導航:首頁 > 方法技巧 > 極限四則運算方法及技巧

極限四則運算方法及技巧

發布時間:2023-01-10 05:52:05

⑴ 求極限的方法有哪些

一、利用極限四則運演算法則求極限

函數極限的四則運演算法則:設有函數,若在自變數f(x),g(x)的同一變化過程中,有limf(x)=A,limg(x)=B,則

lim[f(x)±g(x)]=limf(x)±limg(x)=A±B

lim[f(x)・g(x)]=limf(x)・limg(x)=A・B

lim==(B≠0)

(類似的有數列極限四則運演算法則)現以討論函數為例。
對於和、差、積、商形式的函數求極限,自然會想到極限四則運演算法則,但使用這些法則,往往要根據具體的函數特點,先對函數做某些恆等變形或化簡,再使用極限的四則運演算法則。方法有:

1.直接代入法

對於初等函數f(x)的極限f(x),若f(x)在x點處的函數值f(x)存在,則f(x)=f(x)。
直接代入法的本質就是只要將x=x代入函數表達式,若有意義,其極限就是該函數值。

2.無窮大與無窮小的轉換法

在相同的變化過程中,若變數不取零值,則變數為無窮大量?圳它的倒數為無窮小量。對於某些特殊極限可運用無窮大與無窮小的互為倒數關系解決。

(1)當分母的極限是「0」,而分子的極限不是「0」時,不能直接用極限的商的運演算法則,而應利用無窮大與無窮小的互為倒數的關系,先求其的極限,從而得出f(x)的極限。

(2)當分母的極限為∞,分子是常量時,則f(x)極限為0。

3.除以適當無窮大法

對於極限是「」型,不能直接用極限的商的運演算法則,必須先將分母和分子同時除以一個適當的無窮大量x。

4.有理化法

適用於帶根式的極限。

二、利用夾逼准則求極限

函數極限的夾逼定理:設函數f(x),g(x),h(x),在x的某一去心鄰域內(或|x|>N)有定義,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),則g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(類似的可以得數列極限的夾逼定理)
利用夾逼准則關鍵在於選用合適的不等式。


三、利用單調有界准則求極限

單調有界准則:單調有界數列必有極限。首先常用數學歸納法討論數列的單調性和有界性,再求解方程,可求出極限。

四、利用等價無窮小代換求極限

常見等價無窮小量的例子有:當x→0時,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。

等價無窮小的代換定理:設α(x),α′(x),β(x)和β′(x)都是自變數x在同一變化過程中的無窮小,且α(x)~α′(x),β(x)~β′(x),lim存在,則lim=lim。

五、利用無窮小量性質求極限

在無窮小量性質中,特別是利用無窮小量與有界變數的乘積仍是無窮小量的性質求極限。

六、利用兩個重要極限求極限

使用兩個重要極限=1和(1+)=e求極限時,關鍵在於對所給的函數或數列作適當的變形,使之具有相應的形式,有時也可通過變數替換使問題簡化。

七、利用洛必達法則求極限

如果當x→a(或x→∞)時,兩個函數f(x)與g(x)都趨於零或趨於無窮小,則可能存在,也可能不存在,通常將這類極限分別稱為「」型或「」型未定式,對於該類極限一般不能運用極限運演算法則,但可以利用洛必達法則求極限。

⑵ 極限四則運演算法則是什麼

lim(A+B)limA+limB

lim(A-B)=limA-limB

limAB=limA×limB

lim(A/B)limA/limB

極限的求法有很多種:

1、連續初等函數,在定義域范圍內求極限,可以將該點直接代入得極限值,因為連續函數的極限值就等於在該點的函數值。

2、利用恆等變形消去零因子(針對於0/0型)。

3、利用無窮大與無窮小的關系求極限。

4、利用無窮小的性質求極限。

5、利用等價無窮小替換求極限,可以將原式化簡計算。

6、利用兩個極限存在准則,求極限,有的題目也可以考慮用放大縮小,再用夾逼定理的方法求極限。

⑶ 極限的四則運算是什麼

極限的四則運算是等價無窮小替換,洛必達法則,泰勒公式,導數定義這四種運算的呢。

數列極限涉及的常規方法主要有四類:夾逼定理,定積分的定義(主要是針對部分和求極限),轉化為函數極限(歸結原則),單調有界准則。其中前三者用於求數列極限,最後一個是用於證明數列極限存在。其中,四則運算、兩個重要極限作為最基本的知識,不列入常規方法中。

極限

「極限」是數學中的分支——微積分的基礎概念,廣義的「極限」是指「無限靠近而永遠不能到達」的意思。數學中的「極限」指:某一個函數中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中。

逐漸向某一個確定的數值A不斷地逼近而「永遠不能夠重合到A」(「永遠不能夠等於A,但是取等於A『已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近A點的趨勢」。

極限是一種「變化狀態」的描述。此變數永遠趨近的值A叫做「極限值」(當然也可以用其他符號表示)。

⑷ 極限四則運演算法則是什麼

極限四則運算法則的前提是兩個極限存在,當有一個極限本身是不存在的,則不能用四則運演算法則。設limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B。

四則運算是指加法、減法、乘法和除法四種運算。四則運算是小學數學的重要內容,也是學習其它各有關知識的基礎。

相關內容解釋:

1.是指無限趨近於一個固定的數值。

2.數學名詞。在高等數學中,極限是一個重要的概念。

極限可分為數列極限和函數極限。

學習微積分學,首要的一步就是要理解到,「極限」引入的必要性:因為,代數是人們已經熟悉的概念,但是,代數無法處理「無限」的概念。所以為了要利用代數處理代表無限的量,於是精心構造了「極限」的概念。在「極限」的定義中,我們可以知道,這個概念繞過了用一個數除以0的麻煩,而引入了一個過程任意小量。

就是說,除數不是零,所以有意義,同時,這個過程小量可以取任意小,只要滿足在Δ的區間內,都小於該任意小量,我們就說他的極限為該數——你可以認為這是投機取巧,但是,他的實用性證明,這樣的定義還算比較完善,給出了正確推論的可能。這個概念是成功的。

⑸ 極限的四則運算是什麼

極限四則運演算法則的前提是兩個極限存在,當有一個極限本身是不存在的,則不能用四則運演算法則。設limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B。

極限四則運算的前提條件是:兩個極限存在,當有一個極限本身是不存在的,則不能用四則運演算法則。設limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B,才能進行極限四則運演算法則。

求極限基本方法有:

1、分式中,分子分母同除以最高次,化無窮大為無窮小計算,無窮小直接以0代入。

2、無窮大根式減去無窮大根式時,分子有理化。

3、運用洛必達法則,但是洛必達法則的運用條件是化成無窮大比無窮大,或無窮小比無窮小,分子分母還必須是連續可導函數。

⑹ 求極限的方法大全

1、利用函數的連續性求函數的極限(直接帶入即可)

如果是初等函數,且點在的定義區間內,那麼,因此計算當時的極限,只要計算對應的函數值就可以了。

⑺ 極限四則運演算法則是什麼

極限四則運演算法則:在極限都存在的情況下,和差積商的極限,等於極限的和差積商。

極限四則運演算法則的前提是兩個極限存在,當有一個極限本身是不存在的,則不能用四則運演算法則。極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為基礎、極限理論(包括級數)為主要工具來研究函數的一門學科。


極限存在與否的判斷:

1、結果若是無窮小,無窮小就用0代入,0也是極限。

2、若是分子的極限是無窮小,分母的極限不是無窮小,答案就是0,整體的極限存在。

3、如果分子的極限不是無窮小,而分母的極限是無窮小,答案不是正無窮大,就是負無窮大,整體的極限不存在。

4、若分子分母各自的極限都是無窮小,就必須用羅畢達方法確定最後的結果。

⑻ 極限的四則運算

lim[(根號下n^2+n)-n],n趨向於無窮的極限如下:

解題方法:

1、若是普普通通的問題,不涉及不定式,就直接代入。

2、若代入後的結果是無窮大,就寫極限不存在。

3、若代入後是不定式,那要看根號是怎麼出現的。

A、若在分子或分母上,則進行分子有理化、分母有理化、或同時有理化。

B、若是整體的根式,可能需要運用關於e的重要極限,如[f(x)]^(1/x)。

C、也可能需要運用取整後,再運用夾擠定理,如N^(1/N)。

D、可能要解方程,如單調有界遞增遞減。

⑼ 數列極限的四則運演算法則

數列極限的四則運演算法則如下:

當數列{an},{bn}分別以a,b為極限時,數列{an±bn}的極限是a±b,數列{anbn}的極限是ab;當bbn不等於0時,{an/bn}的極限是a/b;當函數f,g分別以a,b為極限時,函數f±b的極限是a±b,函數fg的極限是ab;當bg不等於0時,{f/g}的極限是a/b。

數列極限的四則運演算法則證明方法如下:

定理:設{an}與{bn}為收斂數列,則

(1)lim(n->∞)(an±bn)=lim(n->∞)an±lim(n->∞)bn;

(2)lim(n->∞)(an·bn)=lim(n->∞)an·lim(n->∞)bn.

若bn≠0且lim(n->∞)bn≠0,則lim(n->∞)(an/bn)=lim(n->∞)an/lim(n->∞)bn.

證:設lim(n->∞)an=a,lim(n->∞)bn=b,則ε>0,正整數N,

使當n>N時,有|an-a|<ε; |bn-b|<ε.

(1)則|(an+bn)-(a+b)|≤|an-a|+|bn-b|<2ε.

所以lim(n->∞)(an+bn)=lim(n->∞)an+lim(n->∞)bn;

∵an-bn=an+(-bn),

所以lim(n->∞)(an-bn)=a-b=lim(n->∞)an-lim(n->∞)bn.

(2)由有界性定理,存在正數M,對一切n有|bn|<M.

∴|an·bn-ab|=|bn(an-a)+a(bn-b)|≤|bn||an-a|+|a||bn-b|<(|bn|+|a|)ε<(M+|a|)ε.

∴lim(n->∞)(an·bn)=lim(n->∞)an·lim(n->∞)bn.

∵an/bn=an·1/bn,所以lim(n->∞)(an/bn)=lim(n->∞)an/lim(n->∞)bn.

閱讀全文

與極限四則運算方法及技巧相關的資料

熱點內容
台灣101小葯使用方法 瀏覽:232
基站用電分析的方法 瀏覽:22
嬰兒灌葯正確方法圖片 瀏覽:968
常用方法治腎陽虛無效咋辦 瀏覽:761
如何用懶方法畫哆啦a夢 瀏覽:716
同樣的方法只說一遍用日語怎麼說 瀏覽:736
圖片轉PDF最簡單的方法 瀏覽:666
簡易呼吸氣囊的檢測方法和使用 瀏覽:414
溶脂針的使用方法 瀏覽:678
過去免費快速掙錢方法 瀏覽:951
經濟學實訓報告方法與步驟 瀏覽:109
常用的健康風險表示方法有哪幾種 瀏覽:846
硬膜外導管置入長度計算方法 瀏覽:527
油珠的拍攝方法視頻 瀏覽:257
乘公共汽車的教學方法 瀏覽:127
期貨利潤計算方法 瀏覽:992
手機電腦大文件傳輸用什麼方法 瀏覽:62
寶寶手指發育鍛煉方法 瀏覽:745
審計案例分析的方法 瀏覽:164
excel表格畫任意劃線的方法步驟 瀏覽:486