A. 學好數學的十個方法及技巧
學好數學的十個方法及技巧
學好數學的十個方法及技巧,想要學好數學不能只動腦思考,一定要勤動手多做題,數學作為孩子學習的第一個理科學科,這將會伴隨孩子很長的一段時間,學好數學的十個方法及技巧。
我們都知道數學這門學科是一個非常具有邏輯性的一門學科,很多學生在學習數學的過程中都會遇到很多的難題,這讓學生和家長非常的困擾。
學生要知道數學成績其實是非常非常能夠拉開分值的一個科目,所以在這門學科上能夠學好真的是非常的有幫助。
不過,很多家長和學生可能都會覺得數學學不好是因為沒有天賦,但是,其實並不完全是這樣,掌握好的學習的方法和技巧才是主要。
這期就來跟大家聊一聊,沒有天賦怎麼學好數學?掌握好學習的方法和技巧,你也可以學好!
上課認真聽講,課堂是掌握和拓展數學知識的重要環節
想要學好數學,上課認真聽講是一個重要的環節。上課的時候,老師一般就會講一些關於做題思路和一些拓展的知識內容,也就說上課的時候一般都是一些干貨,所以這是學生不能錯過的東西。
相信如果學生能夠在上課的時候跟上老師的思路,那麼一般的情況下,這樣的學生數學成績也就不差了,所以想要有一個好的數學成績,那上課的時候就要認真的聽講了。
培養自學能力
老師在講解新的概念和公式上,總是通過我們已經學過的知識來推導新知識。這樣就是通過已知學習未知。可以說是水到渠成。
過去在一次家長會上,校長的一句話讓我記憶很深,他說我是教數學的,學生數學學得好不是我教得好,而是學生自己悟出來的。
當然老師是謙虛的,但是我們也從中看出了一個道理,那就是自己要主動學習,一個班幾十個學生為何學習成績千差萬別,就是自學能力的差距。
自學能力越強,悟性就越高。隨著學生的不斷長大,他們對老師的依賴性正在逐漸減弱,自學的能力不斷增強。
數學也需要記憶
文科有大量知識需要我們去記憶,很多人錯誤的認為數學就不需要背,很多名校的老師都表示數學基礎知識也需要花費時間去記憶,我們可以每天投入15分鍾背本月、本學期學過的知識與筆記,要做到蓋住以後能嘗試回憶出來,
根據人類遺忘規律,千萬不要只背一次就放過,而是要反復回頭復習,直到完全記住,要把所有公式、筆記徹底記牢,特別是對於基礎差的同學,這一招提高數學成績很明顯。
整理錯題集,方便日後復習
學生在學習數學的過程中,整理錯題集這個學習方法是必須要學會的,而且還要將錯題集整理的清楚明白,要能夠方便自己日後去復習。
否則,自己記得密密麻麻自己都不想去看的話,那麼這就是沒有意義的事情了。
錯題集的作用,對於數學這個學科來講真的是非常重要,因為錯題集其實就是一個知識點的整理和延伸,懂學習的學習生會在錯題集上加上解題思路。
認真審題
很多家長發現,在問孩子數學題目為什麼做錯時,答案都是:「題目看錯了」。題目沒審清,學習再好的孩子也答不對題。
通常情況下,審題錯誤分為兩種:
1、文字、數字漏看、錯看
2、題意理解錯誤
為了讓孩子避免發生這樣的錯誤,可以養成「一掃、二劃、三落」的習慣!
首先,掃一遍題目,確定這是一道題考的是什麼。是雞兔同籠、相遇問題,還是工程問題?
有了初步的概念後,就能知道題目的大概套路是什麼,解題時的基本思路也就形成了。
其次,劃出重點詞,像是至少、不超過、占等詞。這樣可以讓孩子在解題過程中,不會出現計算錯誤等問題,還能直接簡化題目。
最後,才是落筆。將題目中所有的已知條件,結合基本思路,答案也就躍然紙上了。
多讀書
被譽為「東方國度上燦爛的數學之星」「東方第一幾何數學家」「數學之王」的蘇步青,無論是在小學,中學還是大學,成績都十分優異,他覺得學習數學的方法,除了多做題就是多讀書。
蘇步青認為,學習數學特別重要的一步,就是要弄清楚基本概念,也就是我們常說的定義,以及有每個基本概念引出的定理,還有每個基本概念是如何演出的?
這都需要我們仔仔細細的閱讀數學書籍,數不清說對於數學書中的某些內容,有時他自己也不是一下子就很明白,自己也要多讀很多遍才能清楚。
學數學要在理解的基礎上去做題,學會數學關鍵在於個人的悟性,除了上課認真聽講、課後做匹配練習外,還需要練就獨立解題能力與總結反思能力,學會以不變應萬變。
學數學最重要的就是解題能力。要想會做數學題目,就要有大量的練習積累,知道各類型題目的解題步驟與方法,題目做多了就有手感了,再拿出類似的題目才會有解題思路。
其次是學會預習。解題思路不是直接就有的,也並非通過做幾道簡單的題目就能輕易獲得,而是在預習過程中不斷積累出來的。因此,預習在數學學習過程中起到了非常重要的作用。預習一方面能夠讓大家提前對數學知識有所了解,另一方面能夠培養數學獨立學習能力。
學數學必須多做題。理解了數學基本定義和知識點以後,就需要通過做對應習題去鞏固知識,多做多練才能更好地掌握所學知識,學數學也是看花容易綉花難的,只有真正動手去做題、經歷了實操過程能學會。
做完題要學會總結。對於做過的題型及做錯的題目要善於進行分類總結,再遇到類似的題目要會分析,知道哪裡容易出現問題,然後盡量去避免。同時在做題和總結過程中,要學會舉一反三,抓住考點去復習。
學數學要會看書和查缺補漏。數學基礎考點都來源於課本,大家之所以覺得書沒什麼可看,是因為對教材掌握程度不夠。書上的每個定義都要理解後倒背如流,深究每個詞語的含義,做懂每個例題,會推導數學公式及變形公式。
做數學題目方法不唯一,只要是邏輯合理、能一步步推導出結論的方法都可以,不必拘泥於老師講授的方法。做數學小題也可以採用畫圖、試值法、代入法等去做,只要沉下心去研究,功夫不負有心人,數學總能夠學好。
1、重視計算
數學的計算學習就像語文的識字學習,是最基本的。
不識字,語文讀不好;計算差,數學同樣學不好。而且計算好,會給孩子數學學習提供很大的幫助。
家長可以每天讓孩子做2分鍾口算。一開始,2分鍾內能只能做完20道口算,但之後,你會發現孩子會越來越快,正確率越來越高。
2、重視生活中的數學
其實數學的學習對生活的影響很大,它能提供很多的幫助。
例如:
買東西、計算利率、盈利等等,這些都用到數學。你可以在生活中,有意識的跟孩子提數學問題,讓他解答。很簡單,你帶孩子去買菜,一斤蘋果5元,買3斤多少錢,給阿姨20元,找回多少錢。
別小看這些,在小學數學學習中,解決問題占的分數是最多的,而解決問題無非就是判斷用加減乘除中的哪種來列式解答,這些問題其實就是生活中的問題,孩子在生活中接觸多,自然就會解答。
3、主動預習
新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。因此,培養自學能力,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。
如自學例題時,要弄清例題講的什麼內容,告訴了哪些條件,求什麼,書上怎麼解答的,為什麼要這樣解答,還有沒有新的解法,解題步驟是怎樣的。
抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。
有些家長頭疼孩子上課效率很差;這其中很關鍵的原因是沒有做好預習;自然也就做不到有的放矢
4、思考是數學學習方法的核心
一些孩子對公式、性質、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應用所學的知識去解答問題。
如有這樣一道題讓學生解「把一個長方體的高去掉2厘米後成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?」
孩子對求體積的公式雖記得很熟,但由於該題涉及知識面廣,許多同學理不出解題思路,這需要學生在老師家長的引導下逐漸掌握解題時的思考方法。這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、長方體、正方體;
從圖形變化關系講:長方形→正方形;從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積;
經啟發,孩子分析後,學生根據其思路(可畫出圖形)進行解答。
有的學生很快解答出來:
設原長方體的底面長為X,則2X×4=48
得:X=6(即正方體的棱長),
這樣得出正方體的體積為:6×6×6=216(立方厘米)。
所以說,在學習過程中,老師家長最大的作用是:啟發。
孩子在老師家長的引導下,去主動思考解題的思路,掌握學習方法!
5、培養閱讀興趣
假期和一位資深老師聊到孩子數學學習問題,分享一段重點:
「您孩子數學學習是什麼情況?」老師問。
「題不難成績還不錯。一遇難題,就好像深入不進去。」提起女兒的數學,我真頭疼。
「那她平時喜歡讀書嗎?」
「不是特別喜歡,但也不是一點不讀。平時喜歡看漫畫之類。」我想了想說。
「哦,那科普讀物和一些經典名著讀過嗎?」老師接著問。
「沒有,我認為對學習有用的書她都讀不懂,也不願意讀。」我有些不好意思地回答。
「是有些問題。」老師頓了頓說,「孩子將來中學要想學好數理化,必須小學得多讀書,特別是有深度有人文素養的好書。多讀好書的孩子思維活躍,視野也開闊,到了高年級就更能顯示出優勢。」
「我們帶過的數學成績好的同學大多6、7歲就能看書,在小學階段就大量閱讀有深度有人文素養的好書,愛思考,愛看書,這群孩子問問題的深度和廣度有時把我都難倒了。
聽她這么一說,我這才更加理解「學生讀書越多,他的思維就越清晰,他的智慧力量就越活躍。」
閱讀對數學的重要性
很多家長總覺得閱讀所帶來的改變很緩慢,而考試就在眼前,所以還是覺得不如補課來得直接,效果更顯著。
其實:閱讀的功效絕不僅僅是豐富文化積淀,提高語文素養,而是幫助孩子點燃思維的火花,拓展視野,深化思維,提高學習力。
所以,閱讀不僅僅是語文的事情,它對於任何一門學科來說都是首要的、。有研究發現,一年級或更早開始大量閱讀的`孩子比三年級開始閱讀的孩子在其後的中小學學習,尤其是數理化學習方面潛力更大。
因為前者在其後的學習生涯中具備了深閱讀能力和習慣,也就是理解能力很強,而後者閱讀時思維很膚淺,理解能力自然很弱。這個現象在初二這個分水嶺年級就表現得很明顯了。
所以,不要等到中小學遇到困難才沒完沒了地補課「拉一把」,而是要讓孩子4-7歲解決識字問題,6-9歲就能愛看書,9歲後就會大量閱讀、讀好書。
六種解題思想
1、函數與方程思想
函數與方程的思想是中學數學最基本的思想。所謂函數的思想是指用運動變化的觀點去分析和研究數學中的數量關系,建立函數關系或構造函數,再運用函數的圖像與性質去分析、解決相關的問題。而所謂方程的思想是分析數學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質去分析解決問題。
2、數形結合思想
數與形在一定的條件下可以轉化。如某些代數問題、三角問題往往有幾何背景,可以藉助幾何特徵去解決相關的代數三角問題;而某些幾何問題也往往可以通過數量的結構特徵用代數的方法去解決。因此數形結合的思想對問題的解決有舉足輕重的作用。
解題類型
①「由形化數」:就是藉助所給的圖形,仔細觀察研究,提示出圖形中蘊含的數量關系,反映幾何圖形內在的屬性。
②「由數化形」 :就是根據題設條件正確繪制相應的圖形,使圖形能充分反映出它們相應的數量關系,提示出數與式的本質特徵。
③「數形轉換」 :就是根據「數」與「形」既對立,又統一的特徵,觀察圖形的形狀,分析數與式的結構,引起聯想,適時將它們相互轉換,化抽象為直觀並提示隱含的數量關系。
3、分類討論思想
分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。
解決分類討論問題的關鍵是化整為零,在局部討論降低難度。
常見的類型
類型1:由數學概念引起的的討論,如實數、有理數、絕對值、點(直線、圓)與圓的位置關系等概念的分類討論;
類型2:由數學運算引起的討論,如不等式兩邊同乘一個正數還是負數的問題;
類型3 :由性質、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應用引起的討論;
類型4:由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關問題引起的討論。
類型5:由某些字母系數對方程的影響造成的分類討論,如二次函數中字母系數對圖象的影響,二次項系數對圖象開口方向的影響,一次項系數對頂點坐標的影響,常數項對截距的影響等。
分類討論思想是對數學對象進行分類尋求解答的一種思想方法,其作用在於克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。
4、轉化與化歸思想
轉化與化歸是中學數學最基本的數學思想之一,是一切數學思想方法的核心。數形結合的思想體現了數與形的轉化;函數與方程的思想體現了函數、方程、不等式之間的相互轉化;分類討論思想體現了局部與整體的相互轉化,所以以上三種思想也是轉化與化歸思想的具體呈現。
轉化包括等價轉化和非等價轉化,等價轉化要求在轉化的過程中前因和後果是充分的也是必要的;不等價轉化就只有一種情況,因此結論要注意檢驗、調整和補充。轉化的原則是將不熟悉和難解的問題轉為熟知的、易解的和已經解決的問題,將抽象的問題轉為具體的和直觀的問題;將復雜的轉為簡單的問題;將一般的轉為特殊的問題;將實際的問題轉為數學的問題等等使問題易於解決。 常見的轉化方法
①直接轉化法:把原問題直接轉化為基本定理、基本公式或基本圖形問題;
②換元法:運用「換元」把式子轉化為有理式或使整式降冪等,把較復雜的函數、方程、不等式問題轉化為易於解決的基本問題;
③數形結合法:研究原問題中數量關系(解析式)與空間形式(圖形)關系,通過互相變換獲得轉化途徑;
④等價轉化法:把原問題轉化為一個易於解決的等價命題,達到化歸的目的;
⑤特殊化方法:把原問題的形式向特殊化形式轉化,並證明特殊化後的問題,使結論適合原問題;
⑥構造法:「構造」一個合適的數學模型,把問題變為易於解決的問題;
⑦坐標法:以坐標系為工具,用計算方法解決幾何問題也是轉化方法的一個重要途徑。
5、特殊與一般思想
用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,同學們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
6、極限思想
極限思想解決問題的一般步驟為:①對於所求的未知量,先設法構思一個與它有關的變數;②確認這變數通過無限過程的結果就是所求的未知量;③構造函數(數列)並利用極限計演算法則得出結果或利用圖形的極限位置直接計算結果。
B. 如何學好數學的方法和技巧是什麼
學好數學的方法和技巧是:
一、學好數學的方法
1、數學要求具備熟練的計算能力,所以課後還有做足一定量的練習題,只有通過做題練習才能擁有計算能力。
2、課前要做好預習,這樣上數學課時才能把不會的知識點更好的消化吸收掉。
3、數學公式一定要記熟,並且還要會推導,能舉一反三。
4、數學重在理解,在開始學習知識的時候,一定要弄懂。所以上課要認真聽講,看看老師是怎樣講解的。
5、數學80%的分數來源於基礎知識,20%的分數屬於難點,所以考120分並不難。
6、數學需要沉下心去做,浮躁的人很難學好數學,踏踏實實做題才是硬道理。
7、數學要想學好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。
8、數學最主要的就是解題過程,懂得數學思維很關鍵,思路通了,數學自然就會了。
9、數學不是用來看的,而是用來算的,或許這一秒沒思路,當你拿起筆開始計算的那一秒,就豁然開朗了。
二、學好數學的技巧
1、數學要通過做題掌握理論
數學雖然有不少公式、定理需要同學們去背誦跟記憶,但不是死記硬背就能會的,需要學會數學思維,理清數學思路,用數學思維方式去做題,在做題的過程中自然就能把理論知識掌握了。
做題是一個不斷鞏固知識的過程,也是對數學理論重新認識的過程,不做題根本不能知道哪裡不會。當然,數學光靠做題還不夠,還要多總結錯題,這樣才能提高數學成績。
2、學好數學的方法是多做題
這種做題雖然可以理解為題海戰術,但是不不等同於搞題海戰術,因為數學不做題就想學會、想提高分數幾乎是不可能的事情,但一味的多做題而不反思總結的話,也是有弊端的。數學最忌諱的就是眼高手低,看似會做了,可一到自己動手做題目,就卡殼了。
C. 數學學習竅門和方法
數學的重要性不言而喻,有哪些能培養數學思維的學習小竅門?
八、排序思維
關於排序思維,家長一般重視循環排序的教育,比如一說三角形、圓形、三角形、圓形,孩子能知道接下來就是三角形、圓形。這里同樣再給大家查漏補缺,不能忽視「第幾」的排序方式,比如小朋友們排排隊,從左到右第幾,從右到左第幾,以及讓孩子把一些東西從大到小排序或從高到低排序,這些能增強孩子對序數的感知力,和以後數學學習密切相關,而且相信大家在工作中也沒少遇到需要排序處理的問題。
九、抽象思維
孩子一般在5歲開始出現抽象思維,多數家長並不知道怎麼培養孩子的抽象思維,其實很簡單,比如「你看媽媽今天和平常穿的衣服有什麼不同?」孩子就要通過思考,在提取一個個信息比較後,分析出不同在哪裡。
類似的例子很多,家長在生活中多注意即可。
十、解決問題的思維
學習數學的最終目的是解決問題,多數家長卻只追求孩子的成績,家長應該讓孩子利用數學知識去解決問題,並給孩子留下空間,讓孩子思考,結果正確與否,並不重要。比如有6顆草莓,讓孩子平均分給大人。
D. 我怎樣學好數學
你好,很高興為你解答:
1、要有學習數學的興趣。「興趣是最好的老師」。做任何事情,只要有興趣,就會積極、主動去做,就會想方設法把它做好。但培養數學興趣的關鍵是必須先掌握好數學基礎知識和基本技能。有的同學老想做難題,看到別人上數奧班,自己也要去。如果這些同學連課內的基礎知識都掌握不好,在裡面學習只能濫竽充數,對學習並沒有幫助,反而使自己失去學習數學的信心。我建議同學們可以看一些數學名人小故事、趣味數學等知識來增強學習的自信心。
2、要有端正的學習態度。首先,要明確學習是為了自己,而不是為了老師和父母。因此,上課要專心、積極思考並勇於發言。其次,回家後要認真完成作業,及時地把當天學習的知識進行復習,再把明天要學的內容做一下預習,這樣,學起來會輕松,理解得更加深刻些。
3、要有「持之以恆」的精神。要使學習成績提高,不能著急,要一步一步地進行,不要指望一夜之間什麼都學會了。即使進步慢一點,只要堅持不懈,升祥也一定能在數學的學習道路上獲得成功!還要有「不恥下問」的精神,不要怕丟面子。其實無論知識難易,只要學會了,弄懂了,那才是最大的面子!
4、要注重學習的技巧和方法。不要死記硬背一些公式、定律,而是要靠分析、理解,做到靈活運用,漏笑螞舉一反三。特別要重視課堂上學習新知識和分析練習的時候,不能思想開小差,管自己做與學習無關的事情。注意力一定要高度集中,並積極思考,遇到不懂題目時要及時做好記錄,課後和同學進行探討,做好查漏補缺。
5、要有善於觀察、閱讀的好習慣。只要我們做數學的有心人,細心觀察、思考,我們就會發現生活中到處都有數學。除此之外,同學們還可以從多方面、多種渠道來學習數學。如:從電視、網路、《小學生數學報》、《數學小靈通》等報刊雜志上學習數學,不斷擴展知識面。
6、要有自己的觀點。現在,大部分同學遇到一些較難或不清楚的問題時,就不加思考,輕易放棄了,有的乾脆聽從老師、父母、書本的意見。即使是老師、長輩、書籍等權威,也不是沒有一點兒失誤的,我們要重視權威的意見,但絕不等於不加思考的認同。
7、要學會概括和積累。及時總結解題規律,特別是積累一些經典和特殊的題目。這樣既可以學得輕松,又可以提高學習的效率和質量。
8、要重視返埋其他學科的學習。因為各個學科之間是有著密切的聯系,它對學習數學有促進的作用。如:學好語文對數學題目的理解有很大的幫助等等。
E. 如何學好數學方法和技巧
眾說周知,數學是不是對大家來說就是天書一樣,尤其是到了高中,數學都不知道從那方面去學習,如何學好高中數學,其實學好高中數學方法很多,只要找到規律就知道數學並非是我們想的那麼難。
1、課前預習,記筆記、做練習
高中數學學習最好的辦法,就是把課前預習,但是這個訪法很少人有這樣的習慣,課前預習可以使我們提前了解將要學習的知識,不至於上課時候老師講課一臉茫然不知道老師在講什麼,這樣才會導致你數學學習不好的原因,課前預習就是加深聽課時的理解,從而能夠快速吸收老師講的知識。
第一種情況是不是,老師上課講的知識明明聽得很明白了,但是,為什麼自己一做題就不會或者就遇到困難呢?其是原因不在於老師,而是在於我們自己,因同學們數學成績的差異,沒有做好課前預習,把不懂的重要標記,到時候可以問老師。
第二種情況是不是,每天在做作業之前,把之前上課的筆記看了嗎?我說說我是怎麼做作業的,這個是我一個培訓班肖博老師教我學習的方法,。,每天在做作業之前,一定要把當天數老師上課的筆記先看一看,看看你們能否堅持下去,我都堅持快一個月了,所以說學習方法很重要,對成績會提到很大的作用。還有一個學習辦法,不管課本上習題還是試卷一定要整理好,做好標記。
2、做題思路及課外學習
我們在做數學習題的時候,一定不要有這樣的負擔,不要為了成績而去學習,學習主要是在於方法、態度、思路。在做題之前,想想這題應該怎麼去做,想想什麼方法才能把這個題做出來,先做,遇到問題一定要記下來,因為數學知識很多,不可能每個知識點都會去,應該有目的去攻最弱的知識點,加強學習,要是不行就可以報個培訓班:
學好高中數學不是光靠課本上的知識和老師的講解就夠的,這是遠遠不夠的,因為我們需要多多上培訓班或者是買些課題多做做。
F. 如何學好數學
1、數學思維方法有哪些
一、轉化方法:
轉化思維,既是一種方法,也是一種思維。轉化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單、更清晰。
二、邏輯方法:
邏輯是一切思考的基礎。羅輯思維,是人們在認識過程中藉助於概念、判斷、推理等思維形式對事物進行觀察、比較、分析、綜合、抽象、概括、判斷、推理的思維過程。羅輯思維,在解決邏輯推理問題時使用廣泛。
三、逆向方法:
逆向思維也叫求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方式。敢於「反其道而思之」,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。
四、對應方法:
對應思維是在數量關系之間(包括量差、量倍、量率)建立一種直接聯系的思維方法。比較常見的是一般對應(如兩個量或多個量的和差倍之間的對應關系)和量率對應。
五、創新方法:
創新思維是指以新穎獨創的方法解決問題的思維過程,通過這種思維能突破常規思維的界限,以超常規甚至反常規的方法、視角去思考問題,提得出與眾不同的解決方案。可分為差異性、探索式、優化式及否定性四種。
六、系統方法:
系統思維也叫整體思維,系統思維法是指在解題時對具體題目所涉及到的知識點有一個系統的認識,即拿到題目先分析、判斷屬於什麼知識點,然後回憶這類問題分為哪幾種類型,以及對應的解決方法。
七、類比方法:
類比思維是指根據事物之間某些相似性質,將陌生的、不熟悉的問題與熟悉問題或其他事物進行比較,發現知識的共性,找到其本質,從而解決問題的思維方法。
八、形象方法:
形象思維,主要是指人們在認識世界的過程中,對事物表象進行取捨時形成的,是指用直觀形象的表象,解決問題的思維方法。想像是形象思維的高級形式也是其一種基本方法。
2、如何鍛煉自己的數學思維?
一、做出來不如講出來,聽得懂不如說得通。
做10道題,不如講一道題。孩子做完家庭作業後,家長不妨鼓勵孩子開口講解一下數學作業中的難題,我也在群里會經常發一些比較好的訓練題,您也可以鼓勵去想一想說一說,如果講得好,家長還可進行小獎勵,讓孩子更有成就感。
二、舉一反三,學會變通。
舉一反三出自孔子的《論語·述而》:「舉一隅,不以三隅反,則不復也。」意思是說:我舉出一個牆角,你們應該要能靈活的推想到另外三個牆角,如果不能的話,我也不會再教你們了。後來,大家就把孔子說的這段話變成了「舉一反三」這句成語,意思是說,學一件東西,可以靈活的思考,運用到其他相類似的東西上!
在數學的訓練中,一定要給孩子舉一反三訓練。一道題看似理解了,但他的思維可能比較直線,不多做幾道舉一反三或在此基礎上變式的題,他還是轉不過玩了。
舉一反三其實就是「師傅領進門,學藝在自身」這句話的執行行為。
三、建立錯題本,培養正確的思維習慣
每上第一次課,我所講的課程內容都和學生的錯題有關。我通常把試卷中的錯題摘抄出幾個典型題,作為課堂的例題再講一遍。而學生的反應,或是像沒有見過,或是對題目非常熟悉,但沒有思路。這些現象的發生,都是學生沒有及時總結的原因。所以第一次課後我都建議我的學生做一個錯題本,像寫日記一樣,記錄下自己的錯題和錯因分析。
一般來說,錯題分為三種類型:第一種是特別愚蠢的錯誤、特別簡單的錯誤;第二種就是拿到題目時一點思路都沒有,不知道解題該從何下手,但是一看到答案卻恍然大悟;第三種就是題目難度中等,按道理有能力做對,但是卻做錯了。
尤其第二種、第三種,必須放到錯題本上。建立錯題本的好處就是掌握了自己所犯錯的類型,為防範一類錯誤成為習慣性的思維。
四、圖形推理是培養邏輯思維能力最好的工具
假是真時真亦假,真是假時假亦真;邏輯思維是在規則的確定下而進行的思維,如果聯系生活就屬於非常規思維。一切看似與生活毫無聯系卻自在法則約束規范的范圍內。邏輯推理的「瞞天過海」可謂五花八門,好似一個萬花筒,百變無窮,樂趣無窮。
幾何圖形是助其鍛煉邏輯思維的好工具,經典的圖形推理題總有其構思、思路、巧妙的思維;經典在於其看似變態,而實際解法卻簡而又簡單。
因此,多訓練一些圖形推理題,對其邏輯思維很有幫助。
G. 怎麼學好數學的方法
數學是一門研究數量、結構、變化以及空間模型等概念的學科。那麼,要怎樣才能學好數學呢?接下來,我就和大家分享學好數學的方法,希望對各位有幫助!
學好數學的方法一:
基礎理論學起:在學習數學前首先應該從最基礎的東西開始學習,因為數學的每一個理論或者每一個環節都是以前一個基礎理論為前提的,是環環相扣的理論鏈的關系。帶著這種觀點去學習也就不必去死記硬背一些定理、推理之類的知識了,學習起來自然就顯得更加容易了!
避免眼高手低:數學是一門理論聯系實際的學習,熟悉、理解基礎理論概念只是學好數學的前提,最終的目的還是用於實際的操作中,或者說用於咱們的日常生活中去。所以要勤於做題練習,堅決避免眼高手低的學習態度,“實踐是檢驗真理的唯一標准”,數學也不例外!
四大思維模式 :數學體系的四大思維體系:數形結合、函數思想、分類討論、方程思想。在學習數學過程中要做到已知量和未知量的有機結合,用已知數值通過函數的方式和方程的形式展現出來,在未知待定的情況下,通過分情況的方式加以討論並解析出問題的不同情況的答案!
培養學習興趣:俗話說“興趣是最好的老師”,很多孩子或許天生就有對數學這方面有很大的興趣,能快樂的學習數學。如果對數學不感興趣,筆者認為也可以從以下方面加以培養:激發孩子求知慾;增強孩子的自信心;啟發孩子的創造力;引導孩子思維多元化。
探索求知精神:做好以上四步,你就能輕輕鬆鬆的學好數學了。如何由“好”到“精”呢?這就需要探索求知精神了。每個人對數學知識的求知慾都是不同的,在學習肯定會遇到很多困難,當你對困難的求知慾超過別人的時候,你在精神上就超過了對方,這是一種學習數學的境界!
勤奮成就人才:每一個成功都是三分靠的上天“註定”,而七分靠的還是“打拚”。即使再有頭腦,再有數學天賦的人,如果一味的在學習中懶惰,在數學方面也不會有很大的作為;而一些即使平平的人,在勤奮的督促下也能做到一番作為。勤奮是成功的階梯!
學好數學的方法二:
一、重視課堂的學習效率
新知識的接受和數學能力的培養,主要是在課堂上進行,所以要特別重視課堂的學習效率,上課時要緊跟老師的思路,積極開展思維,預測下面的步驟,比較自己的解題思路與老師所講的有哪些不同。課後要及時復習,不留疑點,對不懂的地方要及時請教老師或同學,切忌不懂將懂,或將不懂的地方跳過。課後還要注重基礎知識的學習和基本技能的培養,要多記公式、定理,因為它們是學好數學的關鍵和必備條件。
二、多做習題,養成良好的解題習慣
要想學好數學,多做題是不可避免的。當然,多做題並不等於搞題海戰術。做的題目要有代表性,不能鬍子眉毛一把抓,碰到哪道題就做哪道題。有些題適合我們做,而有些題卻超出了我們的能力范圍,做這些題目只能是浪費我們寶貴的時間,不會達到任何效果。做的題要難易適中,通過做些有代表的題目,要力爭能舉一反三。數學是一門邏輯性很強的學科,需要縝密的思維,解題要有條理,在做題的過程中學會熟練運用正確的解題方法,掌握一些基本題型的解題規律。只有平時大量的訓練,見多了、做多了,自然就熟能生巧,考試的時候就會應付自如,不至於亂了陣腳。
三、調整好心態,正確對待平時的考試
大家都知道,數學是個邏輯性極強的學科,要求有清醒的頭腦,數學運算過程中的每個解題步驟都很重要,漏掉了哪個步驟都是不行的。因此,在做數學題的時候,保持一個平靜的心態是很重要。這就要求我們平時要學會善於把握自己的情緒,要能及時地調整好自己的心態,戒驕戒躁,千萬不能一遇到解不出來的題目就焦躁不安。焦躁是學習數學的大忌。
四、要正確對待平時的考試
平時的考試是對我們前階段所學知識的一個檢測,能夠幫助我們查漏補缺,發現平時還沒有掌握牢固的知識。因此,盡管分數很重要,但這不應該是我們關注的焦點。對一個高三的學生來說,學會分析試卷,從考試中找到自己學習中的漏洞才是至關重要的。所以不能一味地去計較分數的高低,更不能因為一次考試分數得低了,就灰心喪氣,就放棄對數學的學習。當然也不能因為一次考試分數考高了些,就沾沾自喜,以為自己的數學水平已經很不錯了,從而產生驕傲自滿的心理,這也不對的。
看了“怎麼學好數學的方法”的人還看:
1. 女生怎樣學好數學的方法
2. 學習數學有哪些方法與技巧
3. 學好數學的具體方法
4. 怎樣學習數學的方法
H. 學好數學有哪些方法和技巧
學好數學有哪些方法和技巧
學好數學有哪些方法和技巧,學好數學的用處不言而喻,除了生活中的實用性,還是培養孩子思維邏輯形成的重要環節,家長們一起來看看學好數學有哪些方法和技巧,相信會得到一定的啟發。
數學邏輯思維強,很多父母都比較注重孩子這方面的培養,而且是從小就開始培養。最開始父母都會教孩子數數,其實對於孩子來說學起來並不容易。那麼怎樣教孩子學數字,寶寶數字敏感期要抓住。
很多家長在孩子上了小學之後,發現數學是最難讓孩子感興趣的學科,使出渾身解數也不能讓孩子對數學感興趣,而且怎麼補也覺得很吃力。其實寶寶從兩歲左右,就可以在生活和游戲中自然、順暢地建立起數學的概念。
「家長可以在日常生活中,對孩子點點滴滴地教,讓孩子在動中玩,在做中學。需要注意的是,教孩子學習數的概念,必須根據幼兒的特點,由易到難,由具體到抽象,循序漸進地進行。
兩歲多的孩子知道大小、多少、前後、早晚的時間、空間概念,他們往往憑視覺而不是憑計算得出結論」。早教專家提醒廣大家長,要堅持循序漸進的原則,接受孩子個體的差異性,切忌對孩子提出過高要求,不要拿別家的孩子與自家的孩子相比,同時,要避免走入一些誤區。
誤區1:忽視「數學敏感期」
孩子在4歲左右會出現一個「數學敏感期」,他們會對數字概念如數、數字、數量關系、排列順序、形體特徵等突然發生極大的興趣,對它們的種種變化有著強烈的求知慾,這標志著孩子的數學敏感期到來了。
抓住孩子發展發育過程中的敏感期,適時地對幼兒的數學能力進行開發和引導,克服只重知識的灌,輕智力的啟;重數的授予,輕幼兒的思考學習;重機械的記憶,輕啟發引導。
誤區2:學數學等於學算術
在孩子學數學的過程中,不少家長往往脫離了孩子學習數學的真正目的和意義,有的家長以為教得越多越好,把數學當成一種死的知識來教;有的家長自以為讓孩子數100以內的數,背背口訣,做做加減法就行。
實際上,學數學的意義在於鍛練孩子的思維能力,培養孩子的邏輯推理能力。幼數學的主要內容應包括:幫助孩子理解數的概念,了解簡單的幾何形體,學習事物的空間關系和時間關系,有一些簡單的數學操作技術(如自然測量)等多方面,這幾個方面不分輕重,缺一不可,而且在發展孩子邏輯思維的同時,還發展孩子的觀察力、注意力、記憶力、空間想像能力等。
誤區3:機械訓練,記憶公式
機械訓練能讓家長在短時間內看到明顯的效果,幼兒在表面上也的確能掌握一些具體的數學知識,但他的思維結構並未發生改變,也就是說幼兒並沒有得到實質的發展。
學習數學在於理解,讓孩子真正理解數與數之間的關系,掌握數的輪段概念。幼兒學習數學必須藉助材料把抽象的薯旦數學知識具體、生動地呈現在孩子面前,使他們容易理解和掌握。
動手操作是孩子進行數學思維的重要方式,因此,在日常生活中,家長要善於結合各種生活小事,抓住時機對孩子進行教育。
對於孩子的.教育來說,和生活結合的學習效果更好,源於生活的教育可以無處不在。和孩子玩「開小賣部」,是一項非常好的活動,通過這個游戲教孩子學加減乘除,可以有效地促進孩子的數學運算能力,是一種真正寓教於樂的學習方法。
剛開始時,父母要給孩子充足的「貨源」——家裡的日常用品,或是孩子的玩具之類的。父母要認真地瀏覽她的商品,選定要買什麼,問孩子多少錢,有時還要討價還價一下。付款時,一般情況下都是需要找一些零錢回來的,比如買一根筷子六角錢,父母一般給她一元錢,這樣孩子就得找四角錢出來。
開始時先有孩子自已定價。小孩定價,無論大小都是一個比較整、比較簡單的數字,比如1元、200元等。孩子一般不用「1.40元」或「203元」這樣的定價來為難自己。玩過幾次後,家長就可以暗暗地把她往稍復雜些的計算上引。比如雪糕原來賣1元一支,家長可以建議說,這幾天雪糕漲價了,每支一塊二了,你這里要不要漲價啊,漲價可以每支多賺兩毛呢。然後家長給孩子兩元錢或五元錢,這樣她的計算就比較復雜了。家長也可以帶孩子到外面臘手譽小賣部買東西時,讓孩子注意一下小賣部商品定價基本上都有零頭,於是「價格」都變得有零頭了。開小賣部的計算難度上升時,過渡應自然,這樣會保持孩子的興趣。開始時一般都是玩100元以內的加減法,稍後就給孩子一些建議,認為某個東西應該很貴,可以把價格定到三五百元。
「開小賣部」的過程就是孩子不停地做「應用題」的過程,這對孩子有很好的數學啟蒙效果。數學教育不要一下把孩子拉到抽象的數字上,不要拿一些乾巴巴的枯燥的計算來為難孩子。要讓孩子在游戲中感受數字,讓他體會到計算不是抽象的東西,是存在於周圍生活中的有用的東西,和我們的日常生活密切聯系著。
在玩「開小賣部」游戲時要注意幾個問題:
首先是不要把用意告訴孩子
玩這樣的游戲,在家長這里是為了讓孩子學會計算,如果你把這個目的告訴孩子了,或被他察覺了,孩子就會失去游戲的興趣。要讓孩子覺得這僅僅就是個游戲,只是為了玩。大人在和孩子玩時,要拿出認真而單純的心態,把自己當成孩子一樣投人地去玩,不要在這個過程中有任何說教,更不要因為孩子算錯賬訓斥孩子。
其次是避免干擾孩子的思維
無論孩子定價多少,都不要那樣大驚小怪。不要以你的生活經驗來干擾孩子的思維,孩子並沒有市場價值概念。我們只是為了讓她學會計算,不是為了讓她學會做生意,所以孩子怎樣定價並不重要。她完全可以把一斤米定成2元,也可以把一個金戒指定成4角錢。
第三是不要讓計算為難孩子
家長要記住的是,這是個游戲,不是數學課。家長可以通過「買賣」發展孩子的計算能力,但不可操之過急。在游戲中要把孩子的樂趣放在首位,學習放在第二位。計算的難度可以慢慢提高,但不要讓太難的計算干擾樂趣。如果孩子在買賣中屢屢感到計算的困難,他就會有受挫感,就會失去興趣。
第四是不強迫孩子玩
不要為了讓孩子學習而頻頻地玩同一個游戲。這個游戲我和一些人講過後,就有人回家天天和孩子玩。開始孩子還有興趣,但連玩三天後就不想玩了,家長就左說右勸地要玩。也有那樣的時候,剛開始玩,一筆生意還沒成交,孩子就因為什麼原因突然不想玩了,這時家長也不要強迫,只要孩子表現出不想玩了,就要立即停止.以免敗壞了孩子對游戲的胃口。如果家長在游戲中表現得太積極,還容易讓孩子察覺你的用意。
第五是盡量用真錢
有的家長開始和孩子玩時,不想用真錢,覺得那樣不衛生,就用一些紙片寫上面值來玩。但發現孩子對假錢沒興趣,小孩子一旦意識到錢可以換來想要的東西時,孩子就會對錢情有獨鍾。用真錢可以讓孩子在玩耍中更投人,玩罷注意洗手就是了。
第六是增加游戲變數,盡量使每次游戲略有不同
一般來說孩子願意做「店主」,尤其是開始時。玩過幾次後,為了保持游戲的新鮮感,可以和孩子互換角色,讓孩子再回到顧客的身份。無論誰扮顧客,都可以扮不同的角色,或形成不同的組合,有時是老爺爺老奶奶,有時是小朋友,有時是醫生或教師。不同的身份有不同的事情和需求,這樣就會有很多故事產生出來。還可以讓家裡的各種玩具參與進來,如毛絨小狗和小熊等來買東西,當然是有人替代它們說話和付錢。
I. 如何學習數學 6種方法來學習數學
目錄方法1:成為一名好的數學學生的關鍵1、堅持到課堂聽課。2、緊跟老師的思路學習。3、當天的作業當天完成。4、如果你需要幫助的話,也可以在課堂外尋求幫助。方法2:在學校學習數學1、從算術開始。2、繼續學習初級代數課程。3、繼續學習代數。4、學習幾何學。5、學習代數II。6、學習三角函數。7、學習一些微積分。方法3:數學基礎—掌握加法1、從"+1"開始。2、理解零。3、學習加倍。4、使用映射學習其他加法方式。5、學習10以上的加法。6、加上更大的數。方法4:數學基礎—減法原理1、從"回退1"開始。2、學習加倍減法。3、熟記結果集。4、找出缺失的數。5、熟記20以內的減法結果。6、嘗試進行不需要借位的2位數減去1位數的練習。7、學習位值為帶借位的減法做好准備。8、借位減法。方法5:數學基礎—掌握乘法1、從0和1開始。2、熟記乘法表。3、練習解決1位數乘法問題。4、對2位數和1位數進行相乘。5、對2個2位數進行相乘。6、進行相乘並重組各列。任何人都能學習數學,無論是高等數學還是數學基礎。本文首先討論如何成為一名好的數學學生,並介紹數學課程的基本學習進程以及你應該在每門課中學習的基本要素。然後,本文將介紹學習數學需要掌握的基礎知識。這些內容無論是對小學生還是其他年齡段需要鞏固基礎知識的人都大有裨益。
方法1:成為一名好的數學學生的關鍵
1、堅持到課堂聽課。如果你錯過了一堂課,那麼你只能通過你的同學或課本才能學習到相關的概念了。通過朋友或者從課本上學習相關的觀念,其學習效果總是比不上向老師學習。應該准時到課。事實上,提早一點到教室、打開你的筆記本放到適當的位置並准備好你的計算器,那麼當你的老師准備好開始講課時,你自己也已經進入狀態了。
只有在身體不適時才請假。如果你錯過了某一堂課,應該向同學了解老師的講課內容以及所布置的作業。
2、緊跟老師的思路學習。如果你的老師正在教室前進行解題,那麼你可以在自己的筆記本上跟著做。確保你的筆記寫得清楚且易於閱讀。不要只是簡單地記下問題。也把老師所講到的有助於你理解相關概念的內容記下來。
嘗試解決老師在課堂上提出的思考題,仔細想一想。當老師在教室中巡視學生的解題情況時,可以就你的問題向老晌襪轎師請教。
當老師在解題時應參與其中。不要等待老師提問。當你知道結果時應主動回答,當你對教學內容感到困惑時應舉手提問。
3、當天的作業當天完成。當天的作業當天完成的話,能夠加強對有關概念的理解和記憶。有時,你可能無法完成當天的家庭作業。但是你應該保證在下一次上課前完成你的作業。
4、如果你需要幫助的話,也可以在課堂外尋求幫助。在你的老師的空餘時間或者工作時間,向他或她尋求幫助。如果你的學校有數學中心的話,你也可以了解它的開放時間並前去尋求幫助。
加入一個學習小組。好的學習小組通常由4到5名不同水平的學生組成。如果你的數學屬於"C"級水平,那麼你應該加入有2或3名"A"級或"B"級學生組成的小組以便提升自己的水平。不要加入只有比你的成績還差的學生組成的小組中。
方法2:在學校學習數學
1、從算術開始。在大部分學校中,學生會在低年級期間學習算術。算術包括了基礎的加減乘除四則運算。多做練習。不斷地解決算術問題是學習基礎運算的最佳方法。找出一些能夠為你給出大量不同的數學問題的軟體。同時,進行計時練習以便提高你的速度。
你也可以在網上找出一些算術練習題並在你的手機設備上下載算術應用。
2、繼續學習初級代數課程。該課程將讓你掌握以後在解決代數問題時必需的基礎知識。學習分數和小數。你將會學習分數和小樹的加減乘除。關於分數,你將會學習如何約分以及解釋混合分數。宴肆關於小數,你需要理解位值,你將會在應用題中用上小數。
學習比率、比例和百分比。這些概念有助你進行比較。
學習基礎幾何。你將學習所有的圖形以及3D概念。你也將學習面積、周長、體積和表面積等概念以及表面積和平衡線、垂直線、角度等內容。
理解基礎統計學。好喚在初級代數課程中,你要學習的統計學知識主要包括圖表、散點圖、枝葉圖、柱狀圖等圖形化工具的應用。
學習代數基礎。這將包括各種基本概念,例如解決帶變數的簡單方程、學習分布屬性等各種屬性、畫出簡單方程的圖形以及解決不等式。
3、繼續學習代數。在代數學習的第一年中,你將學習代數所運用的基本符號。你也會學習:解決帶變數的方程和不等式。你將學習如何通過筆演算法和圖形法的方法解決這些問題。
解決實際問題。你可能會感到驚喜,你在以後將會面對的日常問題中,將需要運用解決代數應用題的能力。例如,你將運用代數方法計算你的銀行賬戶或投資中所獲得的利息。你也可以運用代數方法以你的車速為基礎計算出你將在旅途上花費的時間。
使用指數。當你開始解決多項式方程(同時包含數字和變數的表達式)時,你將需要理解如何使用指數。這也包括如何使用科學表達法。掌握指數應用後,你可以學習多項式表達式的加減乘除。
解決平方和平方根問題。當你掌握了這一方面時,你將能熟記多個完全平方數。你也將能夠計算包含有平方根的方程式。
理解函數和圖。在代數學中,你將需要學習圖形方程。你將需要學習如何計算線條的斜率、如何把方程轉換為點斜式以及如何使用斜截式計算某一線條在x軸和y軸上的截距。
解決方程組。有時,你將會得到2條均帶有x和y變數的獨立方程,而你必須為兩條方程解決求得x或y。幸運的是,你將學習到解決這類方程問題的多種方法,包括圖形法、替換法和相加法。
4、學習幾何學。在幾何學中,你將學習到線條、線段、角度和圖形的屬性。你將熟記大量的定理和推論,它們將有助你理解幾何的規則。
你將學習如何計算圓面積、如何使用畢達哥斯拉定理計算特殊三角形的角度和三邊的關系。
你將在以後的標准化考試中遇到大量的幾何問題,例如SAT、ACT和GRE。
5、學習代數II。代數II以你在代數I中所學到的概念為基礎,但增加了更復雜的主題,例如二次方程式和矩陣。
6、學習三角函數。你將學習到三角函數的有關內容:正弦、餘弦、正切等等。通過三角函數,你將學習到計算角度和線段長度的很多實用方法,這些技巧對於將要進入建築業、建築學、工程學或者測量學的人非常重要。
7、學習一些微積分。微積分聽上去令人生畏,但卻是一種極好的工具,有助我們理解我們周圍的數字和世界的行為。通過微積分你將學習到函數和極限的相關知識。你將了解到它們的性質以及接觸到一些有用的函數,包括e^x和對數函數。
你還將學習到有關的計算方法和導數的使用。通過一階導數你能夠了解到某一方程的正切線的斜率。例如,導數能讓你了解在非線性狀態下某些事物變化的比率。二階導數能夠讓你了解某一函數在特定區間是在遞增還是遞減,從而確定函數的凹度。
積分將能讓你學會如何計算曲線下的圖形面積以及體積。
高中微積分通常只會學習到序列和級數。雖然學生們還不會遇到太多級數的應用,但它們對於將要繼續學習微分方程的人是相當重要的。
方法3:數學基礎—掌握加法
1、從"+1"開始。加上1到某一個數將得到數列上下一個更大的數。例如,2 + 1 = 3。
2、理解零。任何數字加上零將等於原數,因為"零"等同於"無"。
3、學習加倍。加倍就是把兩個相同的數進行相加的問題。例如,3 + 3 = 6就是包含加倍問題的一個等式。
4、使用映射學習其他加法方式。在以下例子中,你可以通過映射學習當3加上5,2加上1時所發生的情況。請自行嘗試"加2"的問題。
5、學習10以上的加法。學習把3個數加起來得出大於10的結果。
6、加上更大的數。學習把個位上的結果進位到十位,把十位上的結果進位到百位,以此類推。進行加法時由低位開始。8 + 4 = 12,這表示你有1個10和2個1。把2寫到個位上。
把1寫到10位上。
把十位上的數加起來。
方法4:數學基礎—減法原理
1、從"回退1"開始。對一個數減去1將回退到前一個數。例如,4 - 1 = 3。
2、學習加倍減法。例如,你進行加倍加法5 + 5得到10。那麼可得到相反的等式10 - 5 = 5。如果5 + 5 = 10,則10 - 5 = 5。
如果2 + 2 = 4,則4 - 2 = 2。
3、熟記結果集。例如:3 + 1 = 4
1 + 3 = 4
4 - 1 = 3
4 - 3 = 1
4、找出缺失的數。例如,___ + 1 = 6(答案是5)。
5、熟記20以內的減法結果。
6、嘗試進行不需要借位的2位數減去1位數的練習。減去個位上的數,並減去十位上的數。
7、學習位值為帶借位的減法做好准備。32 = 3個10和2個1。
64 = 6個10和4個1。
96 = __ 個10和 __ 1。
8、借位減法。你需要進行42 - 37減法運算。你由對個位上的2 - 7減法開始。然而,這行不通!
從十位上借10並把它和個位數結合。這時你不再有4個10,你只有3個10了。現在你所具有的也不再是2個1,而是12個1了。
首先對個位進行減法:12 - 7 = 5。然後,再進行十位減法。因為3 - 3 = 0,你不再需要記下0了。最終結果為5。
方法5:數學基礎—掌握乘法
1、從0和1開始。任何數乘以1等於該數本身。任何數乘以零等於零。
2、熟記乘法表。
3、練習解決1位數乘法問題。
4、對2位數和1位數進行相乘。把右下方的數乘以右上方的數。
把右下方的數乘以左上方的數。
5、對2個2位數進行相乘。把右下方的數乘以右上方的數,然後再乘以左上方的數。
把第二行的數往左移動一個數字。
把左下方的數乘以右上方的數,然後再乘以左上方的數。
把所得的各列數字相加。
6、進行相乘並重組各列。你需要對34 x 6進行相乘。你由個位列開始(4 x 6),但無法在個位列上保留24個1。
把4個1保留在個位列上。把2移動到十位列。
把6 x 3進行相乘,得到18。把進位的2加到結果中,將得到20。