導航:首頁 > 方法技巧 > java中方法如何實現

java中方法如何實現

發布時間:2023-04-09 03:37:33

『壹』 java編程抽象類技術如何實現

java編程一直以來都是互聯網上使用比較廣泛的一種編程語言,所以我們今天就一起來了解一下java編程中的抽象類是如何來實現的,希望通過對本文的閱讀,大家能夠對java編程技術有更深刻的認識,下面昆明電腦培訓http://www.kmbdqn.cn/就開始今天的主要內容吧。



AbstractMap抽象類實現了一些簡單且通用的方法,本身並不難。但在這個抽象類中有兩個方法非常值得關注,keySet和values方法源碼的實現可以說是教科書式的典範。


抽象類通常作為一種骨架實現,為各自子類實現公共的方法。帆帆上一篇我們講解了Map介面,此篇對AbstractMap抽象類進行剖析研究。


Java中Map類型的數據結構有相當多,AbstractMap作為它們的骨架實現實現了Map介面部分方法,也就是說為它的子類各種Map提供了公共的方法,沒有實現的方法各種Map可能有所不同。


抽象類不能通過new關鍵字直接創建抽象類的實例,但它可以有構造方法。AbstractMap提供了一個protected修飾的無參構造方法,意味著只有它的子類才能訪問(當然它本身就是一個抽象類,其他類也不能直接對其實例化),也就是說只有它的子類才能調用這個無參的構造方法。


在Map介面中其內部定義了一個Entry介面,這個介面是態圓Map映射的內部實現用於維護一個key-value鍵值對,key-value存儲在這個Map.Entry中。AbstractMap對這個內部介面進行了實現,一共有兩個:一個是可變的SimpleEntry和一個是不可變的SimpleImmutableEntry。


,java.io.Serializable


實現了Map.Entry介面,並且實現了Serializable(可被序列化)。帆轎塌


它的方法比較簡單都是取值存值的操作,對於key值的定義是一個final修飾意味著是一個不可變的引用。另外其setValue方法稍微特殊,存入value值返回的並不是存入的值,而是返回的以前的舊值。需要重點學習的是它重寫的equals和hashCode方法。


,java.io.


定義為不可變的Entry,其實是事實不可變,因為它不提供setValue方法,在多個線程同時訪問時自然不能通過setValue方法進行修改。它相比於SimpleEntry其key和value成員變數都被定義為了final類型。調用setValue方法將會拋出UnsupportedOperationException異常。


它的equals和hashCode方法和SimpleEntry一致。


接下來查看AbstractMap抽象類實現了哪些Map介面中的方法。


publicintsize()


Map中定義了一個entrySet方法,返回的是Map.Entry的Set集合,直接調用Set集合的size方法即是Map的大小。


publicbooleanisEmpty()


調用上面的size方法,等於0即為空。


publicbooleancontainsKey(Objectkey)


這個方法的實現較為簡單,通過調用entrySet方法獲取Set集合的迭代器遍歷Map.Entry,與參數key比較。Map可以存儲為null的key值,由於key=null在Map中存儲比較特殊(不能計算hashCode值),所以在這里也做了判斷參數key是否為空。


『貳』 在Java 中多線程的實現方法有哪些,如何使用

1、 認識Thread和Runnable

Java中實現多線程有兩種途徑:繼承Thread類或者實現Runnable介面。Runnable是介面,建議用介面的方式生成線程,因為介面可以實現多繼承,況且Runnable只有一個run方法,很適合繼承。在使用Thread的時候只需繼承Thread,並且new一個實例出來,調用start()方法即可以啟動一個線程。

Thread Test = new Thread();

Test.start();

在使用Runnable的時候需要先new一個實現Runnable的實例,之後啟動Thread即可。

Test impelements Runnable;

Test t = new Test();

Thread test = new Thread(t);

test.start();

總結:Thread和Runnable是實現java多線程的2種方式,runable是介面,thread是類,建議使用runable實現java多線程,不管如何,最終都需要通過thread.start()來使線程處於可運行狀態。

2、 認識Thread的start和run

1) start:

用start方法來啟動線程,真正實現了多線程運行,這時無需等待run方法體代碼執行完畢而直接繼續執行下面的代碼。通過調用Thread類的start()方法來啟動一個線程,這時此線程處於就緒(可運行)狀態,並沒有運行,一旦得到spu時間片,就開始執行run()方法,這里方法run()稱為線程體,它包含了要執行的這個線程的內容,Run方法運行結束,此線程隨即終止。

2) run:

run()方法只是類的一個普通方法而已,如果直接調用Run方法,程序中依然只有主線程這一個線程,其程序執行路徑還是只有一條,還是要順序執行,還是要等待run方法體執行完畢後才可繼續執行下面的代碼,這樣就沒有達到寫線程的目的。

總結:調用start方法方可啟動線程,而run方法只是thread的一個普通方法調用,還是在主線程里執行。

3、 線程狀態說明

線程狀態從大的方面來說,可歸結為:初始狀態、可運行狀態、不可運行狀態和消亡狀態,具體可細分為上圖所示7個狀態,說明如下:

1) 線程的實現有兩種方式,一是繼承Thread類,二是實現Runnable介面,但不管怎樣,當我們new了thread實例後,線程就進入了初始狀態;

2) 當該對象調用了start()方法,就進入可運行狀態;

3) 進入可運行狀態後,當該對象被操作系統選中,獲得CPU時間片就會進入運行狀態;

4) 進入運行狀態後case就比較多,大致有如下情形:

·run()方法或main()方法結束後,線程就進入終止狀態;

·當線程調用了自身的sleep()方法或其他線程的join()方法,就會進入阻塞狀態(該狀態既停止當前線程,但並不釋放所佔有的資源)。當sleep()結束或join()結束後,該線程進入可運行狀態,繼續等待OS分配時間片;

·當線程剛進入可運行狀態(注意,還沒運行),發現將要調用的資源被鎖牢(synchroniza,lock),將會立即進入鎖池狀態,等待獲取鎖標記(這時的鎖池裡也許已經有了其他線程在等待獲取鎖標記,這時它們處於隊列狀態,既先到先得),一旦線程獲得鎖標記後,就轉入可運行狀態,等待OS分配CPU時間片;

·當線程調用wait()方法後會進入等待隊列(進入這個狀態會釋放所佔有的所有資源,與阻塞狀態不同),進入這個狀態後,是不能自動喚醒的,必須依靠其他線程調用notify()或notifyAll()方法才能被喚醒(由於notify()只是喚醒一個線程,但我們由不能確定具體喚醒的是哪一個線程,也許我們需要喚醒的線程不能夠被喚醒,因此在實際使用時,一般都用notifyAll()方法,喚醒有所線程),線程被喚醒後會進入鎖池,等待獲取鎖標記。

·當線程調用stop方法,即可使線程進入消亡狀態,但是由於stop方法是不安全的,不鼓勵使用,大家可以通過run方法里的條件變通實現線程的stop。

『叄』 在Java 中多線程的實現方法有哪些,如何使用

Java多線程的創建及啟動

Java中線程的創建常見有如三種基本形式

1.繼承Thread類,重寫該類的run()方法。

復制代碼

1 class MyThread extends Thread {

2

3 private int i = 0;

4

5 @Override

6 public void run() {

7 for (i = 0; i < 100; i++) {

8 System.out.println(Thread.currentThread().getName() + " " + i);

9 }

10 }

11 }

復制代碼

復制代碼

1 public class ThreadTest {

2

3 public static void main(String[] args) {

4 for (int i = 0; i < 100; i++) {

5 System.out.println(Thread.currentThread().getName() + " " + i);

6 if (i == 30) {

7 Thread myThread1 = new MyThread(); // 創建一個新的線程 myThread1 此線程進入新建狀態

8 Thread myThread2 = new MyThread(); // 創建一個新的線程 myThread2 此線程進入新建狀態

9 myThread1.start(); // 調用start()方法使得線程進入就緒狀態

10 myThread2.start(); // 調用start()方法使得線程進入就緒狀態

11 }

12 }

13 }

14 }

復制代碼

如上所示,繼承Thread類,通過重寫run()方法定義了一個新的線程類MyThread,其中run()方法的方法體代表了線程需要完成的任務,稱之為線程執行體。當創建此線程類對象時一個新的線程得以創建,並進入到線程新建狀態。通過調用線程對象引用的start()方法,使得該線程進入到就緒狀態,此時此線程並不一定會馬上得以執行,這取決於CPU調度時機。

2.實現Runnable介面,並重寫該介面的run()方法,該run()方法同樣是線程執行體,創建Runnable實現類的實例,並以此實例作為Thread類的target來創建Thread對象,該Thread對象才是真正的線程對象。

復制代碼

1 class MyRunnable implements Runnable {

2 private int i = 0;

3

4 @Override

5 public void run() {

6 for (i = 0; i < 100; i++) {

7 System.out.println(Thread.currentThread().getName() + " " + i);

8 }

9 }

10 }

復制代碼

復制代碼

1 public class ThreadTest {

2

3 public static void main(String[] args) {

4 for (int i = 0; i < 100; i++) {

5 System.out.println(Thread.currentThread().getName() + " " + i);

6 if (i == 30) {

7 Runnable myRunnable = new MyRunnable(); // 創建一個Runnable實現類的對象

8 Thread thread1 = new Thread(myRunnable); // 將myRunnable作為Thread target創建新的線程

9 Thread thread2 = new Thread(myRunnable);

10 thread1.start(); // 調用start()方法使得線程進入就緒狀態

11 thread2.start();

12 }

13 }

14 }

15 }

復制代碼

相信以上兩種創建新線程的方式大家都很熟悉了,那麼Thread和Runnable之間到底是什麼關系呢?我們首先來看一下下面這個例子。

復制代碼

1 public class ThreadTest {

2

3 public static void main(String[] args) {

4 for (int i = 0; i < 100; i++) {

5 System.out.println(Thread.currentThread().getName() + " " + i);

6 if (i == 30) {

7 Runnable myRunnable = new MyRunnable();

8 Thread thread = new MyThread(myRunnable);

9 thread.start();

10 }

11 }

12 }

13 }

14

15 class MyRunnable implements Runnable {

16 private int i = 0;

17

18 @Override

19 public void run() {

20 System.out.println("in MyRunnable run");

21 for (i = 0; i < 100; i++) {

22 System.out.println(Thread.currentThread().getName() + " " + i);

23 }

24 }

25 }

26

27 class MyThread extends Thread {

28

29 private int i = 0;

30

31 public MyThread(Runnable runnable){

32 super(runnable);

33 }

34

35 @Override

36 public void run() {

37 System.out.println("in MyThread run");

38 for (i = 0; i < 100; i++) {

39 System.out.println(Thread.currentThread().getName() + " " + i);

40 }

41 }

42 }

復制代碼

同樣的,與實現Runnable介面創建線程方式相似,不同的地方在於

1 Thread thread = new MyThread(myRunnable);

那麼這種方式可以順利創建出一個新的線程么?答案是肯定的。至於此時的線程執行體到底是MyRunnable介面中的run()方法還是MyThread類中的run()方法呢?通過輸出我們知道線程執行體是MyThread類中的run()方法。其實原因很簡單,因為Thread類本身也是實現了Runnable介面,而run()方法最先是在Runnable介面中定義的方法。

1 public interface Runnable {

2

3 public abstract void run();

4

5 }

我們看一下Thread類中對Runnable介面中run()方法的實現:

復制代碼

@Override

public void run() {

if (target != null) {

target.run();

}

}

復制代碼

也就是說,當執行到Thread類中的run()方法時,會首先判斷target是否存在,存在則執行target中的run()方法,也就是實現了Runnable介面並重寫了run()方法的類中的run()方法。但是上述給到的列子中,由於多態的存在,根本就沒有執行到Thread類中的run()方法,而是直接先執行了運行時類型即MyThread類中的run()方法。

3.使用Callable和Future介面創建線程。具體是創建Callable介面的實現類,並實現clall()方法。並使用FutureTask類來包裝Callable實現類的對象,且以此FutureTask對象作為Thread對象的target來創建線程。

看著好像有點復雜,直接來看一個例子就清晰了。

復制代碼

1 public class ThreadTest {

2

3 public static void main(String[] args) {

4

5 Callable<Integer> myCallable = new MyCallable(); // 創建MyCallable對象

6 FutureTask<Integer> ft = new FutureTask<Integer>(myCallable); //使用FutureTask來包裝MyCallable對象

7

8 for (int i = 0; i < 100; i++) {

9 System.out.println(Thread.currentThread().getName() + " " + i);

10 if (i == 30) {

11 Thread thread = new Thread(ft); //FutureTask對象作為Thread對象的target創建新的線程

12 thread.start(); //線程進入到就緒狀態

13 }

14 }

15

16 System.out.println("主線程for循環執行完畢..");

17

18 try {

19 int sum = ft.get(); //取得新創建的新線程中的call()方法返回的結果

20 System.out.println("sum = " + sum);

21 } catch (InterruptedException e) {

22 e.printStackTrace();

23 } catch (ExecutionException e) {

24 e.printStackTrace();

25 }

26

27 }

28 }

29

30

31 class MyCallable implements Callable<Integer> {

32 private int i = 0;

33

34 // 與run()方法不同的是,call()方法具有返回值

35 @Override

36 public Integer call() {

37 int sum = 0;

38 for (; i < 100; i++) {

39 System.out.println(Thread.currentThread().getName() + " " + i);

40 sum += i;

41 }

42 return sum;

43 }

44

45 }

復制代碼

首先,我們發現,在實現Callable介面中,此時不再是run()方法了,而是call()方法,此call()方法作為線程執行體,同時還具有返回值!在創建新的線程時,是通過FutureTask來包裝MyCallable對象,同時作為了Thread對象的target。那麼看下FutureTask類的定義:

1 public class FutureTask<V> implements RunnableFuture<V> {

2

3 //....

4

5 }

1 public interface RunnableFuture<V> extends Runnable, Future<V> {

2

3 void run();

4

5 }

於是,我們發現FutureTask類實際上是同時實現了Runnable和Future介面,由此才使得其具有Future和Runnable雙重特性。通過Runnable特性,可以作為Thread對象的target,而Future特性,使得其可以取得新創建線程中的call()方法的返回值。

執行下此程序,我們發現sum = 4950永遠都是最後輸出的。而「主線程for循環執行完畢..」則很可能是在子線程循環中間輸出。由CPU的線程調度機制,我們知道,「主線程for循環執行完畢..」的輸出時機是沒有任何問題的,那麼為什麼sum =4950會永遠最後輸出呢?

原因在於通過ft.get()方法獲取子線程call()方法的返回值時,當子線程此方法還未執行完畢,ft.get()方法會一直阻塞,直到call()方法執行完畢才能取到返回值。

上述主要講解了三種常見的線程創建方式,對於線程的啟動而言,都是調用線程對象的start()方法,需要特別注意的是:不能對同一線程對象兩次調用start()方法。

你好,本題已解答,如果滿意

請點右下角「採納答案」。


『肆』 java 中方法的實現問題(很簡單,希望大俠指點)

這廳碼個玩意就是反射。
do :
1.Class c = 得到當前class. // 比如 this.getClass() , Test.class 等扮伍哪等方式
2. Method m = c. getDeclaredMethod("fun" + i, 參數列表橘緩), //這個參數列表是fun i需要的參數列表。
3. 執行 m.invoke(this, 參數列表)。

『伍』 java中如何在靜態方法中實現對非靜態方法的調用,請問各位有沒有具體的例子

public class A{x0dx0a //類A中非靜態方法x0dx0ax0dx0a public void func(){ ...... }x0dx0a x0dx0a //類A中靜態方法(主函數)x0dx0ax0dx0a public static void main(String[] args){x0dx0a A a=new A();//需實例化A的對象後才可以調用A中非靜態方法x0dx0a a.func();x0dx0a }x0dx0ax0dx0a如上面這個簡單的例子,靜態方法對非靜態方法發起調用時,需實例化包含非靜態方法的類的對象。如果類A中靜態方敗凳法需調用類B中非靜態方法時,也需實例化B的對象。x0dx0ax0dx0a原因解釋:類中靜態的方法或者屬性,本質上來講並不是該類的成員,在java虛擬機裝在類的時候,這些靜態的東西已經有了對象,它只是在這個類中"寄居",不需要此枯念通過類的構造器(構造函數)類實現實例化;而非靜態的屬性或者方法,在類的裝載是並沒有存在,需在執行了該類的構造函數後才可依賴該類的實例對象存在。所以在靜態方法中調森困用非靜態方法時,編譯器會報錯(Cannot make a static reference to the non-static method func() from the type A)。x0dx0ax0dx0a不知這么說你懂了沒,如果還有什麼不懂可以繼續問我。

『陸』 如何正確實現Java中的hashCode方法

正確實現Java中的hashCode方法:
相等和哈希碼

相等是從一般的方面來講,哈希碼更加具有技術性。如果我們在理解方面存在困難,我們可以說,他們通過只是一個實現細節來提高了性能。
大多數的數據結構通過equals方法來判斷他們是否包含一個元素,例如:
List<String> list = Arrays.asList("a", "b", "c");
boolean contains = list.contains("b");

這個變數contains結果是true,因為,雖然」b」是不相同的實例(此外,忽略字元串駐留),但是他們是相等的。
通過比較實例的每個元素,然後將比較結果賦值給contains是比較浪費的,雖然整個類的數據結構進行了優化,能夠提升性能。
他們通過使用一種快捷的方式(減少潛在的實例相等)進行比較,從而代替通過比較實例所包含的每個元素。而快捷比較僅需要比較下面這些方面:
快捷方式比較即通過比較哈希值,它可以將一個實例用一個整數值來代替。哈希碼相同的實例不型雹一定相等,但相等畝搭的實例一定具有有相同的哈希值。(或應該有,我們很快就會討論這個)這些數據結構經常通過這種這種技術來命名,可以通過Hash來識別他們的,其中,HashMap是其中最著名的代表。
它們通常是這樣這樣運作的
當添加一個元素,它的哈希碼是用來計算內部數組的索引(即所謂的桶)
如果是,不相等的元素有相同的哈希碼,他們最終在同一個桶上並且捆綁在一起,例如通過添加到列表。
當一個實例來進行contains操作時,它的哈希碼將用來計算桶值(索引值),只有當對應索引值上存在元素時,才會對實例進行比較。
因此equals,hashCode是定義在Object類中。
散列法的思想
如果hashCode作為快捷方式來確定相等,那麼只有一件事我們應該關心:相等的對象應該具有相同的哈希碼,這也是為什麼如果我們重寫了equals方法後,我們必須創建一個與之匹配的hashCode實現的原因!
否則相等的對象是可能不會有相同的哈希碼的,因為它們將調用的是Object's的默認實現。
HashCode 准則
引用自官方文檔
hashCode通用約定:
* 調用運行Java應用程序中的同一對象,hashCode方法必須始終返回相同的整數。這個整數不需要在不同的Java應用程序中保持一致。
* 根據equals(Object)的方法來比較,如果兩個對象是相等的,兩個對象調用hashCode方法必須產生相同的結果。
* 根據equals(Object)的方法是比較,如果兩個對象是不相等的,那麼兩個對象調用hashCode方法並不一定產生不同的整數的結果。但是,程序員應該意識到給不相等的對象產生不同的整數結果將有可能提高哈希表的性能。
第一點反映出了相等的一致性屬性,第二個就是我們上面提出的要求。第三個闡述了一個重要的細節,我們將在稍後討論。
HashCode實現
下面是非常簡單的Person.hashCode的實現
@Override
public int hashCode() {
return Objects.hash(firstName, lastName);
}

person』s是通過多個欄位結合來計算哈希碼的。都是通過Object的hash函數來計算。
選擇欄位
但哪些欄位是相關的嗎?需求將會幫助我們回答這個問題:如果相等的對象必須具有相同的哈希碼,那迅租拿么計算哈希碼就不應包括任何不用於相等檢查的欄位。(否則兩個對象只是這些欄位不同但是仍然有可能會相等,此時他們這兩個對象哈希碼卻會不相同。)
所以用於哈希組欄位應該相等時使用的欄位的子集。默認情況下都使用相同的欄位,但有一些細節需要考慮。
一致性
首先,有一致性的要求。它應該相當嚴格。雖然它允許如果一些欄位改變對應的哈希碼發生變化(對於可變的類是不可避免的),但是哈希數據結構並不是為這種場景准備的。
正如我們以上所見的哈希碼用於確定元素的桶。但如果hash-relevant欄位發生了改變,並不會重新計算哈希碼、也不會更新內部數組。
這意味著以後通過相等的對象,甚至同一實例進行查詢也會失敗,數據結構計算當前的哈希碼與之前存儲實例計算的哈希碼並不一致,並是錯誤的桶。
結論:最好不要使用可變欄位計算哈希碼!
性能
哈希碼最終計算的頻率與可能調用equals差不多,那麼這里將是影響性能的關鍵部分,因此考慮此部分性能也是非常有意義的。並且與equals相比,優化之後又更大的上升空間。
除非使用非常復雜的演算法或者涉及非常多的欄位,那麼計算哈希碼的運算成本是微不足道的、同樣也是不可避免的。但是也應該考慮是否需要包含所有的欄位來進行運算。集合需要特別警惕的對待。以Lists和sets為例,將會包含集合裡面的每一個元素來計算哈希碼。是否需要調用它們需要具體情況具體分析。
如果性能是至關重要的,使用Objects.hash因為需要為varargs創建一個數組也許並不是最好的選擇。但一般規則優化是適用的:不要過早地使用一個通用的散列碼演算法,也許需要放棄集合,只有優化分析顯示潛在的改進。
碰撞
總是關注性能,這個實現怎麼呢?
@Override
public int hashCode() {
return 0;
}

快是肯定的。相等的對象將具有相同的哈希碼。並且,沒有可變的欄位!
但是,我們之前說過的桶呢?!這種方式下所有的實例將會有相同的桶!這將會導致一個鏈表來包含所有的元素,這樣一來將會有非常差的性能。每次調用contains將會觸發對整個list線性掃描。
我們希望盡可能少的元素在同一個桶!一個演算法返回變化多端的哈希碼,即使對於非常相似的對象,是一個好的開始。
怎樣才能達到上面的效果部分取決於選取的欄位,我們在計算中包含更多的細節,越有可能獲取到不同的哈希碼。注意:這個與我們所說的性能是完全相反的。因此,有趣的是,使用過多或者過少的欄位都會導致糟糕的性能。
防止碰撞的另一部分是使用實際計算散列的演算法。
計算Hsah
最簡單的方法來計算一個欄位的哈希碼是通過直接調用hashCode,結合的話會自動完成。常見的演算法是首先在以任意數量的數值(通常是基本數據類型)反復進行相乘操作再與欄位哈希碼相加
int prime = 31;
int result = 1;
result = prime * result + ((firstName == null) ? 0 : firstName.hashCode());
result = prime * result + ((lastName == null) ? 0 : lastName.hashCode());
return result;

這可能導致溢出,但是不是特別有問題的,因為他們並沒有產生Java異常。
注意,即使是非常良好的的哈希演算法也可能因為輸入特定的模式的數據有導致頻繁碰撞。作為一個簡單的例子假設我們會計算點的散列通過增加他們的x和y坐標。當我們處理f(x) = -x線上的點時,線上的點都滿足:x + y == 0,將會有大量的碰撞。
但是:我們可以使用一個通用的演算法,只到分析表明並不正確,才需要對哈希演算法進行修改。
總結
我們了解到計算哈希碼就是壓縮相等的一個整數值:相等的對象必須有相同的哈希碼,而出於對性能的考慮:最好是盡可能少的不相等的對象共享相同的哈希碼。
這就意味著如果重寫了equals方法,那麼就必須重寫hashCode方法
當實現hashCode
使用與equals中使用的相同的欄位(或者equals中使用欄位的子集)
最好不要包含可變的欄位。
對集合不要考慮調用hashCode
如果沒有特殊的輸入特定的模式,盡量採用通用的哈希演算法
記住hashCode性能,所以除非分析表明必要性,否則不要浪費太多的精力。

『柒』 Java中方法是怎樣執行的

方法的執行啊,就是封裝落,當調用方法時,就執行方法裡面的代碼,執行完之後,就跳到調用方法的地方,往下面繼續執行。

『捌』 簡要敘述java 調用一個方法的實現步驟

樓主你好:
首先,main()方法,因為他的屬性是static的,所以在程序最開始運知嫌行~~~在main方法中,通過先前寫的一個類,生成實例對象(通過new得到),這個對象就擁有了這個類的方法~~~~~~~~
這個對象就可以直接採用"對象.方法
()「來實現某種功能了~
概括地說,就是」類擁有方法,對象是類的一個具體的實叢猛念例,滲困他可以調用方法,方法可以用對象直接跟上方法進行調用,從而實現某種功能行為「。。

閱讀全文

與java中方法如何實現相關的資料

熱點內容
手機視頻有線接電視機的方法 瀏覽:71
小兒退燒有什麼土方法嗎 瀏覽:636
如何投訴汽車維修最有效的方法 瀏覽:25
有哪些方法可以使蛋白質析出 瀏覽:485
能補充營養和快速長肉的方法 瀏覽:56
角磨機切圓管30度快速方法 瀏覽:974
振興中華的最佳方法 瀏覽:227
閃子彈的正確使用方法 瀏覽:434
庫博士洗衣機使用方法 瀏覽:135
寶寶孤獨症的治療方法 瀏覽:308
蘋果6如何清理垃圾方法 瀏覽:156
電腦如何更改注銷方法 瀏覽:187
彩票大師的計算方法 瀏覽:536
分時均線計算方法 瀏覽:397
如何抑制宮縮的方法 瀏覽:273
如何擁有說暈就暈的方法 瀏覽:636
滴灌送水帶安裝方法 瀏覽:242
冰箱門轉軸異響解決方法 瀏覽:693
外國人教學方法 瀏覽:972
黃金果的食用方法 瀏覽:56