Ⅰ 如何在數學考試中快速答題
考試中如何准確迅速的答題
1.在看準題目後,要力求回答問題准確無誤。
不僅要做到思路對、方法對,還應做到每一步的推導、演算要准確,格式要規范。凡是會做的題,應該力求一遍就做對。這樣,做完一題,就拿到了該題應得的分數。有些考生,一接到試卷,就慌了手腳,總擔心題目做不完,於是匆忙作答。結果,許多會做的題,也答錯了。
2.在准確的基礎上,要爭取時間,提高答題速度,
以免造成會答的題也做不完。要提高速度,平時就應養成周密思考、迅速判斷、作題嚴謹的好學風,並應注意培養工整、快速書寫的能力;在答題時,則應堅信自己的能力,果斷地處理自己會做的每一個題目,決不猶豫;對於不會做的難題,不耗費太多的時間,若時間來不及了,就堅決放棄這類難題(那就自己挑一個答案吧,當然也不是隨便挑的,我想大家都是有方法的),而把主要精力放在會做的題目上,首先是放在分值高的題目上。這樣,就能在規定的時間里,獲得最大的考試利益。
3.草稿紙的運用,
應注意以下幾點:草稿紙的字跡要清楚,標明題號,以備自己最後檢查時用。
4.字跡清楚、卷面整潔,
也是獲得好成績的條件之一
Ⅱ 怎樣做數學試卷又快有對
數學考試我的經驗就是:
1,做試卷前一定要花一分鍾看一篇試卷,把會做不會做的瞭然於心
2,在保證正確率的情況下用最快速度將會做的做了,然後再去磨不會的(如果保證不了正確率,就重復驗證會做的,放棄不會的,沒時間糾結的)
3,牢抓選擇題,填空題和第一第二大題,這些好了,80,90是肯定的,上100也有可能,
5,選擇題,填空題的倒數幾題中可能有一道巨難的,放棄吧,不要浪費時間
6,填空題要注意它讓你填的
是什麼,有沒有單位,用什麼格式
7,不要放過後面各大題的第一小問,有時會簡單到無語
8,做多了會發現幾乎所有試卷的模式是一樣的(尤其是證明題
,常出現圖不一襲侍樣,證明方法一樣),但在新試卷上謹慎看到以前做過題是,不要高興的太早,換了什麼條件也不是不可能,最好再看題目快速的做一遍
9,交卷前一定要檢查名字,考號和答題卡(填錯答案或地方太冤枉了)
數學考試就是時間利用與准確率上的競爭
我是去年的廣東考生,不知你是哪的,但應該有些共通的
希望一點點的個人經驗對你有拍晌吵幫助~
Ⅲ 數學做題怎麼提高速度,又能保證正確率
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識兆猜和基本技能的學習,課後要及時譽手復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及慶猜嫌時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
Ⅳ 高中數學快速解題的方法有哪些
做數學題速度慢,不僅會延長平時的作業時間,更會影響嘩漏在考試中的做題速度。有什麼方法可以提高數學解題速度呢?下面是我分享的高中數學快速解題的七個方法,一起來看看吧。
高中數學快速解題的七個方法
方法1、在解題的過程中,是一個思維的過程。一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程式,只要順著這些解題的思路,就可以很容易的找到習題的答案。
方法2、做一道題目時,最重要的就是審題。審題的第一步就是讀題。讀題時要慢,一邊讀、一邊思考,要特別注意每一句話的內在含義,並從中找出隱含條件。很多人並沒有養成這種習慣,結果常常會在做題的時候漏掉一些資訊,所以在解題的時候要特別注意審題。
方法3、在做了一定數量的習題後,就會對所涉及到的知識、解題方法有比較清晰的了解。這個時候就需要將這些知識進行歸納總結,以便以後的解題思路更加清晰,達到舉一反三的效果,這樣做數學題的速度就會大大提升了。
方法4、做題只是學習過程中的一部分,所以不能為了解題而解題。解題時,腦海中的概念越清晰、對公式、定理越熟悉,解題的速度就越快。所以在解題時,應該先回歸課本,熟悉基本內容,理解其正確的含義,接著再做後面的練習。
方法5、有些題目,尤其是幾何體,一定要學會畫圖。畫圖是一個把抽象思維變成形象思維的過程,會大大降低解題的難度。很多題目,只要分析圖畫出來之後,其中的關系就會變得一目瞭然。所以學會畫圖,對於提高解題速度非常重要。
方法6、人對事物的認知總是會有一個從易到難的過程,簡單的問題做多了,概念清晰了,對解題的步驟熟悉了,解題時就會形成跳躍思維,解題的速度也會大大的提高。所以在學習時,要根據自己的能力,去解那些看似簡單,卻比較重要的習題,來不斷提高解題速度和解題能力。隨著速度和能力的提高,在逐漸的去增加難度,就會事半功倍了。
方法7、習慣很重要,很多同學做題速度慢就是平時做作業的時候習慣了拖延時間,從而導致了不好的解題習慣。所以想要提高做題速度,就要先改變拖沓的習慣。比較有效的方法是限時答題,在平常做作業的時候,給自己規定一個時間,先不管正確率,首先要保證在規慶茄定時間內完成數學作業,然後在去改正錯誤。時間長了之後,自然會改正拖延時間的壞毛病。
高中數學提高成績的方法
1、不亂買輔導書。
關於數學,我一本輔導書都沒買高三,從高三發的第一張卷子起到最後一張我高考結束後全部留著,厚厚的三打。這些卷子留好後你從第一張看的時候和輔導書是一樣一樣的 因為高三復習的時候都是按章節來的,所以條目很清晰。
2、每一張卷子不留題。
不留錯題和不明白的題,把每一個題目都弄明白,不會的就去問別人問老師。我一開始也不好意思去問老師,因為我基礎太差了,可能我不會的題其實只是一個公式題,所以我都是問周圍的同學,所幸我周圍一圈學霸,每一個都被我問煩了要 在這里要感謝一下他們~
3、整理錯題。
這個其實真的挺重要,但我前面也說過,我是一個超懶的人,所以我沒有做 但是我在後期快三模的時候意識到了這個的重要性,所以把所有卷子集中起來把錯題回顧了一遍,不一定動筆太懶去做,在腦子里想一遍,一般只用不到一分鍾一道,這個時間什麼時候都抽得出來的。
4、整理筆記。
關於數學的筆記我有兩本,一個是我們老師總結的一些方法和技巧,一些公式的記憶以及法則概念之類的這個要好好記!做題的時候經常用到!沒有公式做題簡直是… 另一本是關於一些好題難題錯題典型題,把這些題從紙上剪下來貼到本子上再做一遍,譽蘆察到高考前我把這個錯題本又全部重新做了一遍當然,這個由於太懶,有的題有點三天打漁兩天曬網
5、關於卷子。
由於筆記要剪下來這年頭誰還自己抄題快去給我站牆角!貼到筆記上,所以我都是要兩張卷子老師都是直接問誰要兩張自己留下就行,兩張卷子一張自己做,另一張用來剪題有的時候正反面都有就很討厭啦 所以我有的時候拿三張
ps:自己做的那張卷子呢做完聽題的時候要做好標記,答主有一套晨光的彩色筆,還蠻好用,把不會的題在題號標一種顏色,會但是典型的一種顏色。一定要把做題過程在卷子上寫清楚!一定要把做題過程在卷子上寫清楚!一定要把做題過程在卷子上寫清楚!重要的事說三遍!否則你看卷子時說忘就忘哭都沒地方哭。
高中數學的解題策略
1注意審題。把題目多讀幾遍,弄清這個題目求什麼,已知什麼,求、知之間有什麼關系,把題目搞清楚了再動手答題。
2答題順序不一定按題號進行。可先從自己熟悉的題目答起,從有把握的題目入手,使自己盡快進入到解題狀態,產生解題的 *** 和慾望,再解答陌生或不太熟悉的題目。若有時間,再去拼那些把握不大或無從下手的題。這樣也許能超水平發揮。
3數學選擇題大約有70%的題目都是直接法,要注意對符號、概念、公式、定理及性質等的理解和使用,例如函式的性質、數列的性質就是常見題目。
4挖掘隱含條件,注意易錯易混點,例如 *** 中的空集、函式的定義域、應用性問題的限制條件等。
5方法多樣,不擇手段。高考試題凸現能力,小題要小做,注意巧解,善於使用數形結合、特值含特殊值、特殊位置、特殊圖形、排除、驗證、轉化、分析、估算、極限等方法,一旦思路清晰,就迅速作答。不要在一兩個小題上糾纏,杜絕小題大做,如果確實沒有思路,也要堅定信心,「題可以不會,但是要做對」,即使是「蒙」也有25%的勝率。
6控制時間。一般不要超過40分鍾,最好是25分鍾左右完成選擇題,爭取又快又准,為後面的解答題留下充裕的時間,防止「超時失分」。
Ⅳ 怎樣做數學題做得又快又准
首先你得把書看會,看懂,看明白了,我是大連理工大學應用數學系的,我們的一個教授(走在中國拓樸學前沿的一數學家)說過,如果一道題你不會做,先重新看看條件,再不會,那就說明你書沒看明白,放下題,去吃透書本。
其次,要大量的做題,選取一本好的習題碰察集,摸清其中的類型題,比方說是用反證法還是數學歸納法等等。之後呢要控制時間,比方說高考的數學題,選擇和填空大約是30到40分鍾。
最後,做題時,要有數學思想,數學是包括數學思想笑滾茄和數學邏輯的,比如說,做選擇題時,舉題法是又快又準的方法,可謂「屢試不爽」呀,還有排除法等等。做大題時,就要看清題設了,一般一個條件是一個公試啦,要明白,它這個條件有什麼用,干什麼的。要發散自己的思維,腦中不要有空白一片,備禪停滯的狀況。
人與人智商是差不多的,你有能力學會數學的,相信自己會越來越快,越來越準的。一個老生的一點想法,僅供參考,咱倆的方法也不因人而易的。
Ⅵ 高中數學快速解題方法與技巧有哪些
在高中數學的學習和考試過程中,掌握一些學習解題技巧,不僅有助於快速解題,還能提高正確率。下面是我分享的高中數學快速解題方法與技巧,一起來看看吧。
高中數學快速解題方法與技巧
亂歲高審題要認真仔細
審題的第一步是讀題,這是獲取資訊量和思考的過程。讀題要細,應特別注意每一句話的內在涵義,並從中找出隱含條件。
有些學生沒有養成讀題、思考的習慣,心裡著急,匆匆一看,就開始解題,結果常常是漏掉了一些資訊,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實際解題時,應特別注意,審題要認真、仔細。
論證演算的方法
這又可以依其適應面分為兩個層次:第一層次是適應面較寬的求解方法,如消元法、換元法、降次法、待定系數法、反證法、同一法、數學歸納法即遞推法、座標法、三角法、數形結合法、構造法、配方法等等;
第二層次是適應面較窄的求解技巧,如因式分解法以及因式分解里的「裂項法」、函式作圖的「描點法」、以及三角函式作圖的「五點法」、幾何證明裡的「截長補短法」、「補形法」、數列求和里的「裂項相消法」等。
限時答題,先提速後糾正錯誤
很多同學做題慢的一個重要原因就是平時做作業習慣了拖延時間,導致形成了一個不太好的解題習慣。所以,提高解題速度就要先解決「拖延症」。比較有效的方式是限時答題,例如在做數學作業時,給自己限時,先不管正確率,首先保證在規定時間內完成數學作業,然後再去糾正錯誤。這個過程對提高書寫速度和思考效率都有較好的作用。當你習慣了一個較快的思考和書寫後,解題速度自然就會提高,及改正了拖延的毛病,也提高了成績。
學會畫圖
畫圖是一個翻譯的過程,把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系雀乎就變得一目瞭然。尤其是對於幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。
因此,牢記各種題型的基本作圖方法,牢記各種函式的影象和意義及演變過程和條件,對於提高解題速度非常重要。
高中數學的解題套路和技巧
1.思路思想提煉法
催生解題靈感。「沒有解題思想,就沒有解題靈感」。但「解題思想」對很多學生來說是既熟悉又陌生的。熟悉是因為教師每天掛在嘴邊,陌生就是說不請它究竟是什麼。建議同學們在老師的指導下,多做典型的數學題目,則可以快速掌握。
2.典型題型精熟法
抓准重點考點管理學的「二八法則」說:20%的重要工作產生80%的效果,而80%的嘩尺瑣碎工作只產生20%的效果。數學學習上也有同樣現象:20%的題目重點、考點集中的題目對於考試成績起到了80%的貢獻。因此,提高數學成績,必須優先抓住那20%的題目。針對許多學生「題目解答多,研究得不透」的現象,應當通過科學用腦,達到每個章節的典型題型都胸有成竹時,解題時就會得心應手。
3.逐步深入糾錯法
鞏固薄弱環節管理學上的「木桶理論」說:一隻水桶盛水多少由最短板決定,而不是由最長板決定。學數學也是這樣,數學考試成績往往會因為某些薄弱環節大受影響。因此,鞏固某個薄弱環節,比做對一百道題更重要。
高考數學解題時的注意事項
1.精選題目,避免題海戰術
只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。
2.認真分析題目
解答任何一個數學題目之前,都要先進行分析。相對於比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯絡的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。
3.做好題目總結
解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足,以便改進和提高。因此,解題後的總結至關重要,這正是我們學習的大好機會。對於一道完成的題目,有以下幾個方面需要總結:
1在知識方面。題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。
2在方法方面。如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。
3能否歸納出題目的型別,進而掌握這類題目的解題方法。
Ⅶ 數學做題的方法及技巧
數學做題的方法及技巧
數學做題的方法及技巧,數學一直都是令許多學生頭疼的科目,在考試中我們只能盡量做到不會做的題目也能得分,甚至蒙出正確的答案,只要掌握一定的數學答題技巧,也是有可能實現的,接下來一起看看數學做題的方法及技巧。
一、熟悉習題中所涉及的內容,包括定義、公式、定理和規則。
解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。
因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。
二、熟悉習題中所涉及到的以前學過的知識,以及與其他學科相關的知識。
有時候,我們遇到一道不會做的習題,不是我們沒有學會現在所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。
這時,我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然後再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。
三、熟悉基本的解題步驟和解題方法。
解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。
選擇題蒙法
1、選擇題出現數值的選項中,含最多相同數值的選項為正確答案。如四個選項:A、3 B、3/11 C、3/13 D、2/11。「3」和「11」出現的次數最多,故選選項B。
2、選擇題出現數值的選項中,數值最大的和數值最小的一般不是正確選項,答案從中間數值的兩個選項中選。
3、選擇題出現正負數值的選項中,答案必定是那兩個選項的其中之一。
4、選擇題中,若出現概念題。如果有課外的或是課內很少見的說法,一般都是正確的說法。
5、選擇題,不會連續出現3個相同的答案。一般而言,選項A出現的概率最低。而且,第一題和最後一題一般不為選項A,最後兩道題多為選項B和選項C。
填空題蒙法
1、如果出現求長度或者求角度的選擇題,並且試卷上有圖像的。可以直接用刻度尺或者量角器去衡量。
2、有關線性規劃的選擇題,不用畫圖,直接計算。用時更短,准確率更高!
3、遇上求數值、實在不會做的選擇題。如果明顯是整數答案的,可以選寫「0、1、-1」中的其中一個數值;如果明顯是分數答案的.,可以選寫「1/2、1/3、2/3」中的其中一個數值;如果明顯是含根號值數答案的,可以選寫「根號2、根號3「等簡單的數值。
4、一般來說,題目復雜難懂的,答案的數值往往是很簡單的。反之就是比較復雜的。
解答題蒙法
1,證明題中,如果有某一個結論實在不知道怎麼推導出來,可以把題目中所有的條件抄一遍,然後直接寫出你想要的結論即可(情況好的話一分不扣!情況不好的話,也就扣一些步驟分)
2,證明題中,第二第三題可以直接引用第一題的結論(即使第一題是要你證明的結論,你沒有證明出來也可以用!)
3、一般而言,壓軸題的第三小問,都要用第一小題中的結論。(所以,壓軸題的第三小問,即使做不出來,也要把第一小題中的結論寫上去,可以得一到兩分的步驟分!)
4、空間幾何證明題中,即使不會證明,也要建立空間直角坐標系,並寫上你建系時的套話。
5、實在一點兒都不會做的題目,把所有你覺得用得上的、跟本題有關的公式定理都寫上去。並且,每一小題都要重復寫上(意思就是:第一小題寫了,第二、第三小題也要寫!)
數學答題技巧
1.適用條件
[直線過焦點],必有ecosA=(x-1)/(x+1),其中A為直線與焦點所在軸夾角,是銳角。x為分離比,必須大於1。
註:上述公式適合一切圓錐曲線。如果焦點內分(指的是焦點在所截線段上),用該公式;如果外分(焦點在所截線段延長線上),右邊為(x+1)/(x-1),其他不變。
2.函數的周期性問題(記憶三個)
(1)若f(x)=-f(x+k),則T=2k;
(2)若f(x)=m/(x+k)(m不為0),則T=2k;
(3)若f(x)=f(x+k)+f(x-k),則T=6k。
注意點:a.周期函數,周期必無限b。周期函數未必存在最小周期,如:常數函數。c.周期函數加周期函數未必是周期函數,如:y=sinxy=sin派x相加不是周期函數。
3.關於對稱問題(無數人搞不懂的問題)總結如下
(1)若在R上(下同)滿足:f(a+x)=f(b-x)恆成立,對稱軸為x=(a+b)/2
(2)函數y=f(a+x)與y=f(b-x)的圖像關於x=(b-a)/2對稱;
(3)若f(a+x)+f(a-x)=2b,則f(x)圖像關於(a,b)中心對稱
4.函數奇偶性
(1)對於屬於R上的奇函數有f(0)=0;
(2)對於含參函數,奇函數沒有偶次方項,偶函數沒有奇次方項
(3)奇偶性作用不大,一般用於選擇填空
5.數列爆強定律
(1)等差數列中:S奇=na中,例如S13=13a7(13和7為下角標);
(2)等差數列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
(3)等比數列中,上述2中各項在公比不為負一時成等比,在q=-1時,未必成立
(4)等比數列爆強公式:S(n+m)=S(m)+qmS(n)可以迅速求q
6.數列的終極利器,特徵根方程
首先介紹公式:對於an+1=pan+q(n+1為下角標,n為下角標),
a1已知,那麼特徵根x=q/(1-p),則數列通項公式為an=(a1-x)p(n-1)+x,這是一階特徵根方程的運用。
二階有點麻煩,且不常用。所以不贅述。希望同學們牢記上述公式。當然這種類型的數列可以構造(兩邊同時加數)
Ⅷ 數學選擇題如何做得又快又准