① 高中數學常用方法總結
高中學生不僅要想學,還必須會學,要講究科學的 學習 方法 ,提高學習效率,變被動學習為主動學習,才能提高學習成績。下面是我為大家整理的關於高中數學常用方法,希望對您有所幫助。歡迎大家閱讀參考學習!
1高中數學常用方法 總結
首先要 反思 題意。要用批評的眼光去看待自己的解題過程,看看思路是否有問題,概念使用是否正確,計算是否有失誤,思考是否周密等等。有時需要從不同的角度去思考,不同的方法去演算更能發現問題。千萬別把檢查答案當成自我欣賞,那麼肯定發現不了錯誤,發現不了錯誤當然就談不上克服錯誤了。
第三要反思方法,解完題後再思考,由於對這個問題的認識有了一定的高度,所以思考出的新方法常常更為簡捷,巧妙,在很大程度上能激勵我們的信心,即使我們發現不了巧思妙解,在思考過程中我們回顧了相關知識,嘗試了許多方法,收獲仍不可小視。
最後還要反思變化。研究性學習已經進入高考,提高探究創新能力已經刻不容緩。許多經典的數學問題可以進行變化,創設探究的契機。這些,大家只要利用原來問題的解題思路進行探索,知道他們都是周期函數。這樣,我們解一題會一類,並訓練了探究,創新能力,較大限度提高了解題的效益。
2高中數學知識和方法
及時復習是提高效率學習的重要一環
通過反復閱讀高中數學教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的高中數學新知識與有關舊知識聯系起來,進行分析比效,一邊復習一邊將復習成果整理在數學 筆記本 上,使對所學的新知識由「懂」到「會」。
解決疑難
對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業再做一遍。
對錯誤的地方沒弄清楚要反復思考。實在解決不了的要請教老師和同學,並要經常把易錯的地方拿來復習強化,作適當的重復性高中數學練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學高中數學知識由「熟」到「活」。
3高中數學的 學習方法指導
學習狀態低迷
一定要做好預習,帶著問題走進課堂,能讓學習事半功倍;做完作業要仔細檢查,出錯並認真訂正才合理;老師要求的練習要認真完成,少動筆而能學好數學的天才是沒有的;考試時,正確率和做題的速度一樣重要,合理地放棄某些題目能幫助你發揮正常水平。
成績進步緩慢
收集自己做過的錯題,訂正並寫清錯誤的原因;對於考試成績,定一個力所能及的奮斗目標;合理的作息時間和良好的學習習慣有助於獲得穩定的學習成績;並且京翰一對一的鄒老師尤其強調:把很多時間投入到一個科目中去,不如把學習精力合理分配給各個學科。
成績很難取得突破
老師稱:數學不是知識性、 經驗 性的學科,而是思維性的學科。所以,數學的學習重在培養觀察、分析和推斷能力,開發學習者的創造能力和 創新思維 。因此,在學習數學的過程中,要有意識地培養這些能力。這會使數學成績取得有效突破。
學習有法,但無定法,貴在得法。老師稱:要想學會學習,不僅要向別人學習好的學習方法,還要善於總結自己的學習方法。學習理科,要獨立思考,深入剖析題目。比如要知道這道題用的方法是什麼,這種方法適合於哪類題。如果能如此類比,融會貫通,不但可以記住具體的解題方法,也能提高靈活運用的能力。
4高中數學常見的方法有哪些
明確題意,構建思路
題海戰術的最大特點是以做題的數量作為標准,並期望以多取勝。由於高考升學的壓力,不少同學不知不覺的掉進題海,拿到題目不假思索,跟著感覺走,時常出現張冠李戴,答非所問等現象,也會出現漏解或者畫蛇添足,勞而無功。長期下去,最大的壞處是形成不嚴謹的思維習慣,不利於將來的發展。
審題是我們解題的前奏工作,不可忽視,在解題前必須審清題意,分析條件和結論,並且根據條件和結論進行聯想:以前遇到過類似或者部分類似的問題嗎?當時是用什麼方法解決的?在這里還有效嗎?等等。通過聯想構建解題思路,設計解題程序,把握解題要點,為正確快速解題掃清障礙,奠定基礎。
溫故知新,把握要領
先把書看透,再動手做作業。做作業前,首先溫故有關的知識,回顧概念,掌握要求,了解有關的注意事項,明確學習的目的,把握解題的規范化要求,然後再動手做作業,就心中有數,練中學,學中練,達到鞏固目的,強化了知識,提高了能力。
但事實上,我們許多同學沒有這個好習慣,拿到題目就做。這樣,首先是速度慢,效率低。另外,由於概念不清,有的概念理解錯誤,做了題目起不到應有的作用,甚至還有反作用,鞏固了錯誤,在相應方面形成了一個頑疾,為以後學習埋下後患。
高中數學常用方法總結相關 文章 :
1. 高中數學學習方法:知識點總結最全版
2. 高中數學學習方法總結
3. 2020高一數學學習方法總結大全
4. 高中數學常用解題方法
5. 高二數學學習方法指導與學習方法總結
6. 高中數學思想與邏輯:11種數學思想方法總結與例題講解
7. 高中學習數學的有效方法大全
8. 高中數學學習方法與技巧大全
9. 高中數學選擇題做題方法及重難點歸納總結
10. 高一數學學習方法和技巧大全
② 怎麼總結數學解題方法和技巧
很多初中生難於掌握解題技巧而覺得學習初中數學很困難,實際上數學是有很多解題技巧的,下面我就為大家總結一下,僅供大家參考。
初中數學巧取特殊值,以簡代繁
初中數學雖然是基礎數學,但是這並不意味著就沒有難度,特別是在素質教育下,從培養學生綜合素質能力的角度出發,初中數學越來越重視數學思維的培養,因此在很多數學問題的設置上,都進行了相當難度的調整,使得數學問題顯得較為繁雜,單一的思維或者解題方式,在有些題目面前會顯得較為艱難。
如有些數學問題是在一定的范圍內研究它的性質,如果從所有的值去逐一考慮,那麼問題將不勝其煩甚至陷入困境。在這種情況下,避開常規解法,跳出既定數學思維,就成了解題的關鍵。
初中數學的常見解題方法
直接推演法:直接從命題給出的條件出發,運用概念,公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代人條件中去驗證,找出正確答案.此法稱為驗證法(也稱代入法).當遇到定量命題時,常用此法。
特值法:用合適的特殊元素(如數或圖形)代人題設條件或結論中去,從而獲得解答.這種方法叫特殊元素法。
初中生都知道的數學解題技巧
排除、篩選法;對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
分析法:直接通過對選擇題的條件和結論,作詳盡地分析、歸納和判斷,從而選出正確的結果,稱為分析法。
整體代入法:把某一代數式進行化簡,然後並不求出某個字母的取值,而是直接把化簡的結果作為一個整體代入。
以上就是我為大家總結的初中數學解題技巧,僅供大家參考,希望對大家有所幫助。
③ 高中數學要怎麼總結解題方法
高中數學解題思路與技巧總結
(1)函數
函數題目,先直接思考後建立三者的聯系。首先考慮定義域,其次使用「三合一定理」。
(2)方程或不等式
如果在方程或是不等式中出現超越式,優先選擇數形結合的思想方法;
(3)初等函數
面對含有參數的初等函數來說,在研究的時候應該抓住參數沒有影響到的不變的性質。如所過的定點,二次函數的對稱軸或是……;
(4)選擇與填空中的不等式
選擇與填空中出現不等式的題目,優選特殊值法;
(5)參數的取值范圍
求參數的取值范圍,應該建立關於參數的等式或是不等式,用函數的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離參數的方法;
(6)恆成立問題
恆成立問題或是它的反面,可以轉化為最值問題,注意二次函數的應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重復不遺漏;
(7)圓錐曲線問題
圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式;
(8)曲線方程
求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數法,如果不知道曲線的形狀,則所用的步驟為建系、設點、列式、化簡(注意去掉不符合條件的特殊點);
(9)離心率
求橢圓或是雙曲線的離心率,建立關於a、b、c之間的關系等式即可;
(10)三角函數
三角函數求周期、單調區間或是最值,優先考慮化為一次同角弦函數,然後使用輔助角公式解答;解三角形的題目,重視內角和定理的使用;與向量聯系的題目,注意向量角的范圍;
(11)數列問題
數列的題目與和有關,優選和通公式,優選作差的方法;注意歸納、猜想之後證明;猜想的方向是兩種特殊數列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想;
(12)立體幾何問題
立體幾何第一問如果是為建系服務的,一定用傳統做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數值的轉化;錐體體積的計算注意系數1/3,而三角形面積的計算注意系數1/2 ;與球有關的題目也不得不防,注意連接「心心距」創造直角三角形解題;
(13)導數
導數的題目常規的一般不難,但要注意解題的層次與步驟,如果要用構造函數證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上;
(14)概率
概率的題目如果出解答題,應該先設事件,然後寫出使用公式的理由,當然要注意步驟的多少決定解答的詳略;如果有分布列,則概率和為1是檢驗正確與否的重要途徑;
(15)換元法
遇到復雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
(16)二項分布
注意概率分布中的二項分布,二項式定理中的通項公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點能否取到需單獨驗證,用點斜式或斜截式方程的時候考慮斜率是否存在等;
(17)絕對值問題
絕對值問題優先選擇去絕對值,去絕對值優先選擇使用定義;
(18)平移
與平移有關的,注意口訣「左加右減,上加下減」只用於函數,沿向量平移一定要使用平移公式完成;
(19)中心對稱
關於中心對稱問題,只需使用中點坐標公式就可以,關於軸對稱問題,注意兩個等式的運用:一是垂直,一是中點在對稱軸上。
六種解題思路:
1.函數與方程思想
函數與方程的思想是中學數學最基本的思想。所謂函數的思想是指用運動變化的觀點去分析和研究數學中的數量關系,建立函數關系或構造函數,再運用函數的圖像與性質去分析、解決相關的問題。而所謂方程的思想是分析數學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質去分析解決問題。
2.數形結合思想
數與形在一定的條件下可以轉化。如某些代數問題、三角問題往往有幾何背景,可以藉助幾何特徵去解決相關的代數三角問題;而某些幾何問題也往往可以通過數量的結構特徵用代數的方法去解決。因此數形結合的思想對問題的解決有舉足輕重的作用。
解題類型
(1)「由形化數」:就是藉助所給的圖形,仔細觀察研究,提示出圖形中蘊含的數量關系,反映幾何圖形內在的屬性。
(2)「由數化形」 :就是根據題設條件正確繪制相應的圖形,使圖形能充分反映出它們相應的數量關系,提示出數與式的本質特徵。
(3)「數形轉換」 :就是根據「數」與「形」既對立,又統一的特徵,觀察圖形的形狀,分析數與式的結構,引起聯想,適時將它們相互轉換,化抽象為直觀並提示隱含的數量關系。
3.分類討論思想
分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。
解決分類討論問題的關鍵是化整為零,在局部討論降低難度。
常見的類型
類型1:由數學概念引起的的討論,如實數、有理數、絕對值、點(直線、圓)與圓的位置關系等概念的分類討論;
類型2:由數學運算引起的討論,如不等式兩邊同乘一個正數還是負數的問題;
類型3 :由性質、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應用引起的討論;
類型4:由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關問題引起的討論。
類型5:由某些字母系數對方程的影響造成的分類討論,如二次函數中字母系數對圖象的影響,二次項系數對圖象開口方向的影響,一次項系數對頂點坐標的影響,常數項對截距的影響等。
分類討論思想是對數學對象進行分類尋求解答的一種思想方法,其作用在於克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。
4.轉化與化歸思想
轉化與化歸是中學數學最基本的數學思想之一,是一切數學思想方法的核心。數形結合的思想體現了數與形的轉化;函數與方程的思想體現了函數、方程、不等式之間的相互轉化;分類討論思想體現了局部與整體的相互轉化,所以以上三種思想也是轉化與化歸思想的具體呈現。
轉化包括等價轉化和非等價轉化,等價轉化要求在轉化的過程中前因和後果是充分的也是必要的;不等價轉化就只有一種情況,因此結論要注意檢驗、調整和補充。轉化的原則是將不熟悉和難解的問題轉為熟知的、易解的和已經解決的問題,將抽象的問題轉為具體的和直觀的問題;將復雜的轉為簡單的問題;將一般的轉為特殊的問題;將實際的問題轉為數學的問題等等使問題易於解決。
常見的轉化方法
(1)直接轉化法:把原問題直接轉化為基本定理、基本公式或基本圖形問題;
(2)換元法:運用「換元」把式子轉化為有理式或使整式降冪等,把較復雜的函數、方程、不等式問題轉化為易於解決的基本問題;
(3)數形結合法:研究原問題中數量關系(解析式)與空間形式(圖形)關系,通過互相變換獲得轉化途徑;
(4)等價轉化法:把原問題轉化為一個易於解決的等價命題,達到化歸的目的;
(5)特殊化方法:把原問題的形式向特殊化形式轉化,並證明特殊化後的問題,使結論適合原問題;
(6)構造法:「構造」一個合適的數學模型,把問題變為易於解決的問題;
(7)坐標法:以坐標系為工具,用計算方法解決幾何問題也是轉化方法的一個重要途徑。
5.特殊與一般思想
用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,同學們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
6.極限思想
極限思想解決問題的一般步驟為:
一、對於所求的未知量,先設法構思一個與它有關的變數
二、確認這變數通過無限過程的結果就是所求的未知量
三、構造函數(數列)並利用極限計演算法則得出結果或利用圖形的極限位置直接計算結果。
掌握數學解題思想是解答數學題時不可缺少的一步,建議同學們在做題型訓練之前先了解數學解題思想,掌握解題技巧,並將做過的題目加以歸納總結,以便在考試中游刃有餘。