① 數列解題方法技巧總結
人生需要反思,總結才能遠航,回首往夕,收獲的是經驗和提高。下面就是我整理的數列解題方法技巧總結,一起來看一下吧。
學生們在高中的數學學習過程中如果能夠充分掌握高中數學數列試題的解題方法和技巧,這對於在大學期間學習數學會有很大的幫助。在最近幾年的數學高考中,數列知識點的考查已經成為高考出題人比較看重的一項考點,甚至有一部分拔高題也都和數列有著直接的關系。可是在高中數學的學習階段,很多的學生對於高中數學數列試題的解題方法和技巧還非常欠缺,對有一些問題和內容並沒有得到充分的理解和吸收,往往在解題過程中,出現這樣那樣的問題。所以,探索和研究不同類型數列的解題方法和技巧,能夠幫助學生更好地學好高中的數學。
高中數學數列試題教學中的解題思路與技巧
1.對數列概念的考查
在高中數列試題中,有一些試題可以直接通過帶入已學的通項公式或求和公式,就可以得到答案,面對這一種類型的試題,沒有什麼技巧而言,我們只需熟練掌握相關的數列公式即可。
例如:在各項都為正數的等比數列{b}中,首項b1=3,b1+b2+b3=21,那麼b3+b4+b5等於多少?
解析:(1)本道試題主要是對正項數列的概念以及等比數列的通項公式和求和公式知識點的考查,考查學生對數列基礎知識和基本運算的掌握能力。
(2)本試題要求學生要熟練掌握老師在課堂上所教的通項公式和求和公式。
(3)首先讓我們來求公比,很明顯q不等1,那麼我們可以根據我們所學過的等比數列前項和公式,列出關於公比的方程,即3(1-q3)/(1-q)=21。
對於這個方程,我們首先要選擇其運算的方式,要求學生平時的練習過程中,要讓學生能夠熟練地將高次方程轉化為低次方程進行運算。
2.對數列性質的考察
有些數列的試題中,經常會變換一些說法來考查學生對數列的基本性質的`理解和掌握能力。
例如:己知等差數列{xn},其中xl+x7=27,求x2+x3+x5+x6等於多少?
解析:我們在課堂上學習過這樣的公式:等差數列和等比數列中m+n=p+q,我們可以充分利用這一特性來解此題,即:
xl+x7= x2+x6= x3+x5=27,
因此,x2+x3+x5+x6=(x2+x6)+(x3+x5)=27+27=54
這種類型的數列試題要求教師在課堂教學中,對數列的性質竟詳細講解,仔細推導。使得學生能夠真正的理解數列性質的來源。
3.對求通項公式的考察
①利用等差、等比數列的通項公式,求通項公式
②利用關系an={S1,n=1;Sn-Sn-1,n≥2}求通項公式
③利用疊加、疊乘法求通項公式
④利用數學歸納法求通項公式
⑤利用構造法求通項公式.
4.求前n項和的一些方法
在最近幾年的數學高考試題中,數列通項公式和數列求和這兩個知識點是每年必考的,因此,在高中數學數列的課堂教學中,教師要對數列求和通項公式這方面的知識點進行細致重點的講解。數列求和的主要解題方法有錯位相減法、分組求和法與合並求和法,下面對三種數列求和的解題方法進行詳細說明。
(1)錯位相減法
錯位相減法主要應用於等比數列的求和中,在最近幾年的高考試題當中,以此方法來求解數列求和的試題經常會有所體現。這一類型的試題解題方法主要是運用於諸如{等差數列·等比數列}數列前n項和的求和中。
例如:已知{xn}是等差數列,其前n項和是Sn,{yn}是等比數列,且x1=y1=2, x4+y4=27, S4-y4=10,求(1)求數列{xn}與{yn}的通項公式;(2)Tn= xny1+xn-1y2+…+x1yn,n∈N*證明Tn+12=-2xn+10yn,n∈N*
解析:(1)xn=3n-1,yn=2n;
(2)Tn= 2xn+22xn-1+23xn-2+…+2nx1,
2Tn= 22xn+23xn-1+…+2nx2+2n+1x1
計算得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+1=12(1-2n+1)/(1-2+2n+2-6n+2)=10×2n-6n-10
-2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10
所以,Tn+12=-2xn+10yn,n∈N*
錯位相減法主要應用於形如an=bncn,即等差數列·等比數列,這樣的數列求和試題運算中,解此類題的技巧是:首先分別列出等差數列和等比數列的前n的和,即Sn,然後再分別將Sn的兩側同時乘以等比數列的公比q,得出qSn;最後錯一位,再將兩邊的式子進行相減就可以了。
(2)分組法求和
在高中數列的試題當中,往往會遇到一部分沒有規律的數列試題,它們初看上去既不屬於等差數列也不屬於等比數列,但是如果將此類型的數列進行拆分,就可以得到我們所了解的等差數列和等比數列,遇到此類型的數列試題,我們就可以通過分組法求和的方法進行解題,首先將數列進行拆分,通過得到的等差數列和等比數列進行運算,最後將其結合在一起得出試題的答案。
(3)合並法求和
在高考數列的試題中,往往會遇到一些非常特殊的題型,它們初看上去沒有規律可循,但是通過合並和拆分,就可以找出它們的特殊性質。這就要求我們教師平時要鍛煉學生對數列的合並能力,通過合並找出規律,最終成功地解決這類特殊數列的求和問題。
結束語
數列知識是各種數學知識的連接點,在數學考試中,往往是基於數列知識為基礎,對學生的綜合數學知識進行考查。在高中數列學習過程中,首先要做好數列基本概念和基本性質的掌握,否則任何解題技巧都無濟於事。
② 高中數學數列解題方法與技巧
高中數學數列方法和技巧:公式法、倒序相加法、錯位相減法。
1、公式法
假如一個數列是等差數列或等比數列,則求和時直接利用等差、等比數列的前n項和公式。留意等比數列公示q的取值要分q=1和q-1。
數列在數學中的作用:
數列是特殊的函數。它的定義域一般是指非負的正整數,有時也可以為自然數,或者自然數的無限子集。自然數是離散的,數列通常稱為離散函數,離散函數是相對定義域為實數或者實數的區間的函數而言的。數列作為離散函數,在數學中有著自己的重要地位。
在高中和大學,除了專門研究數學之外,我們所遇到的函數都是「好的函數」,「好函數」不僅是連續的,而且是可導的,像冪函數、指數函數、對數函數、三角函數等都是好函數,它們具有任意階導數。數列在研究這些函數中發揮著重要作用。
③ 高中數學數列解題技巧有哪些
一、高中數列,有規律可循的類型無非就是兩者,等差數列和等比數列,這兩者的題目還是比較簡單的,要把公式牢記住,求和,求項也都是比較簡單的,公式的運用要熟悉。
二、題目不會簡單容易,難一點的題目就是等差和等比數列的一些組合題,這里要採用的一些方法有錯位相消法。
三、題目變化多端,往往出現的壓軸題都是一些從來沒有接觸過的一些通項,有些甚至連通項也不給。針對這兩類,應該積累以下的一些方法。
四、對於求和一類的題目,可以用柯西不等式,轉化為等比數列再求和,分母的放縮,數學歸納法,轉化為函數等方法等方法
五、對於求通項一類的題目,可以採用先代入求值找規律,再數學歸納法驗證,或是用累加法,累乘法都可以。
六、每次碰到一道陌生的數列題,要進行總結,得出該類的解題方法,或者從中學會一種放縮方法,這對於以後很有幫助。
④ 數列解題技巧及口訣
1、解答數列的題,首先需要熟悉數列中的等差數列、等比數列的性質,因為這兩類基本數列是絕大多數數列類型的「宗」,很多看起來很復雜的數列題都是離不開這兩種基本數列。
2、對於選擇題或填空題這類小題來說,考查的大多數是等差數列和等比數列。這就體現出學習等差數列與等比數列是解答數列題型的關鍵,也是重點,局巧亂再難的數列題也是從基礎出發,所以,大家不要害怕數列題型。
3、在後面的綜合題考查中,有一個特別重要的方法就是不完全歸納法,討論的是一個數列有沒有存在某種規律性質,可以根據前面幾項的推導過程、結論來慢慢發現題中的普遍規律。
4、如果看出題的規律,方向是很明確了,證明的過程也就沒有問題了。不完全歸納法其實是在猜測的基礎上進行大膽假設,當然主要是從歸納來考慮,所以說,嘗試對解答數列題型是很有作用的。
5、當然,上面的方法是教大家如果快速入手數列題型。如果想更好的掌握數列題,是離不開大家平時的練習,熟能生巧,多總結,多摸索,多練習,相信大家對數列題型都不會有太大的問題。
6、有關數列的定理口訣:
等差等比兩數桐檔列,通項公式n項和。
兩個有限求極限,四則運算順序換。
數列問題寬襲多變幻,方程化歸整體算。
數列求和比較難,錯位相消巧轉換。
取長補短高斯法,裂項求和公式算。
歸納思想非常好,編個程序好思考。
一算二猜三聯想,猜測證明不可少。
還有數學歸納法,證明步驟程序化。
⑤ 數學高中數列10種解題技巧有哪些
一、高中數列,有規律可循的類型無非就是兩者,等差數列和等比數列,這兩
者的題目還是比較簡單的,要把公式牢記住,求和,求項也都是比較簡單的,公式的運用要熟悉。
二、題目常常不會如此簡單容易,稍微加難一點的題目就是等差和等比數列的
一些組合題,這里要採用的一些方法有錯位相消法。
三、題目變化多端,往往出現的壓軸題都是一些從來沒有接觸過的一些通項,
有些甚至連通項也不給。針對這兩類,我認為應該積累以下的一些方法。
四、對於求和一類的題目,可以用柯西不等式,轉化為等比數列再求和,分母的放縮,數學歸納法,轉化為函數等方法等方法。
五、對於求通項一類的題目,可以採用先代入求值找規律,再數學歸納法驗
證,或是用累加法,累乘法都可以。
⑥ 數列有什麼技巧
以下觀點,由本人純手工打造,希望對你有幫助。
個人認為:
1、你要對各種基本數列模型熟練掌握,比如等差數列的特性有某項吵告譽的前一項後一項之和是這一項的2倍,同樣等比數列也是。還有一點常數數列也是特殊的存在,這個是很容易被遺升段忘的。
2、多做多想,在做題的過程中熟練掌握數列的特性,同時在熟練掌握的前提下更好的做題(不要認為我俗友敏,只是目前的中國教育模式決定了這種情況,我是過來人,題海戰術有時很有用)。
3、在你掌握了基本數列的情況下,要學會觸類旁通。比如某數列是兩個數列的和、差、乘積等等。在這種情況下,我們可以先將這個數列分成2部分,先求一個再求另一個,最後合成。。。
當然,這是我的經驗,沒有具體例子提供,我很抱歉,如果有什麼具體類型的題目不會,可以給我留言。。。
本人已是大四的老人了。。
⑦ 高中數學數列答題技巧有哪些
隨著高中學習的不斷深入,數列在數學解題中也發揮了越來越重要的作用。它既是高考考察內容中十分關鍵的一個部分,也能夠貫穿到高中數學的實際應用環節當中,與函數、向量、立體幾何都有著一定的聯系。今天我就為大家整理了高中數學數列答題技巧,供大家參考。
答題技巧1、求差(商)法
答題技巧2、疊乘法
答題技巧3、等差型遞推公式
答題技巧4、等比型遞推公式
答題技巧5、倒數法
答題技巧一、高中數列,有規律可循的類型無非就是兩者,等差數列和等比數列,這兩者的題目還是比較簡單的,要把公式牢記住,求和,求項也都是比較簡單的,公式的運用要熟悉。
答題技巧二、題目常常不會如此簡單容易,稍微加難一點的題目就是等差和等比數列的一些組合題態並,這里要採用的一些方法有錯位相消法。
答題技巧三、題目變化多端,往往出現的壓軸題都是一些從埋閉譽來沒彎段有接觸過的一些通項,有些甚至連通項也不給。針對這兩類,我認為應該積累以下的一些方法。
答題技巧四、對於求和一類的題目,可以用柯西不等式,轉化為等比數列再求和,分母的放縮,數學歸納法,轉化為函數等方法等方法
答題技巧五、對於求通項一類的題目,可以採用先代入求值找規律,再數學歸納法驗證,或是用累加法,累乘法都可以。
答題技巧六、總之,每次碰到一道陌生的數列題,要進行總結,得出該類的解題方法,或者從中學會一種放縮方法,這對於以後很有幫助。
⑧ 學習數列問題的技巧和方法有什麼
在掌握等差數列、等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學思想方法在解題實踐中的指導作用,靈活地運用數列知識和方法解決數學和實際生活中的有關問題。
⑨ 數學數列解題技巧
數學數列解題技巧如下:
先解決較難題行之數列放縮:這類問題為何說解題難度較大?其根本就是一定要放縮的恰到好處,不偏不倚才行!如果說不能夠有著較強的數學解題思路,那麼只會是雲里霧里。
重點就在於變形式與結果之間的轉化,這類問題的解答最好的方式就是從後往前進行逐步推理,這樣目標才夠明確!
如果不能夠根據結果對變形式進行整理,那麼方向感就會迷失,數列放縮問題解答難以證明,所以學生必須要清楚這一點。
而有關於求數列通項方法真的是太多,可以通過定義求解通項,也可以通過對所給的關系式進行變形,比如說兩邊同時取倒數、同時取對數、或者根據等式的具體形式兩邊同除某項,構造新數列間接對原數列進行求解。
而求和常規的方法主要有四種:其一就是錯位相減,這類問題常常用在等差與等比結合而成的新數列當中,要將兩項做差,同時利用等比求和對中間項數進行統一整理。
其二就是裂項相消,其解題類型就在於分式數列,通過變形之後,將中間向全部消除。如果出現有負一的多少次方的情況,這個時候就有可能出現中間項數有加有減,這樣也能夠將其消除。
其三就是倒序相加,倒序相加的經典應用就在於等差數列的求和公式運用,利用等差數列的性質就可以得到等差數列求和公式,或者可以說將其用為等差數列求和公式的證明。
其四就是分組求和,分組求和往往求的是2n項和,或者多個項數的和,這類問題往往就是n項等差和n相等比,分開進行求解,利用等差等比數列求和公式即可得到。
更具難度的就是放縮式和求解某值取值范圍問題,比如說放縮是對於數列求和而言,最終的求和需要通過證明不等式來進行論證,而求解某個值的取值范圍時,需要將和求解出來過後,再根據題目已知條件判斷求解的方法。
而上述的四種基本求和當中,裂項求和形式多變,但是最終的變形式都是通過因式分解,對分式進行拆分,通過拆項、求和完成題目的解答。
⑩ 數列的解題技巧有哪些
1,數列其實就是找規律,看一個數列,首先要看到數列本身的變化規律,並將復雜數列通過,對個體的分解,或是對多項的合並,又或是通其他可行的方法,使原來的規律明顯化或轉化為簡單規律,如等差等比這些有法可依的規律,最後通過學過知識解答.
2,對於那些等差等比數列,不要先考慮捷徑,最實際的方法是通過現有的最基本的公式寫出數列內部關系,一步步化簡,一步步代入題目給出的條件,往往答案會自然而然的出來.
3,作為經歷過高考的過來人,我覺得,數列往往會和那些指數對數的東東有點聯系,題目往往有這樣的傾向,所以對代數公式的熟記對解數列題還是小有幫助的.
4,差不多就這么點了,當然,最重要的一點,多做題,高考這種東西