導航:首頁 > 方法技巧 > 八年級下冊如何用配方法解方程

八年級下冊如何用配方法解方程

發布時間:2023-04-08 05:34:00

1. 用配方法解方程的詳細步驟是什麼

配方法解方程的一般步驟

(1)化二次項系數為1,即方程兩邊同時除以二次項系數.

(2)移項,使方程左邊為二次項和一次項,右邊為常數項.

(3)要在方程兩邊各加上一次項系數一半的平方.(註:一次項系數是帶符號的)

(4)方程變形為

配方法

2. 用配方法解一元二次方程的基本步驟

將一元二次方程配成,進而得出方程的根。

(4)注意:

①等號左邊是一個數的平方的形式而等號右邊是一個常數。

②降次的實質是由一個一元二次方程轉化為兩個一元一次方程。

③方法是根據平方根的意義開平方。

3. 怎麼用配方法解一元二次方程

用配方法解一元二次方程的一般步驟:

1、把原方程化為的形式。

2、將常數項移到方程的右邊;方隱鄭程兩邊同時除以二次項的系數,將二次項系數化為1。

3、方程兩邊同時加上一次項系數一半的平方。

4、再把方程左邊配成一個完全平方式,右邊化為一個常數。

5、若方程右邊是非負數,則兩邊直接開平方,求出方程的解;若右邊是一個負數,則判定此方程無實數解。


(3)八年級下冊如何用配方法解方程擴展閱讀:

在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。

配方法通常用來推導出二次方程的求根公式:我兆高們的目的是要把方程的左邊化為完全平方。

由於問題中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式兩邊加上y2= (b/2a)2,可得:

這個表達式稱為二次方程的求根公式。

4. 4x²-3x=52用配方法

4x²-3x=52

解:x²-3/4x=13

x²-3/4x+(3/8)²=13+(3/8)²

(x-3/8)²=841/64

x-3/8=±29/8

x=3/8±29/8

x1=4

x2=-13/4

解析:配方法解方程,就是把方程未知數的系數化羨者為1,把常數項移到右面,再把方程的左邊配成完全平方式,然後方程左右兩邊同時開方,轉化為虛派信一元一次方程,再求出方程的解。

(4)八年級下冊如何用配方法解方程擴展閱讀:

用配方法解一元二次方程的基本步驟。

1、提出二次項的系數。

2、把一次項系數除以2,然後加上商的平方。

3、把提出系數的二次項,一次項(包括差輪系數),一次項系數一半的平方用括弧括起來。

4、括弧外再減一個一次項系數一半的平方,加上原來的常數項。

5、括弧內就是一個二項式的平方了。

6、把常數移到等號的另一邊。

7、一下就只等號兩邊開方,記住常數開方的前面要寫上正負號。

8、最後寫成xi=,x2=

5. 配方法的基本步驟

1、第一步:把原方程化為一般式

把原方程化為一般形式,也就是aX²+bX+c=0(a≠0)的形式。

2、第二步:系數化為1

把方程的兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊。

3、第三步:把方程兩邊平方

將方程兩邊同時加上一次項系數一半的平方,把左邊配成一個完全平方式,右邊化為一個常數項。

4、第四步:開平方求解

進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。


概述

在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。

配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。

6. 用配方法怎樣解方程

在一元二次方程中,配方法其實就是把一元二次方程移項之後,在等號兩邊都加上一次項系數絕對值一半的平方。

配方法:用配方法解方程ax^2+bx+c=0 (a≠0)

先將常數c移到方程右邊:ax^2+bx=-c

將二次項系數化為1:x^2+(b/a)x = -c/a

方程兩邊分別加上一次項系數的一半的平方:x^2+b/ax+(b/2a)^2= - c/a+(b/2a)^2

方程左邊成為一個完全平方式:(x+b/2a)^2 = -c/a﹢﹙b/2a)^2;

當b^2-4ac≥0時,x+b/2a =±√(﹣c/a﹚﹢﹙b/2a)^2;

∴x={-b±[√(b^2;﹣4ac)]}/2a(這就是求根公式)

例:解方程:2x²+6x+6=4

分析:原方程可整理為:x²+3x+3=2,通過配方可得(x+1.5)²=1.25通過開方即可求解。

解:2x²+6x+6=4<=>(x+1.5)²=1.25x+1.5=1.25的平方根。

配方法是指將一個式子(包括有理式和超越式)或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和,這種方法稱之為配方法。這種方法常常被用到恆等變形中,以挖掘題目中的隱含條件。

(6)八年級下冊如何用配方法解方程擴展閱讀:

配方法解決其他數學問題:

求最值

1、已知實數x,y滿足x²+3x+y-3=0,則x+y的最大值為____。

分析:將y用含x的式子來表示,再代入(x+y)求值。

解:x²+3x+y-3=0<=>y=3-3x-x²,

代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。

由於(x+1)²≥0,故4-(x+1)²≤4.故推測(x+y)的最大值為4,此時x,y有解,故(x+y)的最大值為4。

2、證明非負性

證明:a²+2b+b²-2c+c²-6a+11≥0

解:a²+2b+b²-2c+c²-6a+11=(a-3)²+(b+1)²+(c-1)²,結論顯然成立。

例分解因式:x²-4x-12

解:x²-4x-12=x²-4x+4-4-12=(x-2)²-16=( x -6)(x+2)。

參考資料來源:網路-解方程

網路-配方法

7. 如何用配方法解方程

配方法解方程,方法如下:
1、首先,先進行移項,即將方程左邊的常數移到方程右邊。
2、在對方程進行配方,我們選擇一次項的系數除以2作為方程左邊的常數,再將常熟平方,放置方程左邊。方程右邊也加該常數的平方,使左右相等。
3、方程左邊整理成平方的形式,再將右邊系數整合。
4、最後通過因式分解計算結果。

8. 數學解方程配方法

配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先將常數c移到方程右邊:ax2+bx=-c
將二次項系數化為1:x2+x=-
方程兩芹腔邊分別加上一次項系數的一嫌鋒衫半的平方:x2+x+( )2=- +( )2 方程左邊成為一個完全平方式:(x+ )2= 當b2-4ac≥0時,x+ =±
∴x=(這就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:將常數項移到方程右邊 3x2-4x=2
將二次項系基枝數化為1:x2-4/3x=2/3
方程兩邊都加上一次項系數一半的平方:x2-x+( )2= +( )2 配方:(x-)2=
直接開平方得:x-=± ∴x= ∴原方程的解為x1=,x2=

9. 初二數學,用配方法解題,拜託了。

配方法解方程,就是把x項系數合並到只有一項,通常是把二元一次方程配成平方形式,就是把x²項前的系數提出來後配一個x項系滾宏數的一半的平方,這就是證明判備蘆二次方程求解公式的那掘帶個方式。謝謝

10. 二元一次方程配方法的步驟

1.配方法:將一元二次方程配成(x+m)²=n的形式,再利用直接開平方法求解的方法;

2.用配方法解一元二次方程的步驟:①一般形式:把原方程化為一般形式;②二次項系數化為1:方程兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊;③配方:方程兩邊同時加上一次項系數一半的平方;④完全平方:把左邊配成一個完全平方式,右邊化為一個常數;⑤開方:方程兩邊同時開平方,得到一元一次方程;⑥得解:解一元一次方程,得出原方程的解;

3.說明:配方之後形成「左平方右常數」的形式,如果方程右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程沒有實數根;配方法的理論依據是——完全平方公式a²+b²+2ab=(a+b)²;配方法的關鍵是——先將一元二次方程的二次項系數化為1,然後在方程兩邊同時加上一次項系數一半的平方;

4.舉例:

配方法解方程

5.有不明白的地方歡迎追問!

閱讀全文

與八年級下冊如何用配方法解方程相關的資料

熱點內容
用什麼方法給臉補水 瀏覽:557
燙傷後正確的處理方法 瀏覽:766
腳跟骨刺的治療方法白醋 瀏覽:389
花楸果怎麼吃方法 瀏覽:61
瘦臉方法的視頻 瀏覽:314
窗簾掛球打結方法視頻 瀏覽:296
快速增加電腦網速的方法 瀏覽:278
電腦登錄自己微信的方法 瀏覽:332
如何製作亮片製作方法 瀏覽:637
頸椎直反弓的鍛煉方法 瀏覽:225
論述糖尿病的營養治療方法有哪些 瀏覽:75
網路面板不能用的檢測方法 瀏覽:708
眼睛黑眼圈怎麼辦有什麼方法 瀏覽:535
用手機繞地轉一圈測出畝數的方法 瀏覽:148
新舊玉米粒的鑒別方法視頻 瀏覽:868
踢腳線安裝方法與尺寸 瀏覽:403
蟹爪蘭的養殖方法視頻 瀏覽:766
研究方法具體有哪幾種 瀏覽:766
用什麼方法氣走了你的追求者 瀏覽:540
再生膠脫模的解決方法 瀏覽:610