導航:首頁 > 方法技巧 > 如何通過數據解析的方法爬取數據

如何通過數據解析的方法爬取數據

發布時間:2023-01-23 12:20:40

如何用爬蟲爬取網頁上的數據

用爬蟲框架Scrapy, 三步
定義item類
開發spider類
開發pipeline
如果你想要更透的信息,你可以參考《瘋狂python講義》

❷ 數據採集的方法有哪些 數據採集的基本方法

1、數據採集根據採集數據的類型可以分為不同的方式,主要方式有:感測器採集、爬蟲、錄入、導入、介面等。

2、數據採集的基本方法:

(1)感測器監測數據:通過感測器,即現在應用比較廣的一個詞:物聯網。通過溫濕度感測器、氣體感測器、視頻感測器等外部硬體設備與系統進行通信,將感測器監測到的數據傳至系統中進行採集使用。

(2)第二種是新聞資訊類互聯網數據,可以通過編寫網路爬蟲,設置好數據源後進行有目標性的爬取數據。

(3)第三種通過使用系統錄入頁面將已有的數據錄入至系統中。

(4)第四種方式是針對已有的批量的結構化數據可以開發導入工具將其導入系統中。

(5)第五種方式,可以通過API介面將其他系統中的數據採集到本系統中。

怎麼用VBA或網路爬蟲程序抓取網站數據

VBA網抓常用方法
1、xmlhttp/winhttp法:
用xmlhttp/winhttp模擬向伺服器發送請求,接收伺服器返回的數據。
優點:效率高,基本無兼容性問題。
缺點:需要藉助如fiddler的工具來模擬http請求。
2、IE/webbrowser法:
創建IE控制項或webbrowser控制項,結合htmlfile對象的方法和屬性,模擬瀏覽器操作,獲取瀏覽器頁面的數據。
優點:這個方法可以模擬大部分的瀏覽器操作。所見即所得,瀏覽器能看到的數據就能用代碼獲取。
缺點:各種彈窗相當煩人,兼容性也確實是個很傷腦筋的問題。上傳文件在IE里根本無法實現。
3、QueryTables法:
因為它是excel自帶,所以勉強也算是一種方法。其實此法和xmlhttp類似,也是GET或POST方式發送請求,然後得到伺服器的response返回到單元格內。
優點:excel自帶,可以通過錄制宏得到代碼,處理table很方便
。代碼簡短,適合快速獲取一些存在於源代碼的table里的數據。
缺點:無法模擬referer等發包頭

也可以利用採集工具進行採集網頁端的數據,無需寫代碼。

❹ 如何使用python爬取知乎數據並做簡單分析

一、使用的技術棧:
爬蟲:python27 +requests+json+bs4+time
分析工具: ELK套件
開發工具:pycharm
數據成果簡單的可視化分析
1.性別分布
0 綠色代表的是男性 ^ . ^
1 代表的是女性
-1 性別不確定
可見知乎的用戶男性頗多。
二、粉絲最多的top30
粉絲最多的前三十名:依次是張佳瑋、李開復、黃繼新等等,去知乎上查這些人,也差不多這個排名,說明爬取的數據具有一定的說服力。
三、寫文章最多的top30
四、爬蟲架構
爬蟲架構圖如下:
說明:
選擇一個活躍的用戶(比如李開復)的url作為入口url.並將已爬取的url存在set中。
抓取內容,並解析該用戶的關注的用戶的列表url,添加這些url到另一個set中,並用已爬取的url作為過濾。
解析該用戶的個人信息,並存取到本地磁碟。
logstash取實時的獲取本地磁碟的用戶數據,並給elsticsearchkibana和elasticsearch配合,將數據轉換成用戶友好的可視化圖形。
五、編碼
爬取一個url:
解析內容:
存本地文件:
代碼說明:
* 需要修改獲取requests請求頭的authorization。
* 需要修改你的文件存儲路徑。
源碼下載:點擊這里,記得star哦!https : // github . com/forezp/ZhihuSpiderMan六、如何獲取authorization
打開chorme,打開https : // www. hu .com/,
登陸,首頁隨便找個用戶,進入他的個人主頁,F12(或滑鼠右鍵,點檢查)七、可改進的地方
可增加線程池,提高爬蟲效率
存儲url的時候我才用的set(),並且採用緩存策略,最多隻存2000個url,防止內存不夠,其實可以存在redis中。
存儲爬取後的用戶我說採取的是本地文件的方式,更好的方式應該是存在mongodb中。
對爬取的用戶應該有一個信息的過濾,比如用戶的粉絲數需要大與100或者參與話題數大於10等才存儲。防止抓取了過多的僵屍用戶。
八、關於ELK套件
關於elk的套件安裝就不討論了,具體見官網就行了。網站:https : // www . elastic . co/另外logstash的配置文件如下:
從爬取的用戶數據可分析的地方很多,比如地域、學歷、年齡等等,我就不一一列舉了。另外,我覺得爬蟲是一件非常有意思的事情,在這個內容消費升級的年代,如何在廣闊的互聯網的數據海洋中挖掘有價值的數據,是一件值得思考和需不斷踐行的事情。

❺ java jsoup怎樣爬取特定網頁內的數據

1、Jsoup簡述

Java中支持的爬蟲框架有很多,比如WebMagic、Spider、Jsoup等。
​ Jsoup擁有十分方便的api來處理html文檔,比如參考了DOM對象的文檔遍歷方法,參考了CSS選擇器的用法等等,因此我們可以使用Jsoup快速地掌握爬取頁面數據的技巧。

2、快速開始

1)分析HTML頁面,明確哪些數據是需要抓取的

2)使用HttpClient讀取HTML頁面
HttpClient是一個處理Http協議數據的工具,使用它可以將HTML頁面作為輸入流讀進java程序中.

3)使用Jsoup解析html字元串
通過引入Jsoup工具,直接調用parse方法來解析一個描述html頁面內容的字元串來獲得一個Document對象。該Document對象以操作DOM樹的方式來獲得html頁面上指定的內容。

3、保存爬取的頁面數據

1)保存普通數據到資料庫中
將爬取的數據封裝進實體Bean中,並存到資料庫內。

2)保存圖片到伺服器上
直接通過下載圖片的方式將圖片保存到伺服器本地。

❻ 如何用python爬取豆瓣讀書的數據

這兩天爬了豆瓣讀書的十萬條左右的書目信息,用時將近一天,現在趁著這個空閑把代碼總結一下,還是菜鳥,都是用的最簡單最笨的方法,還請路過的大神不吝賜教。
第一步,先看一下我們需要的庫:

import requests #用來請求網頁
from bs4 import BeautifulSoup #解析網頁
import time #設置延時時間,防止爬取過於頻繁被封IP號
import re #正則表達式庫
import pymysql #由於爬取的數據太多,我們要把他存入MySQL資料庫中,這個庫用於連接資料庫
import random #這個庫里用到了產生隨機數的randint函數,和上面的time搭配,使爬取間隔時間隨機

這個是豆瓣的網址:x-sorttags-all
我們要從這里獲取所有分類的標簽鏈接,進一步去爬取裡面的信息,代碼先貼上來:

import requests
from bs4 import BeautifulSoup #導入庫

url="httom/tag/?icn=index-nav"
wb_data=requests.get(url) #請求網址
soup=BeautifulSoup(wb_data.text,"lxml") #解析網頁信息
tags=soup.select("#content > div > div.article > div > div > table > tbody > tr > td > a")
#根據CSS路徑查找標簽信息,CSS路徑獲取方法,右鍵-檢查- selector,tags返回的是一個列表
for tag in tags:
tag=tag.get_text() #將列表中的每一個標簽信息提取出來
helf="hom/tag/"
#觀察一下豆瓣的網址,基本都是這部分加上標簽信息,所以我們要組裝網址,用於爬取標簽詳情頁
url=helf+str(tag)
print(url) #網址組裝完畢,輸出

以上我們便爬取了所有標簽下的網址,我們將這個文件命名為channel,並在channel中創建一個channel字元串,放上我們所有爬取的網址信息,等下爬取詳情頁的時候直接從這里提取鏈接就好了,如下:

channel='''
tag/程序
'''

現在,我們開始第二個程序。


QQ圖片20160915233329.png


標簽頁下每一個圖片的信息基本都是這樣的,我們可以直接從這里提取到標題,作者,出版社,出版時間,價格,評價人數,以及評分等信息(有些外國作品還會有譯者信息),提取方法與提取標簽類似,也是根據CSS路徑提取。
我們先用一個網址來實驗爬取:

url="htt/tag/科技"
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text.encode("utf-8"), "lxml")
tag=url.split("?")[0].split("/")[-1] #從鏈接裡面提取標簽信息,方便存儲
detils=soup.select("#subject_list > ul > li > div.info > div.pub") #抓取作者,出版社信息,稍後我們用spite()函數再將他們分離出來
scors=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.rating_nums") #抓取評分信息
persons=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.pl") #評價人數
titles=soup.select("#subject_list > ul > li > div.info > h2 > a") #書名
#以上抓取的都是我們需要的html語言標簽信息,我們還需要將他們一一分離出來
for detil,scor,person,title in zip(detils,scors,persons,titles):
#用一個zip()函數實現一次遍歷
#因為一些標簽中有譯者信息,一些標簽中沒有,為避免錯誤,所以我們要用一個try來把他們分開執行
try:
author=detil.get_text().split("/",4)[0].split()[0] #這是含有譯者信息的提取辦法,根據「/」 把標簽分為五部分,然後依次提取出來
yizhe= detil.get_text().split("/", 4)[1]
publish=detil.get_text().split("/", 4)[2]
time=detil.get_text().split("/", 4)[3].split()[0].split("-")[0] #時間我們只提取了出版年份
price=ceshi_priceone(detil) #因為價格的單位不統一,我們用一個函數把他們換算為「元」
scoe=scor.get_text() if True else "" #有些書目是沒有評分的,為避免錯誤,我們把沒有評分的信息設置為空
person=ceshi_person(person) #有些書目的評價人數顯示少於十人,爬取過程中會出現錯誤,用一個函數來處理
title=title.get_text().split()[0]
#當沒有譯者信息時,會顯示IndexError,我們分開處理
except IndexError:
try:
author=detil.get_text().split("/", 3)[0].split()[0]
yizhe="" #將detil信息劃分為4部分提取,譯者信息直接設置為空,其他與上面一樣
publish=detil.get_text().split("/", 3)[1]
time=detil.get_text().split("/", 3)[2].split()[0].split("-")[0]
price=ceshi_pricetwo(detil)
scoe=scor.get_text() if True else ""
person=ceshi_person(person)
title=title.get_text().split()[0]
except (IndexError,TypeError):
continue
#出現其他錯誤信息,忽略,繼續執行(有些書目信息下會沒有出版社或者出版年份,但是數量很少,不影響我們大規模爬取,所以直接忽略)
except TypeError:
continue

#提取評價人數的函數,如果評價人數少於十人,按十人處理
def ceshi_person(person):
try:
person = int(person.get_text().split()[0][1:len(person.get_text().split()[0]) - 4])
except ValueError:
person = int(10)
return person

#分情況提取價格的函數,用正則表達式找到含有特殊字元的信息,並換算為「元」
def ceshi_priceone(price):
price = detil.get_text().split("/", 4)[4].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price
def ceshi_pricetwo(price):
price = detil.get_text().split("/", 3)[3].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price

實驗成功後,我們就可以爬取數據並導入到資料庫中了,以下為全部源碼,特殊情況會用注釋一一說明。

import requests
from bs4 import BeautifulSoup
import time
import re
import pymysql
from channel import channel #這是我們第一個程序爬取的鏈接信息
import random

def ceshi_person(person):
try:
person = int(person.get_text().split()[0][1:len(person.get_text().split()[0]) - 4])
except ValueError:
person = int(10)
return person

def ceshi_priceone(price):
price = detil.get_text().split("/", 4)[4].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price

def ceshi_pricetwo(price):
price = detil.get_text().split("/", 3)[3].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price


#這是上面的那個測試函數,我們把它放在主函數中
def mains(url):
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text.encode("utf-8"), "lxml")
tag=url.split("?")[0].split("/")[-1]
detils=soup.select("#subject_list > ul > li > div.info > div.pub")
scors=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.rating_nums")
persons=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.pl")
titles=soup.select("#subject_list > ul > li > div.info > h2 > a")
for detil,scor,person,title in zip(detils,scors,persons,titles):
l = [] #建一個列表,用於存放數據
try:
author=detil.get_text().split("/",4)[0].split()[0]
yizhe= detil.get_text().split("/", 4)[1]
publish=detil.get_text().split("/", 4)[2]
time=detil.get_text().split("/", 4)[3].split()[0].split("-")[0]
price=ceshi_priceone(detil)
scoe=scor.get_text() if True else ""
person=ceshi_person(person)
title=title.get_text().split()[0]
except IndexError:
try:
author=detil.get_text().split("/", 3)[0].split()[0]
yizhe=""
publish=detil.get_text().split("/", 3)[1]
time=detil.get_text().split("/", 3)[2].split()[0].split("-")[0]
price=ceshi_pricetwo(detil)
scoe=scor.get_text() if True else ""
person=ceshi_person(person)
title=title.get_text().split()[0]
except (IndexError,TypeError):
continue

except TypeError:
continue
l.append([title,scoe,author,price,time,publish,person,yizhe,tag])
#將爬取的數據依次填入列表中


sql="INSERT INTO allbooks values(%s,%s,%s,%s,%s,%s,%s,%s,%s)" #這是一條sql插入語句
cur.executemany(sql,l) #執行sql語句,並用executemary()函數批量插入資料庫中
conn.commit()

#主函數到此結束


# 將Python連接到MySQL中的python資料庫中
conn = pymysql.connect( user="root",password="123123",database="python",charset='utf8')
cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS allbooks') #如果資料庫中有allbooks的資料庫則刪除
sql = """CREATE TABLE allbooks(
title CHAR(255) NOT NULL,
scor CHAR(255),
author CHAR(255),
price CHAR(255),
time CHAR(255),
publish CHAR(255),
person CHAR(255),
yizhe CHAR(255),
tag CHAR(255)
)"""
cur.execute(sql) #執行sql語句,新建一個allbooks的資料庫


start = time.clock() #設置一個時鍾,這樣我們就能知道我們爬取了多長時間了
for urls in channel.split():
urlss=[urls+"?start={}&type=T".format(str(i)) for i in range(0,980,20)] #從channel中提取url信息,並組裝成每一頁的鏈接
for url in urlss:
mains(url) #執行主函數,開始爬取
print(url) #輸出要爬取的鏈接,這樣我們就能知道爬到哪了,發生錯誤也好處理
time.sleep(int(format(random.randint(0,9)))) #設置一個隨機數時間,每爬一個網頁可以隨機的停一段時間,防止IP被封
end = time.clock()
print('Time Usage:', end - start) #爬取結束,輸出爬取時間
count = cur.execute('select * from allbooks')
print('has %s record' % count) #輸出爬取的總數目條數

# 釋放數據連接
if cur:
cur.close()
if conn:
conn.close()

這樣,一個程序就算完成了,豆瓣的書目信息就一條條地寫進了我們的資料庫中,當然,在爬取的過程中,也遇到了很多問題,比如標題返回的信息拆分後中會有空格,寫入資料庫中會出現錯誤,所以只截取了標題的第一部分,因而導致資料庫中的一些書名不完整,過往的大神如果有什麼辦法,還請指教一二。
等待爬取的過程是漫長而又欣喜的,看著電腦上一條條信息被刷出來,成就感就不知不覺湧上心頭;然而如果你吃飯時它在爬,你上廁所時它在爬,你都已經爬了個山回來了它還在爬時,便會有點崩潰了,擔心電腦隨時都會壞掉(還是窮學生換不起啊啊啊啊~)
所以,還是要好好學學設置斷點,多線程,以及正則,路漫漫其修遠兮,吾將上下而求索~共勉~

❼ 如何對知乎內容進行爬蟲

下面說明知乎爬蟲的源碼和涉及主要技術點:
(1)程序package組織
(2)模擬登錄(爬蟲主要技術點1)

要爬去需要登錄的網站數據,模擬登錄是必要可少的一步,而且往往是難點。知乎爬蟲的模擬登錄可以做一個很好的案例。要實現一個網站的模擬登錄,需要兩大步驟是:(1)對登錄的請求過程進行分析,找到登錄的關鍵請求和步驟,分析工具可以有IE自帶(快捷鍵F12)、Fiddler、HttpWatcher;(2)編寫代碼模擬登錄的過程。
模擬登錄

(3)網頁下載(爬蟲主要技術點2)

模擬登錄後,便可下載目標網頁html了。知乎爬蟲基於HttpClient寫了一個網路連接線程池,並且封裝了常用的get和post兩種網頁下載的方法。
(4)自動獲取網頁編碼(爬蟲主要技術點3)

自動獲取網頁編碼是確保下載網頁html不出現亂碼的前提。知乎爬蟲中提供方法可以解決絕大部分亂碼下載網頁亂碼問題。
(5)網頁解析和提取(爬蟲主要技術點4)

使用Java寫爬蟲,常見的網頁解析和提取方法有兩種:利用開源Jar包Jsoup和正則。一般來說,Jsoup就可以解決問題,極少出現Jsoup不能解析和提取的情況。Jsoup強大功能,使得解析和提取異常簡單。知乎爬蟲採用的就是Jsoup。
(6)正則匹配與提取(爬蟲主要技術點5)

雖然知乎爬蟲採用Jsoup來進行網頁解析,但是仍然封裝了正則匹配與提取數據的方法,因為正則還可以做其他的事情,如在知乎爬蟲中使用正則來進行url地址的過濾和判斷。
(7)數據去重(爬蟲主要技術點6)

對於爬蟲,根據場景不同,可以有不同的去重方案。(1)少量數據,比如幾萬或者十幾萬條的情況,使用Map或Set便可;(2)中量數據,比如幾百萬或者上千萬,使用BloomFilter(著名的布隆過濾器)可以解決;(3)大量數據,上億或者幾十億,Redis可以解決。知乎爬蟲給出了BloomFilter的實現,但是採用的Redis進行去重。
(8)設計模式等Java高級編程實踐

除了以上爬蟲主要的技術點之外,知乎爬蟲的實現還涉及多種設計模式,主要有鏈模式、單例模式、組合模式等,同時還使用了Java反射。除了學習爬蟲技術,這對學習設計模式和Java反射機制也是一個不錯的案例。
4. 一些抓取結果

❽ Python爬蟲常用的幾種數據提取方式

數據解析方式
- 正則
- xpath
- bs4
數據解析的原理:
標簽的定位
提取標簽中存儲的文本數據或者標簽屬性中存儲的數據

❾ python如何解析爬取的數據

用json方法轉成字典

❿ 在數據挖掘中利用爬蟲原理爬取數據需要引用哪個庫

數據挖掘中利用爬蟲原理爬取數據一般需要使用爬蟲框架或庫。常用的爬蟲框架或庫有 Scrapy、PySpider、Pyspider 等。使用這些框架或庫,可以方便地實現爬蟲的編寫和運行,幫助您更快地爬取數據。

例如,使用 Scrapy 框架,您可以定義一個爬蟲類,並重寫爬蟲類的一些方法,來實現爬蟲的特定功能。在爬蟲類中,您可以通過解析 HTML 文檔,獲取需要的數據,並存儲到本地或遠程資料庫中。

具體來說,如果您要在 Python 中使用 Scrapy 框架編寫爬蟲,需要在代碼中引用 scrapy 庫。例如,您可以在代碼開頭加入如下語句,來引用 scrapy 庫:

然後,您就可以使用 scrapy 庫提供的各種方法和類,來實現爬蟲的功能。

閱讀全文

與如何通過數據解析的方法爬取數據相關的資料

熱點內容
花卉土培檢測方法 瀏覽:277
獲取檢測信息的方法有哪些 瀏覽:120
蛋糕比容的計算方法 瀏覽:738
破壞動物細胞膜最常用的方法 瀏覽:246
社會作業研究方法 瀏覽:542
手機怎麼拍攝長視頻的方法 瀏覽:302
如何把數字變成字母的方法 瀏覽:194
板類零件的安裝方法有哪三種 瀏覽:448
液晶顯示屏無法全屏解決方法 瀏覽:417
製作簡單口紅方法 瀏覽:200
汽車螺母使用方法視頻 瀏覽:567
監理招標中評標基準價計算方法 瀏覽:544
蘋果7語音控制怎麼設置在哪裡設置方法 瀏覽:607
地錨使用方法 瀏覽:413
四川酸菜醬的食用方法 瀏覽:621
5珠算盤使用方法 瀏覽:784
找到突破口的計算方法 瀏覽:444
馬油羊奶使用方法視頻 瀏覽:808
訓狗有哪些方法 瀏覽:395
oracle的trim函數的使用方法 瀏覽:647