㈠ 如何手算開立方根
一、分為整數開平方和小數開平方。
1、整數開平方步驟:
(1)將被開方數從右向左每隔2位用撇號分開;
(2)從左邊第一段求得算數平方根的第一位數字;
(3)從第一段減去這個第一位數字的平方,再把被開方數的第二段寫下來,作為第一個余數;
(4)把所得的第一位數字乘以20,去除第一個余數,所得的商的整數部分作為試商(如果這個整數部分大於或等於10,就改用9左試商,如果第一個余數小於第一位數字乘以20的積,則得試商0);
(5)把第一位數字的20倍加上試商的和,乘以這個試商,如果所得的積大於余數時,就要把試商減1再試,直到積小於或等於余數為止,這個試商就是算數平方根的第二位數字;
(6)用同樣方法繼續求算數平方根的其他各位數字。
2、小數部分開平方法:
求小數平方根,也可以用整數開平方的一般方法來計算,但是在用撇號分段的時候有所不同,分段時要從小數點向右每隔2段用撇號分開。
如果小數點後的最後一段只有一位,就填上一個0補成2位,然後用整數部分開平方的步驟計算。
二、
1.根據平方和(立方和)公式手算開平方(開立方)。以往初中教材上必學的手算開平方就是此法,開立方也可類似處理。
2.利用二分法以及不等式兩邊夾,如求2的平方根
1)1^2<2<2^2
2)(1.4)^2<2<(1.5)^2
......
此法運算量大。
3.利用微分求近似值——由於此法誤差不可控,可結合前一方法逐步提高精度,計算量比前一方法小。
4.原始的泰勒展開,計算量大,誤差可控。
5.變形的泰勒展開,計算方法里的。
參考鏈接:數學資源
㈡ 立方根開方技巧
求立方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:
1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11'56),分成幾段,表示所求平方根是幾位數;
2.根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);
3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);
4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(3×20除 256,所得的最大整數是 4,即試商是4);
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
6.用同樣的方法,繼續求平方根的其他各位上的數.
㈢ 立方根怎麼算
立方根計算公式
3√a
任何數字的立方都是通過乘以三倍數來找到的。例如 求7的立方– 7×7×7 =343
立方體公式是立方求根公式的相反公式。請查看下面的示例:
5的立方 ,= 53 = 5乘以3次 = 125
立方根125 = 3√125 = 5
13 = 1
23 = 8
33 = 27
43 = 64
53 = 125
63 = 216
73 = 343
83 = 512
93 = 729
10 =1000
以上是立方根公式表的全部內容