① 數學做題的方法及技巧
數學做題的方法及技巧
數學做題的方法及技巧,數學一直都是令許多學生頭疼的科目,在考試中我們只能盡量做到不會做的題目也能得分,甚至蒙出正確的答案,只要掌握一定的數學答題技巧,也是有可能實現的,接下來一起看看數學做題的方法及技巧。
一、熟悉習題中所涉及的內容,包括定義、公式、定理和規則。
解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。
因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。
二、熟悉習題中所涉及到的以前學過的知識,以及與其他學科相關的知識。
有時候,我們遇到一道不會做的習題,不是我們沒有學會現在所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。
這時,我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然後再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。
三、熟悉基本的解題步驟和解題方法。
解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。
選擇題蒙法
1、選擇題出現數值的選項中,含最多相同數值的選項為正確答案。如四個選項:A、3 B、3/11 C、3/13 D、2/11。「3」和「11」出現的次數最多,故選選項B。
2、選擇題出現數值的選項中,數值最大的和數值最小的一般不是正確選項,答案從中間數值的兩個選項中選。
3、選擇題出現正負數值的選項中,答案必定是那兩個選項的其中之一。
4、選擇題中,若出現概念題。如果有課外的或是課內很少見的說法,一般都是正確的說法。
5、選擇題,不會連續出現3個相同的答案。一般而言,選項A出現的概率最低。而且,第一題和最後一題一般不為選項A,最後兩道題多為選項B和選項C。
填空題蒙法
1、如果出現求長度或者求角度的選擇題,並且試卷上有圖像的。可以直接用刻度尺或者量角器去衡量。
2、有關線性規劃的選擇題,不用畫圖,直接計算。用時更短,准確率更高!
3、遇上求數值、實在不會做的選擇題。如果明顯是整數答案的,可以選寫「0、1、-1」中的其中一個數值;如果明顯是分數答案的.,可以選寫「1/2、1/3、2/3」中的其中一個數值;如果明顯是含根號值數答案的,可以選寫「根號2、根號3「等簡單的數值。
4、一般來說,題目復雜難懂的,答案的數值往往是很簡單的。反之就是比較復雜的。
解答題蒙法
1,證明題中,如果有某一個結論實在不知道怎麼推導出來,可以把題目中所有的條件抄一遍,然後直接寫出你想要的結論即可(情況好的話一分不扣!情況不好的話,也就扣一些步驟分)
2,證明題中,第二第三題可以直接引用第一題的結論(即使第一題是要你證明的結論,你沒有證明出來也可以用!)
3、一般而言,壓軸題的第三小問,都要用第一小題中的結論。(所以,壓軸題的第三小問,即使做不出來,也要把第一小題中的結論寫上去,可以得一到兩分的步驟分!)
4、空間幾何證明題中,即使不會證明,也要建立空間直角坐標系,並寫上你建系時的套話。
5、實在一點兒都不會做的題目,把所有你覺得用得上的、跟本題有關的公式定理都寫上去。並且,每一小題都要重復寫上(意思就是:第一小題寫了,第二、第三小題也要寫!)
數學答題技巧
1.適用條件
[直線過焦點],必有ecosA=(x-1)/(x+1),其中A為直線與焦點所在軸夾角,是銳角。x為分離比,必須大於1。
註:上述公式適合一切圓錐曲線。如果焦點內分(指的是焦點在所截線段上),用該公式;如果外分(焦點在所截線段延長線上),右邊為(x+1)/(x-1),其他不變。
2.函數的周期性問題(記憶三個)
(1)若f(x)=-f(x+k),則T=2k;
(2)若f(x)=m/(x+k)(m不為0),則T=2k;
(3)若f(x)=f(x+k)+f(x-k),則T=6k。
注意點:a.周期函數,周期必無限b。周期函數未必存在最小周期,如:常數函數。c.周期函數加周期函數未必是周期函數,如:y=sinxy=sin派x相加不是周期函數。
3.關於對稱問題(無數人搞不懂的問題)總結如下
(1)若在R上(下同)滿足:f(a+x)=f(b-x)恆成立,對稱軸為x=(a+b)/2
(2)函數y=f(a+x)與y=f(b-x)的圖像關於x=(b-a)/2對稱;
(3)若f(a+x)+f(a-x)=2b,則f(x)圖像關於(a,b)中心對稱
4.函數奇偶性
(1)對於屬於R上的奇函數有f(0)=0;
(2)對於含參函數,奇函數沒有偶次方項,偶函數沒有奇次方項
(3)奇偶性作用不大,一般用於選擇填空
5.數列爆強定律
(1)等差數列中:S奇=na中,例如S13=13a7(13和7為下角標);
(2)等差數列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
(3)等比數列中,上述2中各項在公比不為負一時成等比,在q=-1時,未必成立
(4)等比數列爆強公式:S(n+m)=S(m)+qmS(n)可以迅速求q
6.數列的終極利器,特徵根方程
首先介紹公式:對於an+1=pan+q(n+1為下角標,n為下角標),
a1已知,那麼特徵根x=q/(1-p),則數列通項公式為an=(a1-x)p(n-1)+x,這是一階特徵根方程的運用。
二階有點麻煩,且不常用。所以不贅述。希望同學們牢記上述公式。當然這種類型的數列可以構造(兩邊同時加數)
② 答題技巧的方法有哪些
期末考試臨近,很多同學都感覺到了空前的學習壓力。然而,最終考試成績的取得一方面是對基礎知識的掌握,另一方面就是考試中的技巧了。有的同學,平時學習成績好,但在考試中往往出現發揮不佳的情況;另外,相當一部分同學總感覺考試時間不夠用,也是缺乏應試技巧的表現。
01▶
自我暗示 消除焦慮
考試一旦怯場,面對試題就會頭腦空空,平時熟悉的公式、定理回憶起來也變得困難,注意力不能集中,等到心情平靜下來,已浪費了許多時間,看到許多未作的題目,則會再次緊張,形成惡性循環。這時要迅速進行心理調節,使自己快速進入正常應考狀態,可採用以下兩種方法調節焦慮情緒:
①自我暗示法。用平時自己考試中曾有優異成績來不斷暗示自己:我是考生中的佼佼者;我一定能考得理想的成績;我雖然有困難的題目,但別人不會做的題目也很多。
②決戰決勝法。視考場為考試的大敵,用過去因怯場而失敗的教訓鞭策自己決戰決勝。
02▶
整體瀏覽 了解卷情
拿到試卷後,在規定的地方寫好姓名和准考證號後,先對試卷進行整體感知,看看這份試卷共多少頁、總題量是多少、分哪幾大部分、有哪幾種題型。這樣不僅可以要防止試卷錯誤,盡早調換,避免不必要的損失;而且通過對全卷作的整體把握,能盡早定下作戰方案。重要的是初步了解下試卷的難易度,以便自己合理安排答題時間,避免會做的沒有做,不會做的卻浪費了時間的情況出現。
03▶
兩先兩後 合理安排
試卷的難易、生熟佔分高低大體心中有數了,情緒也穩定了,此時大腦里的思維狀態由啟動階段進入亢奮階段。只要聽到鈴聲一響就可開始答題了。解題應注意「兩先兩後」的安排:
①先易後難。一般來說,一份成功的試卷,它上面的題目的排列應是由易到難的,但這是命題者的主觀願望,具體情況卻因人而異。同樣一個題目,對他人來說是難的,對自己來說也許是容易的,所以當被一個題目卡住時就產生這樣的念頭,「這個題目做不出,下面的題目更別提了。」事實情況往往是:下面一個題目反而容易!由此,不可拘泥於從前往後的順序,根據情況可以先繞開那些難攻的堡壘,等容易題解答完,再集中火力攻克之。
②先熟後生。通覽全卷後,考生會看到較多的駕輕就熟的題目,也可能看到一些生題或新型題,對前者——熟悉的內容可以採取先答的方式。萬一哪個題目偏難,也不要驚慌失措,而要冷靜思考,變生為熟,想一想能不能把所謂的生題化解為若干個熟悉的小問題,或轉化為熟悉的題型。總之要記住一句名言:「我易人易,我不大意;我難人難,我不畏難」。
04▶
一慢一快 慢中求快
一慢一快,指的是審題要慢要細,做題要快。題目本身是解題方法、技巧的信息源,特別是每卷必有的選擇題中的題干中有許多解答該題的規定性。例如:選出完全正確的一項還是錯誤的一項,選一項還是兩項等,這些一定要在讀題時耐心地把它們讀透,弄清要求,否則是在做無用功。考卷大多是容易的,在大家容易的情況下就看誰更細心,而細心最主要的就是審題時要慢要細心。
當找到解決問題的思路和方法後,答題時速度應快。做到這一點可從兩方面入手,一、書寫速度應快,不慢慢吞吞。二、書寫的內容要簡明扼要,不拖泥帶水,嚕嗦重復,盡量寫出得分點就行了。
05▶
分段得分,每分必爭
考試中經常有的同學答案是錯誤的,但依然得了分,這說明寫出了得分點,而有的同學甚至一點解題思路都沒有,只是將公式進行了羅列,也依然得到了分,都是同樣的道理。尤其是有問的解答中,如果第一個不會千萬不要放棄,一定要瀏覽完全部的問題,做到每分必爭,切忌出現大量空題的情況。
對於會做的題目。對會做的題目要解決對而不全的老大難問題,如果出現跳步往往就會造成丟分的情況,因此,答題過程一定規范,重要步驟不可遺漏,這就是分段得分。
對於不會做的題目,這里又分兩種情況,一種是一大題分幾小題的,一種是一大題只有一問的。對於前者,我們的策略是「跳步解答」,第一小題答不出來,就把第一小題作為已知條件,用來解答第二小題,只要答得對,第二小題照樣得分。對於後者,我們的策略是「缺步解題」,能演算到什麼程度就什麼程度,不強求結論。這樣可以最大程度地得到分數。
06▶
重視檢查環節
答題過程中,盡量立足於一次成功,不出差錯。但百密不免一疏,如果自己的考試時間還有些充裕,那麼根不可匆忙交卷,而應作耐心的復查。將模稜兩可的及未做的題目最後要進行檢查、作答,特別是填空題、選擇題不要留空白。
③ 初中數學解題技巧
初中數學解題技巧
數學之所以比一切其它科學受到尊重,一個理由是因為他的命題是絕對可靠和無可爭辯的,而其它的科學經常處於被新發現的事實推翻的危險。下面我就給大家講講初中數學解題技巧。歡迎大家參考。
第一部分 初中數學考試答題技巧
一、答題原則
大家拿到考卷後,先看是不是本科考試的試卷,再清點試卷頁碼是否齊全,檢查試卷有無破損或漏印、重印、字跡模糊不清等情況。如果發現問題,要及時報告監考老師處理。
答題時,一般遵循如下原則:
1.從前向後,先易後難。通常試題的難易分布是按每一類題型從前向後,由易到難。因此,解題順序也宜按試卷題號從小到大,從前至後依次解答。當然,有時但也不能機械地按部就班。中間有難題出現時,可先跳過去,到最後攻它或放棄它。先把容易得到的分數拿到手,不要“一條胡同走到黑”,總的原則是先易後難,先選擇、填空題,後解答題。
2.規范答題,分分計較。數學分I、II卷,第I卷客觀性試題,用計算機閱讀,一要嚴格按規定塗卡,二要認真選擇答案。第II卷為主觀性試題,一般情況下,除填空題外,大多解答題一題設若干小題,通常獨立給分。解答時要分步驟(層次)解答,爭取步步得分。解題中遇到困難時,能做幾步做幾步,一分一分地爭取,也可以跳過某一小題直接做下一小題。
3.得分優先、隨機應變。在答題時掌握的基本原則是“熟題細做,生題慢做”,保證能得分的地方絕不丟分,不易得分的地方爭取得分,但是要防止被難題耗時過多而影響總分。
4.填充實地,不留空白。考試閱卷是連續性的流水作業,如果你在試卷上留下的空白太多,會給閱卷老師留下不好印象,會認為你確實不行。另外每道題都有若干采分點,觸到采分點便可給分,未能觸到采分點也沒有倒扣分的規定。因此只要時間允許,應盡量把試題提問下面的空白處寫上相應的公式或定理等有關結論。
5.觀點正確,理性答卷。不能因為答題過於求新,結果造成觀點錯誤,邏輯不嚴密;或在試卷上即興發揮,塗寫與試卷內容無關的字畫,可能會給自己帶來意想不到的損失。胡亂塗寫可以認為是在試卷上做記號,而判作弊。因此,要理性答卷。
6.字跡清晰,合理規劃。這對任何一科考試都很重要,尤其是對“精確度”較高的數理化,若字跡不清無法辨認極易造成閱卷老師的誤判,如填空題填寫帶圈的序號、數字等,如不清晰就可能使本來正確的失了分。 另外,卷面答題書寫的位置和大小要計劃好,盡量讓卷面安排做到 “前緊後松”而不是“前松後緊”。特別注意只能在規定位置答題,轉頁答題不予計分。
二、審題要點
審題包括瀏覽全卷和細讀試題兩個方面。
一是開考前瀏覽。開考前5分鍾開始發卷,大家利用發卷至開始答題這段有限的時間,通過答前瀏覽對全卷有大致的了解,初步估算試卷難度和時間分配,據此統籌安排答題順序,做到心中有數。此時考生要做到“寵辱不驚”,也就是說,看到一道似曾相識的題時,心中不要竊喜,而要提醒自己,“這道題做時不可輕敵,小心有什麼陷阱,或者做的題目只是相似,稍微的不易覺察的改動都會引起答案的不同”。碰到一道從未見過,猛然沒思路的題時,更不要受到干擾,相反,此時應開心,“我沒做過,別人也沒有。這是我的機會。”時刻提醒自己:我易人易,我不大意;我難人難,我不畏難。
二是答題過程中的仔細審題。這是關鍵步驟,要求不漏題,看準題,弄清題意,了解題目所給條件和要求回答的問題。不同的題型,考察不同的能力,具有不同的解題方法和策略,評分方式也不同,對不同的題型,審題時側重點有所不同。
1.選擇題是所佔比例較大(40%)的客觀性試題,考察的內容具體,知識點多,“雙基”與能力並重。對選擇題的審題,要搞清楚是選擇正確陳述還是選擇錯誤陳述,採用特殊什麼方法求解等。
2.填空題屬於客觀性試題。一般是中檔題,但是由於沒有中間解題過程,也就沒有過程分,稍微出現點錯誤就和一點不會做結果相同,“後果嚴重”。審題時注意題目考查的知識點、方法和此類問題的易錯點等。
3.解答題在試卷中所佔分數較多(74分),不僅需要解出結果還要列出解題過程。解答這種題目時,審題顯得極其重要。只有了解題目提供的條件和隱含信息,聯想相關題型的通性通法,尋找和確定具體的解題方法和步驟,問題才能解決。
三、時間分配
近幾年,隨著高考數學試題中的應用問題越來越多,閱讀量逐漸增加,科學地使用時間,是臨場發揮的一項重要內容。分配答題時間的基本原則就是保證在能得分的地方絕不丟分,不易得分的地方爭取得分。在心目中應有“分數時間比”的概念,花10分鍾去做一道分值為12分的中檔大題無疑比用10分鍾去攻克1道分值為4分的中檔填空題更有價值。有效地利用最好的答題時間段,通常各時間段內的答題效率是不同的,一般情況下,最後10分鍾左右多數考生心理上會發生變化,影響正常答卷。特別是那些還沒有答完試卷的考生會分心、產生急躁心理,這個時間段效率要低於其它時間段。
在試卷發下來後,通過瀏覽全卷,大致了解試題的類型、數量、分值和難度,熟悉“題情”,進而初步確定各題目相應的作答時間。通常一般水平的考生,解答選擇題(12個)不能超過40分鍾,填空題(4個)不能超過15分鍾,留下的時間給解答題(6個)和驗算。當然這個時間安排還要因人而異。
在解答過程中,要注意原來的時間安排,譬如,1道題目計劃用3分鍾,但3分鍾過後一點眉目也沒有,則可以暫時跳過這道題;但若已接近成功,延長一點時間也是必要的。需要說明的是,分配時間應服從於考試成功的目的,靈活掌握時間而不墨守最初安排。時間安排只是大致的整體調度,沒有必要把時間精確到每1小題或是每1分鍾。更不要因為時間安排過緊,造成太大的心理壓力,而影響正常答卷。
一般地,在時間安排上有必要留出5—10分鍾的檢查時間,但若題量很大,對自己作答的准確性又較為放心的話,檢查的時間可以縮短或去除。但是需要注意的是,通常數學試卷的設計只有少數優秀考生才可能在規定時間內答完。
四、大題和難題
一張考卷必不可少地要有大題、難題以區分考生的知識和能力水平,以便拉開檔次。一般大題、難題分值都較高,遇到難題,要盡量放到最後去攻克;如果別的題目全部做完而且檢查無誤,而又有一定時間的話,就應想辦法攻克難題。不是每個人都能得150的,先把會的做完,也可以給自己奠定心裡優勢。
五、各種題型的解答技巧
1.選擇題的答題技巧
(1)掌握選擇題應試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。首先,看清試題的指導語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題乾的內涵與外延規定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。
(2)特值法。在選擇支中分別取特殊值進行驗證或排除,對於方程或不等式求解、確定參數的取值范圍等問題格外有效。
(3)反例法。把選擇題各選擇項中錯誤的答案排除,餘下的便是正確答案。
(4)猜測法。因為數學選擇題沒有選錯倒扣分的規定,實在解不出來,猜測可以為你創造更多的'得分機會。除須計算的題目外,一般不猜A。
2.填空題答題技巧
(1)要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能准確無誤、清晰回憶。對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區間的端點開還是閉、定義域和值域要用區間或集合表示、單調區間誤寫成不等式或把兩個單調區間取了並集等等。
(2)一般第4個填空題可能題意或題型較新,因而難度較大,可以酌情往後放。
3.解答題答題技巧
(1)仔細審題。注意題目中的關鍵詞,准確理解考題要求。
(2)規范表述。分清層次,要注意計算的准確性和簡約性、邏輯的條理性和連貫性。
(3)給出結論。注意分類討論的問題,最後要歸納結論。
(4)講求效率。合理有序的書寫試卷和使用草稿紙,節省驗算時間。
六、如何檢查
在考試中,主動安排時間檢查答卷是保證考試成功的一個重要環節,它是防漏補遺、去偽存真的過程,尤其是考生如果採用靈活的答題順序,更應該與最後檢查結合起來。因為在你跳躍式往返答題過程中很可能遺漏題目,通過檢查可彌補這種答題策略的漏洞。
檢查過程的第一步是看有無遺漏或沒有做的題目,發現之後,應迅速完成或再次思考解法。對各類題型的做答過程和結果,如果有時間要結合草稿紙的解題過程全面復查一遍,時間不夠,則重點檢查。
選擇題的檢查主要是查看有無遺漏,並復查你心存疑慮的題目。但是若沒有充分的理由,一般不要改變你依據第一感覺作出的判斷。
對解答題的檢查,要注意結合審查草稿紙的演算過程,改正計算和推理中的錯誤。另外要補充遺漏的理由和步驟,刪去或修改錯誤或不準確的觀點。
計算題和證明題是檢查的重點,要仔細檢查是否完成了題目的全部要求;若時間倉促,來不及驗算的話,有一些簡單的驗證方法:一是查單位是否有誤;二是看計算公式引用有無錯誤;三是看結果是否比較“像”,這里所說的“像”是依靠經驗判斷,如應用題的答案是否符合實際意義;數字結論是否為整數、自然數或有規則的表達式,若結論為小數或無規則的數,則要重新演算,最好能用其他方法再試著去做
七、強調的一點是草稿紙,這是考試時和試卷同等重要的東西。
同學們拿到草稿紙後,請先將它三折。然後按順序使用。草稿紙上每道題之間留空,標清題號。字跡要做到能夠准確辨認,切不可胡寫亂畫。這樣做的好處是:
1. 草稿紙展現的是你的答題思路。草稿紙清晰,答題思路也會清晰,最起碼你清楚你已經做到了哪一步。如果草稿混亂的話,這一步推出來了,往往又忘了上一步是怎麼得到的。
2. 對於前面提到的暫時不會,回頭再做的題,由於你第一次做本題時已經進行了一定的思維過程。第二次做時如果重頭再思考非常浪費時間。利用草稿紙,可以迅速找到上次的思維斷點。從而繼續攻破。關鍵結論要特殊標記。
3. 檢查過程中,草稿紙更是最好的幫手。如果連演算過程都可從草稿紙上清晰找到的話,無疑會節省大量時間。
第二部分 提高解題速度的八步驟
在考試時,我們常常感到時間很緊,試卷還沒來得及做完,就到收卷時間了,雖然有些試題,只要再努一把力,我們是有可能做出來的。這其中的原因之一,就是解題速度太慢。
幾乎每個學生都知道,要想取得好成績,必須努力學習,只有加強練習,多做習題,才能熟能生巧。可是有些學生天天趴在那裡做題,但解出的題量卻不多,花了大量的時間,卻沒有解出大量的習題,難道不應找一找原因嗎?何況,我們並不比別人的時間更多。試想,如果你的解題速度提高10倍,那會是怎樣一種情景?解題速度提高10倍?可能嗎?答案是肯定的,完全可能。關鍵在於你想與不想了。
那麼,究竟怎樣才能提高解題速度呢?
首先,應十分熟悉習題中所涉及的內容,做到概念清晰,對定義、公式、定理和規則非常熟悉。你應該知道,解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。我指導學生按此方法學習,幾乎所有的學生都大大提高了解題的速度,其效果非常之好。
第二,還要熟悉習題中所涉及到的以前學過的知識和與其他學科相關的知識。例如,有時候,我們遇到一道不會做的習題,不是我們沒有學會現在所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是數學題中要用到的一個物理概念,而我們對此已不是十分清晰了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。這時我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然後再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。
第三,對基本的解題步驟和解題方法也要熟悉。解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。
第四,要學會歸納總結。在解過一定數量的習題之後,對所涉及到的知識、解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對於類似的習題一目瞭然,可以節約大量的解題時間。
第五,應先易後難,逐步增加習題的難度。人們認識事物的過程都是從簡單到復雜,一步一步由表及裡地深入下去。一個人的能力也是通過鍛煉逐步增長起來的。若簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。養成了習慣,遇到一般的難題,同樣可以保持較高的解題速度。而我們有些學生不太重視這些基本的、簡單的習題,認為沒有必要花費時間去解這些簡單的習題,結果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。
其實,解簡單容易的習題,並不一定比解一道復雜難題的勞動強度和效率低。比如,與一個人扛一大袋大米上五層樓相比,一個人拎一個小提包也上到五層樓當然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那麼,拎包人比扛米人的勞動強度大。所以在相同時間內,解50道、100道簡單題,可能要比解一道難題的勞動強度大。再如,若這袋大米的重量為100千克,由於太重,超出了扛米人的能力,以至於扛米人費了九牛二虎之力,卻沒能扛到五樓,雖然勞動強度很大,卻是勞而無功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五樓,勞動強度也許並不很大,而效率之高卻是不言而喻的。由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習題,其收獲也許會更大。因此,我們在學習時,應根據自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。
第六,認真、仔細地審題。對於一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,並從中找出隱含條件。讀題一旦結束,哪些是已知條件?求解的結論是什麼?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應該已經結成了一張網,並有了初步的思路和解題方案,然後就是根據自己的思路,演算一遍,加以驗證。有些學生沒有養成讀題、思考的習慣,心裡著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。很多時候學生來問問題,我和他一起讀題,讀到一半時,他說:“老師,我會了。”所以,在實際解題時,應特別注意,審題要認真、仔細。
第七,學會畫圖。畫圖是一個翻譯的過程。讀題時,若能根據題義,把對數學(或其他學科)語言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目瞭然。尤其是對於幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。所以,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過程和條件,對於提高解題速度非常重要。畫圖時應注意盡量畫得准確。畫圖准確,有時能使你一眼就看出答案,再進一步去演算證實就可以了;反之,作圖不準確,有時會將你引入歧途。
最後,對於常用的公式,如數學中的乘法公式、三角函數公式,常用的數字,如11~25的平方,特殊角的三角函數值,化學中常用元素的化學性質、化合價以及化學反應方程式等等,都要熟記在心,需用時信手拈來,則對提高演算速度極為有利。
總之,學習是一個不斷深化的認識過程,解題只是學習的一個重要環節。你對學習的內容越熟悉,對基本解題思路和方法越熟悉,背熟的數字、公式越多,並能把局部與整體有機地結合為一體,形成了跳躍性思維,就可以大大加快解題速度。
;④ 如何更快更好的找到物理競賽題的解題思路
物理競賽?
首先基礎知識應該牢固的掌握,做到舉一反三,比如拿到一個題目的時候,馬上根據題意找出題目的考察意圖,需要哪些知識點才能夠解題。
然後,掌握基本的解題技巧,這里的方法很多,比如控制變數,列比例式,或者轉換的方法等。當讓有些題目也需要利用我的生活常識---就是要猜。偶爾利用逆向思維效果也是不錯的
還有,要細心,競賽題更加註重知識的穿插,學會理清思路,不要遺漏可能出現的情況,分析要全面透徹
學習是反復,重復的過程,多做題,你自然就會了,熟能生巧是硬道理!
實在不行,找個補習班吧!不過價格可能不叫貴
⑤ 做題要找方法指的是什麼
一、排除法
1、 排除法是指在題干為正向選擇的前提下,對題肢本身的錯誤,或者題肢觀點雖然正確,但與題干要求的規定性無關,以及題肢的觀點與題干要求的規定性邏輯不符的題肢進行排除的解題方法。
2、 要提高選擇題的正確率,必須做到所選題肢與題干要求相適應。運用排除法,就是通過對備選題肢的一種篩選,淘汰與題干要求不一致的題肢,保留符合題意的題肢,做到題肢與題干要求相統一。應該說排除法是選擇題中最常見,也是最基本的技法。
3、 運用排除法解答選擇題時,應做到三個排除:一是排除觀點本身錯誤或包含著部分錯誤觀點的題肢,此謂排錯法;二是排除觀點雖然正確,但與題干要求的規定性無關的題肢,此謂排異法;三要排除含義外的外延大於或小於題干規定性要求外延的題肢,此謂排亂法。
二、辨優法
1、 辨優法是指當備選題肢中有一個以上與題干要求相關聯的正確題肢,但是只有一個題肢最符合題意時,通過辨別篩選得出正確答案的方法。
2、 運用辨優法解題,應按以下兩步進行:一是排除不符合題意的題肢。不符合題意的題肢有兩種情況,其一是例題本身表述錯誤,其二是題肢雖表述正確但不反映題目干要求。二是從符合題意的題肢中篩選出一個最符合題意肢。從符合題意的題肢與題乾的關系看,一般來說,題肢與題干之間是直接聯系者選,間接聯系者不選;本質聯系者選,現象聯系者不選;必然聯系者選,偶然聯系者不選;主要聯系者選,次要聯系者不選等等。
3、 解答此類題目時必須准確把握題肢與題干之間的「親疏」關系,這是解題的關鍵。因此,我們在審題時,特別要注意題乾的關鍵詞語,明確題干在范圍、層次、角度、條件等方面有什麼特殊要求。只有辨得清,才選得准。
三、組合篩選法
1、 組合篩選法是指在組合型選擇題中,通過篩選、排除含有錯誤題肢的組合,或者或者排除遺漏正確題肢的組合的方法。
2、 組合篩選法要求找出自己最熟知的能拿得準的題肢來推知組合選項的正誤,這樣就可以同時思考所有的題肢,轉化為集中思考幾個甚至一個題肢.這樣做不僅減輕了思考壓力,而且節約了解題時間,以利於迅速選出正確答案.
3、 運用組合篩選法解答組合型選擇題,應依據自己最熟知的題肢來判斷。⑴若此題肢錯誤,含有該題肢的組合項均為錯誤;⑵若此題肢正確,遺漏該題肢的組合項均為錯誤;⑶若根據某一題肢難以選出正確答案時,可以選出正確答案時,可以再根據能拿得準的另一題肢,按照以上做法來判定;⑷遇到「公共題肢」的組合時,「公共題肢」可以免審,只要審析相異題肢的正誤,就能得出正確答案 。
四、因果分析法
1、因果分析法,是指解答因果關系選擇題時,把題肢與題干結合起來,具體分析它們之間是否構成因果關系而做出正確判斷的方法。
2、在我們的生活中,因果聯系是普遍存在的,任何現象都有可能引起其他現象的產生,任何現象的產生也都是由其他現象引起的,這種引起的關系叫做因果聯系。正確把握事物之間的因果聯系,必須明確原因和結果既是先行後續的關系,又是引起和被引起的關系。
3、運用因果分析法解答因果關系題,應把題肢和題干結合起來分析,以題干為因,所選題肢為此原因的結果。需要注意的是,有三種情形的題肢不能入選:一是答非所問者不選;二是與題干規定性重復或變相重復不選;三是因果顛倒者不選。
4、需要注意的是事物的因果聯系是多種多樣的原因既有客觀原因,也有主觀原因;既有根本原因,也有一般原因;既有主要原因,也有次要原因。因此,解題時一定要根據題目的不同要求,分析它們之間的因果聯系。
五、漫畫評析法
1、漫畫評析法,是指通過對題目中漫畫的評價和分析,揭示出漫畫的寓意,根據題乾的指向,篩選出正確題肢的方法。
2、漫畫評析法用於解答帶有漫畫的選擇題。由於題目中滲有漫畫,,而漫畫反映的內容往往是現實生活中的突出問題、熱點問題,有的漫畫又極具諷刺意義,因此對題目中漫畫的評價與分析,不僅能增強我們對現實生活關注的意識,而且能培養我們對所學知識的理解、判斷、批評和評價能力。
3、運用漫畫評析法解題,應做到一析二評,通過對漫畫的分析和評價,揭示漫畫中的寓意,而後按照題乾的指向,篩選出符合題意的題肢。
⑥ 怎麼分析數學題的解題思路
第一,從求解(證)入手——尋找解題途徑的基本方法遇到有一定難度的考題我們會發現出題者設置了種種障礙。從已知出發,岔路眾多,順推下去越做越復雜,難得到答案,如果從問題入手,尋找要想獲得所求,必須要做什麼,找到「需知」後,將「需知」作為新的問題,直到與「已知「所能獲得的「可知」相溝通,將問題解決。事實上,在不等式證明中採用的「分析法」就是這種思維的充分體現,我們將這種思維稱為「逆向思維」——必要性思維。
第二,數學式子變形——完成解題過程的關鍵解答高考數學試題遇到的第二障礙就是數學式子變形。一道數學綜合題,要想完成從已知到結論的過程,必須經過大量的數學式子變形,而這些變形僅靠大量的做題過程是無法真正完全掌握的,很多考生都有這樣的經歷,在解一道復雜的考題時,做不下去了,而回過頭來再看一看答案,才恍然大悟,解法這么簡單,後悔莫及,埋怨自己怎麼糊塗到沒有把式子再這么變一下呢?
其實數學解題的每一步推理和運算,實質都是轉換(變形).但是,轉換(變形)的目的是更好更快的解題,所以變形的方向必定是化繁為簡,化抽象為具體,化未知為已知,也就是創造條件向有利於解題的方向轉化.還必須注意的是,一切轉換必須是等價的,否則解答將出現錯誤。
解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。尋找差異是變形依賴的原則,變形中一些規律性的東西需要總結。在後面的幾章中我們列舉的一些思維定勢,就是在數學思想指導下總結出來的。在解答高考題中時刻都在進行數學變形由復雜到簡單,這也就是轉化,數學式子變形的思維方式:時刻關注所求與已知的差異。
第三、回歸課本---夯實基礎。
1)揭示規律----掌握解題方法高考試題再難也逃不了課本揭示的思維方法及規律。我們說回歸課本,不是簡單的梳理知識點。課本中定理,公式推證的過程就蘊含著重要的方法,而很多考生沒有充分暴露思維過程,沒有發覺其內在思維的規律就去解題,而希望通過題海戰術去「悟」出某些道理,結果是題海沒少泡,卻總也不見成效,最終只能留在理解的膚淺,僅會機械的模仿,思維水平低的地方。因此我們要側重基本概念,基本理論的剖析,達到以不變應萬變。