A. 基因功能鑒定的方法有哪些
基因功能鑒定的方法
1、轉基因技術
2、基因敲出技術
3、基因沉默技術
轉基因技術是將外源基因導入受體細胞,室外源基因隨即整合到受體細胞的染色體上,並隨者受體細胞的分裂並將外源基因遺傳給後代,從而獲得攜帶外源基因的轉基因生物方法。
基因敲出技術是採用動物胚胎肝細胞介導定向基因轉移,使動物體內的特定基因喪失功能的技術。
基因沉默技術是針對mRNA的操作,旨在抑制基因表達產物的生成。
B. 用哪些遺傳學的方法可以進行基因定位,簡要其原理,
DNA分子雜交,最簡單的,原理就是鹼基互補配對原則,製作與已知基因互補的dna單鏈或rna單鏈,用這個單鏈做探針,去定位,如果配對成功,形成雜交帶,那就是基因的位置
C. 檢測某一生物的基因型的方法
表現型相同:基因型不一定相同。
基因型相同:
環境相同,表現型相同。
環境不同,表現型不一定相同。
更仔細參閱:
基因型又稱遺傳型,
它反映生物體的遺傳構成,即從雙親獲得的全部基因的總和。據估計,人類的結構基因約有5萬對。因此,整個生物的基因型是無法表示的,遺傳學中具體使用的基因型,往往是指某一性狀的基因型,如白化病的基因型是cc,它只是表示這一對等位基因不能產生酷氨酸酶。所以基因型是從親代獲得的,可能發育為某種性狀的遺傳基礎。表現型是指生物體所有性狀的總和。但整個生物體的表現型是無法具體表示的。因此,實際使用的表現型,往往也是指生物發育的某一具體性狀。如體內不能產生酪氨酸酶等。表現型是生物體把遺傳下來的某一性狀發育的可能變成現實的表現。
基因型、表現與環境之間的關系
基因型、表現與環境之間的關系,可用如下公式來表示:表現型=基因型+環境
現以人類的優生為例,優生是生育在智力和體質方面具有優良表現型的個體,而表現型的優與劣是由基因型(遺傳)與環境共同決定的。當然在中不同性狀的發育與表現中,兩者的相對重要性是不同的。人們可以應用這個關系的原理來防治遺傳病,如苯丙酮尿症是常染色體隱性遺傳病,它是由一對隱性致病基因決定發病的,這個環境條件是體內有過量的苯丙氨酸。假若在食物中控制苯丙氨酸,食用含苯丙氨酸的量對人體來說是最低維持量的食品,致病的基因型就不能起作用,這時的表現型就可以是正常的,所以臨床上可以通過食物療法來治療苯丙酮尿症。優境學就是利用環境條件,使優良的基因型(遺傳基礎)得到充分的表現,使不良基因型的表現型得到改善。
人類的疾病幾乎都與遺傳有關,也都受環境的影響,只是不同的疾病受環境與遺傳兩個因素影響的程度不同,某些疾病明顯地受遺傳支配,而另一些疾病則受環境的顯著作用。
D. 目的基因的鑒定方法有哪些
基因的鑒定方法:
間接識別法
在基因的間接識別法(Extrinsic Approach)中,人們利用已知的mRNA或蛋白質序列為線索在DNA序列中搜尋所對應的片段。由給定的mRNA序列確定唯一的作為轉錄源的DNA序列;而由給定的蛋白質序列,也可以由密碼子反轉確定一族可能的DNA序列。因此,在線索的提示下搜尋工作相對較為容易,搜尋演算法的關鍵在於提高效率,並能夠容忍由於測序不完整或者不精確所帶來的誤差。BLAST是目前以此為目的最廣泛使用的軟體之一。
若DNA序列的某一片段與mRNA或蛋白質序列具有高度相似性,這說明該DNA片段極有可能是蛋白編碼基因。但是,測定mRNA或蛋白質序列的成本高昂,而且在復雜的生物體中,任意確定的時刻往往只有一部分基因得到了表達。這意味著從任何單個細胞的mRNA和蛋白質上都只能獲得一小部分基因的信息;要想得到更為完整的信息,不得不對成百上千個不同狀態的細胞中的mRNA和蛋白質測序。這是相當困難的。比如,某些人類基因只在胚胎或胎兒時期才得到表達,對它們的研究就會受到道德因素的制約。
盡管有以上困難,對人類自身和一些常見的實驗生物如老鼠和酵母菌,人們已經建立了大量轉錄和蛋白質序列的資料庫。如RefSeq資料庫,Ensembl資料庫等等。但這些資料庫既不完整,也含有相當數量的錯誤。
從頭計演算法
鑒於間接識別法的種種缺陷,僅僅由DNA序列信息預測蛋白質編碼基因的從頭計演算法(Ab Initio Approach)就顯得十分重要了。一般意義上基因具有兩種類型的特徵,一類特徵是「信號」,由一些特殊的序列構成,通常預示著其周圍存在著一個基因;另一類特徵是「內容」,即蛋白質編碼基因所具有的某些統計學特徵。使用Ab Initio方法識別基因又稱為基因預測。通常我們仍需藉助實驗證實預測的DNA片段是否具有生物學功能。
在原核生物中,基因往往具有特定且容易識別的啟動子序列(信號),如Pribnow盒和轉錄因子。與此同時,構成蛋白質編碼的序列構成一個連續的開放閱讀框(內容),其長度約為數百個到數千個鹼基對(依據該長度區間可以篩選合適的密碼子)。除此之外,原核生物的蛋白質編碼還具有其他一些容易判別的統計學的特徵。這使得對原核生物的基因預測能達到相對較高的精度。
對真核生物(尤其是復雜的生物如人類)的基因預測則相當有挑戰性。一方面,真核生物中的啟動子和其他控制信號更為復雜,還未被很好的了解。兩個被真核生物基因搜尋器識別到的訊號例子有CpG islands及poly(A) tail的結合點。
另一方面,由於真核生物所具有的splicing機制,基因中一個蛋白質編碼序列被分為了若干段(外顯子),中間由非編碼序列連接(基因內區)。人類的一個普通蛋白質編碼基因可能被分為了十幾個外顯子,其中每個外顯子的長度少於200個鹼基對,而某些外顯子更可能只有二三十個鹼基對長。因而蛋白質編碼的一些統計學特徵變得難於判別。
高級的基因識別演算法常使用更加復雜的概率論模型,如隱馬爾可夫模型。Glimmer是一個廣泛應用的高級基因識別程序,它對原核生物基因的預測已非常精確,相比之下,對真核生物的預測則效果有限。GENSCAN計劃是一個著名的例子。
比較基因組學
由於多個物種的基因組序列已完全測出,使得比較基因組學得以發展,並產生了新的基因識別的方法。該方法基於如下原理:自然選擇的力量使得基因和DNA序列上具有生物學功能的其他片段較其他部分有較慢的變異速率,在前者的變異更有可能對生物體的生存產生負面影響,因而難以得到保存。因此,通過比較相關的物種的DNA序列,我們能夠取得預測基因的新線索。2003年,通過對若干種酵母基因組的比較,人類對原先的基因識別結果作了較大的修改;類似的方法也正在應用於人類的基因組研究,並可能在將來的若干年內取得成果。
E. 生物遺傳問題,判斷基因型
這是判斷基因型最簡單的一種方法,自交。對於玉米是研究遺傳學最佳的材料之一,玉米種子多,可以通過種子的性狀在確定親本的基因型。如玉米的基因型是Aa,自交後有三種基因型,aa,AA
Aa,表現型有兩種,如果在種子中出現兩種表現型就說明基型為As,而如果基因型為
aa或AA時,自交後種子上的顏色只有一種表現型。
F. 如何對目的基因進行檢測與鑒定
可以從三方面對目的基因進行鑒定:
1、直接測定:按照目的基因組成製作DNA分子探針進行配對。
2、mRNA測定:根據目的基因組得出其轉錄的mRNA組成,利用探針檢測。
3、蛋白測定:可應用PCR相應技術測定目的基因翻譯的相關蛋白,也可採用免疫化學法導入蛋白抗體檢測蛋白。
(6)遺傳學方法如何鑒定一個基因擴展閱讀:
對目的基因進行鑒定和檢測的多種方法:
基因鑒定技術是一項生物學檢測技術,人體細胞有總數約為30億個鹼基對的DNA,每個人的DNA都不完全相同,人與人之間不同的鹼基對數目達幾百萬之多,因此通過分子生物學方法顯示的DNA圖譜也因人而異,由此可以識別不同的人。
所謂「DNA指紋」,就是把DNA作為像指紋那樣的獨特特徵來識別不同的人。由於DNA是遺傳物質,因此通過對DNA鑒定還可以判斷兩個人之間的親緣關系。
基因鑒定的原理其實是DNA分子雜交,這種分子雜交是在緩沖液中進行的,由於DNA分子雜交時,兩個分子相遇的機會不是很大,所以就需要眾多的帶有目的基因的DNA與待測的DNA分子。
而PCR技術就是將目的基因進行擴增的一種技術手段,所以在進行基因鑒定時並不是直接進行鑒定的,而是先進行PCR技術將目的基因擴增再進行鑒定。
網路-對目的基因進行檢測與鑒定