可以得出結果18。
3. 利用倍數:另一個有用的技巧是利用倍數。例如,如果你需要計算9 x 8,你可以想到9 x 10 = 90,然後再減去9 x 2 = 18,得出結果72。
4. 利用記憶法:使用記憶法是另一種簡便的計算方法。例如,你可以記住一些常見的數字組合,例如乘法口訣表和常見的百分比和分數值。
總的來說,實踐使完美。當你練習這些技巧時,你會發現自己可以更快地進行數學計算。
⑥ 數學簡便計算,有哪幾種方法
數學簡便計算方法:
一、運用乘法分配律簡便計算
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2