⑴ 做數學填空題的方法是什麼
(1)不能憑映像做填空題,一般填空題中都有各式各樣的陷阱,因為它是沒過程的,所以跟選則題一樣是考你的細心程度的!看清題目是第一步!
(2)做填空題第二步:猜、試、特殊情畝悔廳況(例如另x=1什麼的),利用自己的感覺第一時間弄出答案,節省一點時迅隱間,在此同時別忘了思考一下是否猜、試出來的答案之外還有答案的可能性。
(3)第三步:第二步不成功沒關系,認真將它當做簡答題來做,但是需要注意的是一般填空題的難度不會很大(很多情況下都有簡便方法),所以一旦你發現沒有頭緒或者覺的計算什麼的太麻煩沒關系,這只是方法不對而已,你可以換方法或者跳過,不可纏斗。
(4)最後檢查的時候如果有時間的話可以用第三步去檢查下第二步。
當然
選擇題也適合!
我能前棚說的就是這些哈,希望對樓主有所幫助……肺腑之言啊1
⑵ 數學填空題解答技巧是什麼
數學填空題,絕大多數是計算型(尤其是推理計算型)和概念(性質)判斷型的試題,應答時必須按規則進行切實的計算或者合乎邏輯的推演和判斷。求解填空題的基本策略是要在「准」、「巧」、「快」上下功夫。常用的方法有直接法、特殊化法、數行結合法、等價轉化法等。
一、直接法
這是解填空題的基本方法,它是直接從題設條件出發、利用定義、定理、性質、公式等知識,通過變形、推理、運算等過程,直接得到結果。
二、特殊化法
當填空題的結論唯一或殲老做題設條件中提供的信息暗示答案是一個定值時,可以把題中變化的不定量用特殊值代含游替,即可以得到正確結果。
三、數形結合法
對於一些含有幾何背景的填空題,若能數中思形,以形助數,則往往可以簡捷地解決問題,得出正確的結果。
四、等價轉化法
通過「化復雜為簡單、化陌生為熟悉」,將問題等價地轉化成便於解決的問題,從而得出氏衡正確的結果。總之,能夠多角度思考問題,靈活選擇方法,是快速准確地解數學填空題的關鍵。
最後,提醒考生的是:做完題後要仔細檢查,有沒有遺漏的,有沒有塗錯的,全面認真的再做一遍,可用不同的方法做一下,驗證答案。另外遇到真不會做的,也不要空著不做,一定要選個答案。
⑶ 初中數學選擇題填空題解題技巧
1、排除選項法: 選擇題因其答案是四選一,必然只有一個正確答案那麼我們就可以採用排除法從四個選項中排除掉易於判斷是錯誤的答案那麼留下的一個自然就是正確的答案冊和。
2、賦予特殊值法:即根據題目中的條件,選取某個符合條件的特殊值或作出特殊圖形進行計算、推理的方法。用笑含特殊值法解題要注意所選取的值要符合條件,且易於計算。
3、觀察猜想法: 這類方法在近年來的初中題中常被運用於探索規律性的問題,此類題的主要解法是運用不完全歸納法,通過試驗州升盯、猜想、試誤驗證、總結、歸納等過程使問題得解。
⑷ 中考數學常見填空題解題方法匯總
中考數學常見填空題解題方法匯總
中考填空題主要題型:一是定量型填空題,二是定性型填空題,前者主要考查計算能力的計算題,同時也考查考生對題目中所涉及到數學公式的掌握的熟練程度,後者考查考生對重要的數學概念、定理和性質等數學基礎知識的理解和熟練程度。下面是我為大家帶來的中考數學常見填空題解題方法,希望能幫到大家!
中考數學常見填空題解題方法
當然這兩類填空題也是互相滲透的,對於具體知識的理解和熟練程度只不過是考查有所側重而已。選擇填空題與大題有所不同,只求正確結論,不用遵循步驟,因此應試時可走捷徑,運用一些答題技巧,在這一類題中大致總結出三種答題技巧。
1.直接法:根據題干所給條件,直接經過計算、推理或證明,得出正確答案。
2.圖解法:根據題干提供信息,繪出圖形,從而得出正確的答案。
填空題雖然多是中低檔題,但不少考生在答題時往往出現失誤,這要引起我們的足夠重視的。
首先,應按題乾的要求填空,如有時填空題對結論有一些附加條件,如用具體數字作答,精確到……等,有些考生對此不加註意,而出現失誤,這是很可惜的。
其次,若題干沒有附加條件,則按具體情況與常規解答。
第三,應認真分析題目的隱含條件。
總之,填空題與選擇題一樣,因為它不要求寫出解題過程,直接寫出最後結果。因此,不填、多填、填錯、僅部分填對,嚴格來說,都計零分。雖然近二年各省市中考填空題,難度都不大,但得分率卻不理想,因此,打好基礎,強化訓練,提高解題能力,才能既准又快解題。另一方面,加強對填空題的分析研究,掌握其特點及解題方法,減少失誤。
中考數學應處理好四個關系
1.審題與解題的關系。有的考生對審題重視不夠,匆匆一看急於下筆,以致題目的條件與要求都沒有吃透,至於如何從題目中挖掘隱含條件、啟發解題思路就更無從談起,這樣解題出錯自然多。只有耐心仔細地審題,橋脊准確地把握題目中的關鍵詞與量(如“至少”,“a>0”,自變數的取值范圍等等),從中獲取盡可能多的信息,才能迅速找准解題方向。
2.“會做”與“得分”的關系。要將你的解題策略轉化為得分點,主要靠准確完整的數學語言表述,這一點往往被一些考生所忽視,因此卷面上大量出現“會而不對”“對而不全”的情況,考生自己的估分與實際得分差之甚遠。如立體幾何論證中的“跳步”,中消扒使很多人丟失1/3以上分數;代數論證中“以圖代證”,盡管解題思路正確甚至很巧妙,但是由於不善於把“圖形語言”准確地轉譯為“文字語言”,得分少得可憐;再如某年中考三角函數圖像變換,許多考生“心中有數”卻說不清楚,扣分者也不在少數。只有重視解題過程的語言表述,“會做”的題才能“得分”。
3.快與準的關系。在目前題量大、時間緊的情況下,“准”字則尤為重要。只有“准”才能得分,只有“准”才可不必考慮再花時間檢查。而“快”是平時訓練的結果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。如某年中考有一道應用題,此題列出分段函數解析式並不難,但是相當多的考生在匆忙中把二次函數甚至一次函數都算錯,盡管後繼部分解題思路正確又花時間去算,也幾乎得不到分,這與考生的實際水平是不相符的。適當地慢一點兒、准一點兒,可得多一點兒分;相反,快一點兒,錯一片,花了時間還得不到分。
4.難題與容易題的關系。拿到試卷後,應將全卷通覽一遍,一般來說應按先易後難、先簡後繁的順序作答。近年來考題的順序並不完全是難易的順序,因此在答題時要合理安排時間,不要在某個卡住的題上打“持久戰”,那樣既耗費時間又拿不到分,會做的題又被耽誤了。這幾年,數學試題已從“一題把關”轉為“多題把關”,因此解答題都設置了層次分明的“台階”,入口寬,入手易,但是深入難,解到底難,因此看似容易的題也會有“咬手”的關卡,看似難做的題也有可得分之處。所以考試中看到賣昌“容易”題不可掉以輕心,看到新面孔的“難”題不要膽怯,冷靜思考、仔細分析,定能得到應有的分數。
此外,還應注意運用規范的數學語言解答問題。很多同學在平時解題中養成了一種隨便的習慣,總認為自己會做就行了,解題的時候沒有運用規范的數學語言詳細解答,結果常常是丟失不該丟的分。
⑸ 考研數學填空題有哪些答題技巧
考研數學填空題有如下幾種答題方法,但是每個人有不同的復習方法,可以作為自己的一種復習的參考。
1.填空題一般是以計算題為主,最好的復習資料就是歷年真題,考生可以在分析歷年真題的基礎上掌握每年考研數學天空的出題方向和出題思路,多練習一些考試題型,學會融會貫通,同時給自己整理一個錯題本,每個階段匯總一次自己的薄弱點,找對正確的突破點。
2.填空題中有些題設置當中暗含「玄機」,運用常規解法費時費力,還容易因為其中復雜的求解過程而出錯,但運用某些特殊解題思路或數學思想(如幾何意義)卻可幾步之內輕松破解,雖然看起來很復雜,但利用輪換對稱性幾步之內就可很容易計算出答案),這就需要在日常做題時勤於總結,將填空題計算常用的方法技巧爛熟於心,運用起來才更加得心應手。
以下部分是考研數學的選擇題的答題方法:
1.推演法:如果在題干中遇到的是解析式子題,可以用推演法來解答。
2.圖示法:如果考生在做題的過程中遇到一些函數的性質等題目,可以用圖示法進行解答,另外在一些概率題中,有一些事件類的題目也可以用這種方法來解答。
3.舉反例排除法:當題干中給出的函數是抽象函數時,可以用排除法來解答,這是一種比較通用的做題方法,但是一般不適用於所有的題目。
4.逆推法:這個方法就是把選項中的答案帶到題干中,進行計算,如果得出的結論反差較大,那麼這個答案則是不正確的。
以上這幾種做題的方法是常見的解題方法,所以不同的題目有不同的解題思路,考生應該在平時的聯系中多積累做題的方法和思路,形成一套成熟的做題體系。
⑹ 數學填空題有哪些解題技巧 有什麼答題方法
數學填空題一般利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果,也可以使用特殊值檢驗法來做題,對於具有一般性的數學問題,在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。
1、直接法:
根據題所給出的條件,通過計算、推理或證明,可以直接得到正確的答案。
2、圖形方法:
根據問題的主幹提供信息,畫圖,得到正確的答案。
首先,知道題乾的需求來填寫內容,有時,還有就是這些都有一些結果,比如回答特定的數字,精確到其中,遺憾的是,有些候選人沒有注意到這一點,並且犯了錯誤。
其次,沒有附加條件的,應當根據具體情況和一般規則回答。應該仔細分析這個話題的暗藏要求胡跡。
3、特殊褲悔並化法
當填空題的結論唯一或題設條件中提供的信息暗示答案是一個定值時,可以把題中變化的不定量前賣用特殊值代替,即可以得到正確結果。
4、數形結合法
對於一些含有幾何背景的填空題,若能數中思形,以形助數,則往往可以簡捷地解決問題,得出正確的結果。
5、等價轉化法
將問題等價地轉化成便於解決的問題,從而得出正確的結果。
解決恆成立問題通常可以利用分離變數轉化為最值的方法求解。
⑺ 2022高考數學選擇填空題答題模板及方法歸納 答題套路整理
正常情況下,解決一道中等難度的數學選擇題,所用的時間是三分鍾。解決一道中等難度的數學主觀題,需要十五分鍾左右。數學選擇題可以用排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法等。
1.易錯點歸納:
九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。
針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。
2.答題方法:
選擇題十大速解方法:
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。
答題順序需要留意!
同學們需要知道,高考試卷不一定全部答完,咱們要的是准確率!學長個人感覺,答題順序是非常重要的,一般情況下,我建議同學們從前往後做,先做簡單題,再做中等題,難題看情況。
真正高考的時候,同學們都是提前進入考場的,試卷在考前十五分鍾給大家發下去。同學們一定要利用好這十多分鍾的時間,快速瀏覽試題,判斷哪些題不能做?哪些題能做對?
有的同學擅長做客觀題,有的同學擅長做主觀題。多數同學面對自己拿手的題目,准確率通常比較高,出現錯誤的概率比較小。真正高考的時候,同學們根據個人情況合理安排。
⑻ 數學填空題答題技巧
數學填空題答題技巧如下:
數學填空題,絕大多數是計算型((尤其是推理計算型)和概念(性質)判斷型的試題,應答時必須按規則進行切實的計算或者合乎邏輯的推演和判斷。求解填空題的基本策略是要在「准」、「巧」、「快」上下功夫。常用的方法有直接法、特殊化法、數行結合法、等價轉化法等。
4、等價轉化法
通過「化復雜為簡單、化陌生為熟悉」,將問題等價地轉化成便於解決的問題,從而得出正確的結果。
⑼ 初中數學選擇填空答題技巧大全
答題是對於知識點掌握情況的一種體現,要讓學生學得懂做得出,數學答題技巧就顯得尤為重要。下面是我為大家整理的關於初中數學選擇填空答題技巧,希望對您有所幫助。歡迎大家閱讀參考學習!
1初中數學選擇填空答題技巧
數學試卷答得好壞,主要依靠平日的基本功。只要「雙基」扎實,臨場不亂,重審題、重思考、輕定勢,那麼成績不會差。切忌慌亂,同時也不可盲目輕敵,覺得自己平時數學成績不錯,再看到頭幾道題簡單,就欣喜若狂,導致「大意失荊州」。不是審題有誤就是數據計算錯誤,這也是考試發揮失常的一個重要原因,要認真對待考試,認真對待每一道題主要把好4個關:(1)把好計算的准確關。(2)把好理解審題關「寧可多審三分,不搶答題一秒」。(3)把好表達規范關。(4)把好思維、書寫同步關
首先,我們來分析一下選擇題的特點.與大題有所不同,選擇題只求正確結論,不用遵循步驟,因此,在解答時應該突出一個「選」字,盡量減少書寫過程,要充分利用題乾和選項兩方面提供的信息,依據題目的具體特點,靈活、巧妙、快速地選擇解法,以便快速智取,這是解選擇題的基本策略.選擇題解題的基本原則是:充分利用選擇題的特點,小題小做,小題巧做,切忌小題大做!
2中考數學選擇題答題技巧
正確的讀題習慣提高理解准確度
初中階段的數學題在呈現方式來看比小學數學顯得更為復雜,這要求學生有較好的分析問題和解決問題的能力。由此如何最快的准備理解題意就顯得尤為重要。比如在選擇填空題中經常會出現選擇正確或錯誤的選項,學生在對「正確」、「錯誤」這樣的關鍵詞進行畫圈標注後,可以有效避免答題失誤;在應用題解答過程中,對於體現等量關系的 「倍數」、「相等」、「多少」等關鍵詞的標注,可以大大減少學生構建方程求解的時間;在含有圖形的證明或解答題中,學會將題目中的數學語言在圖像上用具體符號進行標注, 抽象思維 得以形象化,可以較好的輔助學生邏輯證明的達成。
恰當的答題順序常常能夠事半功倍
通俗來說要培養學生先易後難的答題習慣,然而很多孩子常常難以在考試中嚴格執行。以深圳市數學中考為例,考查方式通常為12道選擇題4道填空6道解答題。其中選擇題最後兩題,填空題最後一題,倒數第二題最後一問以及最後一大題有較大難度。學生在答題過程中,如果對於選擇填空的難題部分遇到困難,可以考慮先猜想一個答案後先回答有把握的其他題目。如此可以有效的避免寶貴答題時間的浪費。
良好的書寫習慣相當於隱形加分
良好的書寫習慣體現為書寫的清晰工整和答題格式的完整流暢。字跡工整清晰,不論是在哪個學科都顯得尤為重要,對於數學更是如此。通常情況下,數學解答題都分為幾問,答題過程相對較長,學生如果能夠將有限的答題區域相應幾塊。既便於便於自己答題檢查也利用老師改卷。最忌諱學生答題東一塊西一塊甚至是「貪食蛇」式的書寫順序,大量塗改的出現也會影響老師的評卷。
3數學選擇填空答題策略
排除法
因為選擇題的答案就在選項中,如果根據題目的條件,縮小答案的范圍,就可能排除選項中的某些明顯錯誤的項,那麼選對的概率將大大提高,主要適合比較大小類型、求解析式、確定函數圖像等問題。
【示例1】已知函數f(x)=2mx2-2(4-m)x+1,g(x)=mx,若對於任一實數x,f(x)與g(x)的值至少有一個為正數,則實數的取值范圍是( )A. (0,2) B. (0,8) C. (2,8) D. (-∞,0)解析:觀察四個選項中有三個答案不含2,那麼就取m=2代入驗證是否符合題意即可,取m=2,則有f(x)=4x2-4x+1=(2x-1)2,這個二次函數的函數值f(x)>0對x∈R且x≠■恆成立,現只需考慮g(x)=2x當x=■時函數值是否為正數即可。這顯然為正數。故m=2符合題意,排除不含m=2的選項A、C、D。所以選B。
特值法
在求解數學問題時,如果要證明一個問題是正確的,就要證明該問題在所有可能的情況下都正確,但是要否定一個問題,則只要舉出一個反例就夠了,基於這一原理,在解選擇題時,可以通過取一些特殊數值,特殊點,特殊函數,特殊數列,特殊圖形,特殊位置,特殊向量等對選項進行驗證,從而可以否定和排除不符合題目要求的選項,再根據4個選項中只有一個選項符合題目要求這一信息,就可以間接地得到符合題目要求的選項,這是一種解選擇題的特殊化策略。
【示例2】已知數列{an}對任意的p,q∈N滿足ap+q=ap+aq,且a2=-6,那麼a10等於( )A. -165 B. -33 C. -30 D. -21取an=kn(k≠0),容易計算滿足題設ap+q=ap+aq,又a2=-6,∴k=-3,即an=-3n,∴a10=-30,故選C。解析:本題的直接求解策略是比較難於下筆的,選取一個符合題目要求的特殊數列可以把抽象問題具體化,從而迅速破解。運用特殊化策略是解高考數學選擇題的最佳策略,解題時,要注意:(1)所選取的特例一定要簡單,且符合題設條件;(2)特殊只能否定一般,不能肯定一般;(3)當選取某一特例出現兩個或兩個以上的選項都正確時,這是要根據題設要求選擇另外的特例代入檢驗,直到排除所有的錯誤選項達到正確選擇為止。
4初中數學的 方法 和技巧
注重數學基礎知識的學習和積累
努力做到課前仔細預習,課上認真聽講,課後及時復習。一直以來,很多同學很不在乎學習數學的基礎知識,認為基礎知識在解題時用不上,尤其是數學的概念,定義和定理在考試時候也不會直接考到,學了也不會有用。其實這種想法是一個非常致命的錯誤,現在有很多學生,學習能力很強,也很有聰明,但在學習中忽視了基礎知識的學習,沒有抓住學習的重點,最後非常遺憾的沒有學好數學。
其實,在中考中,大概有80%的題目都直接或者間接和基礎知識有關系,而只有20%的題目才是我們所謂的難題,但是這些難題也都是由很多基礎的題目綜合而來的。所以要想學數學,首先應該也是必須要學好數學的基礎知識。那麼怎樣學習基礎知識呢?我的方法是 課前預習 ,課中聽講,課後復習。只要這三個方面堅持不懈的結合起來,我相信最後一定能提高學生的數學成績。
培養和鍛煉數學的解題方法和技巧
多做有針對性同時難度適當的同步練習,循序漸進,周而復始。很多同學在學習數學的過程中非常地努力,也知道要做大量的習題,有的甚至還自覺規定每天的做題數量,但是最後數學成績提高也不是很明顯。這是為什麼呢?我想很大程度上是由於這些同學所做的習題沒有針對性。
對於做題,我的觀點是不僅要做題,還要做好題,在這里我想說的是我們學而思的練習都是經過各個老師精挑細選的習題,又經過無數學員的檢驗,可以說是非常有針對性,當然啦現在書店中很多習題資料也很不錯,希望大家能仔細挑選。同時,不僅要針對性練習,更重要的是要對做過的習題不斷地 總結 和 反思 ,總結自己為什麼做錯了,錯在哪裡了,那麼正確的思路又是什麼,等等,只要經過這樣的反復思考,我相信咱們學員的學習成績一定會有一個很大的提高。
初中數學選擇填空答題 技巧大全 相關 文章 :
1. 初中數學常用的10種解題方法
2. 初中數學選擇題的解題技巧
3. 初中數學的選擇題、填空題和應用題解題法
4. 數學初一的選擇題解法大全
5. 數學選擇題答題的十大方法
6. 初二數學壓軸題答題技巧
7. 初中數學解題方法大匯總
8. 中考數學的各種題型做題方法
9. 初中數學解題技巧與方法
⑽ 初中數學解題技巧與方法
我在這里整理了初中數學常用的解題法和不同題型解題法,希望能幫助到大家。
初中數學常用解題法
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
不同題型的解題法
選擇題:
在做選擇題可運用各種解題的方法:如直接法、特殊值法、排除法、驗證法、圖解法、假設法、動手操作法(比如折一折,量一量等方法),對於選擇題中有「或」的選項一定要警惕,看看要不要取捨。
填空題:
注意一題多解等特殊情況。
考慮各種簡便方法解題。選擇題、填空題更是如此(直接法最後考慮)尤其是選擇題,有些可用排除法、特殊值法、畫圖像解答,不必每題都運算 。
解答題:
1.注意規范答題,過程和結論都要書寫規范。認真審題,不慌不忙,先易後難,不能忽略 題目中的任何一個條件。
2.計算題一定要細心,最後答案要最簡,要保證絕對正確。
3.先化簡後求值問題,要先化到最簡,代入求值時要注意:分母不為零;適當考慮技巧,如整體代入。
4.解直角三角形問題。注意交代輔助線的作法,解題步驟。關注直角、特殊角。取近似值時一定要按照題目要求。
5.實際應用問題,題目長,多讀題,根據題意,找准關系,列方程、不等式(組)或函數關系式。最後一定要檢驗方程的解。
6.證明題:切線證明要寫出輔助線的作法,輔助線要用虛線;遇到線段比例式及乘積式,就要證線段所在的三角形相似,同時注意線段的等量代換(注意線段倍數關系)。
7.方案設計題:要看清楚題目的設計要求,設計時考慮滿足要求的最簡方案,不要考慮復雜、追求美觀的方案。
8.若壓軸題最後一問確實無從下手,可以放棄,不如把時間放在檢驗別的題目上,對於存在性問題,要注意可能有幾種情況不要遺漏。對於動點問題,注意要通過多畫草圖的方法把運動過程搞清楚,也要考慮可能有幾種情況。
解各類大題目時腦子里必須反映出該題與平時做的哪道題類似,應反映出似曾相識,又非曾相識的感覺。
一解題方法歸納:1.配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2.因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法,在代數、幾何、三角函數等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3.換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4.判別式法與韋達定理
一元二次方程aX²+bX+c=0(a、b、c∈R,a≠0)根的判別式△=b²-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至解析幾何、三角函數運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5.待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的重要方法之一。
6.構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7.反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。
用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8.等(面或體)積法
平面(立體)幾何中講的面積(體積)公式以及由面積(體積)公式推出的與面積(體積)計算有關的性質定理,不僅可用於計算面積(體積),而且用它來證明(計算)幾何題有時會收到事半功倍的效果。運用面積(體積)關系來證明或計算幾何題的方法,稱為等(面或體)積法,它是幾何中的一種常用方法。
用歸納法或分析法證明幾何題,其困難在添置輔助線。等(面或體)積法的特點是把已知和未知各量用面積(體積)公式聯系起來,通過運算達到求證的結果。所以用等(面或體)積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9.幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10.客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。
一通過實例介紹常用方法:(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。