導航:首頁 > 方法技巧 > 如何用簡單的方法計算平方根

如何用簡單的方法計算平方根

發布時間:2022-12-29 20:21:22

如何求平方根

例:求256的平方根

第一步:將被開方數的整數個位起向左每隔兩位劃為一段,用逗號分開,分成幾段,表示所求平方根是幾位數。
例,第一步:將256,分成兩段:
2,56
表示平方根是兩位數(XY,X表是平方根十位上數,Y表示個位數)。

第二步:根據左邊第一段里的數,取該數的平方根的整數部分,作為所要求的平方根求最高位上的數。
例:左邊第一段數值是2,2的平方根是大約等於1.414(這些盡量要記得,100以內的,尤其是能開整數的),由於2的平方根1.414大於1和小於2,所以取整數部分是1作為所要求的平方根求最高位上的數,即所要求的平方根最高位X是1。

第三步:從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數。
例:第一段數里的數是2.第二步計算出最高數是1
2減去1的平方=1
將1與第二段數(56)組成一個第一個余數:156

第四步:把第二步求得的最高位數(1)乘以20去試除第一個余數(156),取所得結果的整數部分作為第一個試商。
例: 156除以(1乘20)=7.8
第一個試商就是7

第五步:第二步求得的的最高位數(1)乘以20再加上第一個試商(7)再乘以第一個試商(7)。
(1*20+7)*7
如果:(1*20+7)*7小於等於156,則7就是平方根的第二位數.
如果:(1*20+7)*7大於156,將第一個試商7減1,即用6再計算。
由於:(1*20+6)*6=156所以,6就是第平方根的第二位數。


例:求55225的平方根
第一步:將被開方數的整數個位起向左每隔兩位劃為一段,用逗號分開,分成幾段,表示所求平方根是幾位數。
例,第一步:將55225,分成三段:
5,52,25
表示平方根是三位數(XYZ)。

第二步:根據左邊第一段里的數,取該數的平方根的整數部分,作為所要求的平方根求最高位上的數。
例:左邊第一段數值是5,5的平方根是(2點幾)大於2和小於3,所以取整數部分是2作為所要求的平方根求最高位上的數,即所要求的平方根最高位X是2。

第三步:從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數。
例:第一段數里的數是5.第二步計算出最高數是2
5減去2的平方=1
將1與第二段數(52)組成一個第一個余數:152
第四步:把第二步求得的最高位數(2)乘以20去試除第一個余數(152),取所得結果的整數部分作為第一個試商。
例: 152除以(2乘20)=3.8
第一個試商就是3

第五步:第二步求得的的最高位數(2)乘以20再加上第一個試商(3)再乘以第一個試商(3)。
(2*20+3)*3
如果:(2*20+3)*3小於等於152,則3就是平方根的第二位數.
如果:(2*20+3)*3大於152,將第一個試商3減1,即用2再計算。
由於:(2*20+3)*3小於152所以,3就是第平方根的第二位數。

第六步:用同樣的方法,繼續求平方根的其他各位上的數。用上一個余數減去上法中所求的積(即152-129=23),與第三段數組成新的余數(即2325)。這時再求試商,要用前面所得到的平方根的前兩位數(即23)乘以20去試除新的余數(2325),所得的最大整數為新的試商。(2325/(23×20)的整數部分為5。)
7.對新試商的檢驗如前法。(右例中最後的余數為0,剛好開盡,則235為所求的平方根。)

㈡ 如何計算平方根

述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:

1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11'56),分成幾段,表示所求平方根是幾位數;

2.根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);

3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);

4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(3×20除 256,所得的最大整數是 4,即試商是4);

5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);

6.用同樣的方法,繼續求平方根的其他各位上的數.

㈢ 怎樣筆算開平方根,簡單一點的方法,過程要詳細點。

假設被開放數為a,如果用sqrt(a)表示根號a,設置一個約等於(x+a/x)/2的初始值,代入上面公式,可以得到一個更加近似的值,再將它代入,就得到一個更加精確的值。依此方法,最後得到一個足夠精度的(x+a/x)/2的值。

㈣ 怎樣求平方根

1、查平方根表
2、計算器
3、筆算
筆算方法如下:
1.從個位起向左每隔兩位為一節,若帶有小數從小數點起向右每隔兩位一節,用「,」號將各節分開;
2.求不大於左邊第一節數的完全平方數,為「商」;
3.從左邊第一節數里減去求得的商,在它們的差的右邊寫上第二節數作為第一個余數;
4.把商乘以20,試除第一個余數,所得的最大整數作試商(如果這個最大整數大於或等於10,就用9或8作試商);
5.用商乘以20加上試商再乘以試商.如果所得的積小於或等於余數,就把這個試商寫在商後面,作為新商;如果所得的積大於余數,就把試商逐次減小再試,直到積小於或等於余數為止;
6.用同樣的方法,繼續求.
上述筆算開方方法是我們大多數人上學時課本附錄給出的方法,實際中運算中太麻煩了.我們可以採取下面辦法,實際計算中不怕某一步算錯!而上面方法就不行.
比如136161這個數字,首先我們找到一個和136161的平方根比較接近的數,任選一個,比方說300到400間的任何一個數,這里選350,作為代表.
我們計算0.5*(350+136161/350)得到369.5
然後我們再計算0.5*(369.5+136161/369.5)得到369.0003,我們發現369.5和369.0003相差無幾,並且,369^2末尾數字為1.我們有理由斷定369^2=136161
一般來說能夠開方開的盡的,用上述方法算一兩次基本結果就出來了.再舉個例子:計算469225的平方根.首先我們發現600^2<469225<700^2,我們可以挑選650作為第一次計算的數.即算
0.5*(650+469225/650)得到685.9.而685附近只有685^2末尾數字是5,因此685^2=469225
對於那些開方開不盡的數,用這種方法算兩三次精度就很可觀了,一般達到小數點後好幾位.
實際中這種演算法也是計算機用於開方的演算法
希望對你有幫助,祝你開心

㈤ 如何求一個數的平方根

簡單方法是 背下一百以內的質數的開放
然後將要開的數 分解因式 例如 根號13=根號十三
根號123=根號4*31=2倍根號31
根號1500= 根號100*15=10倍根號15.=10倍根號5乘根號3.

繁瑣方法:
轉帖
先一起來研究一下,怎樣求 ,這里1156是四位數,所以它的算術平方根的整數部分是兩位數,且易觀察出其中的十位數是3.於是問題的關鍵在於;怎樣求出它的個位數a?為此,我們從a所滿足的關系式來進行分析. 根據兩數和的平方公式,可以得到 1156=(30+a)2=302+2×30a+a2, 所以 1156-302=2×30a+a2, 即 256=(3×20+a)a, 這就是說, a是這樣一個正整數,它與 3×20的和,再乘以它本身,等於256. 為便於求得a,可用下面的豎式來進行計算: 根號上面的數3是平方根的十位數.將 256試除以20×3,得4.由於4與20×3的和64,與4的積等於256,4就是所求的個位數a.豎式中的余數是0,表示開方正好開盡.於是得到 1156=342,或 上述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下: 1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11』56),分成幾段,表示所求平方根是幾位數; 2.根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3); 3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256); 4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(3×20除256,所得的最大整數是 4,即試商是4); 5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數); 6.用同樣的方法,繼續求平方根的其他各位上的數. 按照上面步驟求 ,可得到下面左邊的豎式: 於是得到 如遇開不盡的情況,可根據所要求的精確度求出它的近似值.例如求 的近似值(精確到0.01),可列出上面右邊的豎式,並根據這個豎式得到 筆算開平方運算較繁,在實際中直接應用較少,但用這個方法可求出一個數的平方根的具有任意精確度的近似值. 我國古代數學的成就燦爛輝煌,早在公元前一世紀問世的我國經典數學著作《九章算術》里,就在世界數學史上第一次介紹了上述筆算開平方法.據史料記載,國外直到公元五世紀才有對於開平方法的介紹.這表明,古代對於開方的研究我國在世界上是遙遙領先的.

㈥ 如何計算一個數的平方根

平方根的計算方法計算方法一:我們用a來表示A的平方根,方程x-a=0的解就為A的平方根a。兩邊平方後有:x*x-2ax+A=0,因為x不等於0,兩邊除以x有:x-2a+A/x=0、a=(x+A/x)/2所以你只需設置一個約等於(x+A/x)/2的初始值,代入上面公式,可以得到一個更加近似的值。再將它代入,又可以得到一個更加精確的值……依此方法,最後得到一個足夠精度的(x+A/x)/2的值即為A的平方根值。真的是這樣嗎?假設我們代入的值x﹤a
由於這里考慮a﹥0故:x*x﹤a*a
即x﹤A/x(x+A/x)/2﹥(x+x)/2
即(x+A/x)/2>x
即當代入的x﹤a時(x+A/x)/2的值將比x大。同樣可以證明當代入的x﹥a時(x+A/x)/2的值將比x小。這樣隨著計算次數的增加,(x+A/x)/2的值就越來越接近a的值了。如:計算sqrt(5)
設初值為x
=
2
第一次計算:(2+5/2)/2=2.25
第二次計算:(2.25+5/2.25)/2=2.236111
第三次計算:(2.236111+5/2.236111)/2=2.236068
這三步所得的結果和5
的平方根值相差已經小於0.001
了。
計算方法二:我們可以使用二分法來計算平方根。設f(x)=x*x
-
A同樣設置a為A的平方根,哪么a就是f(x)=0的根。你可以先找兩個正值m,n使f(m)<0,f(n)>0
根據函數的單調性,a就在區間(m,n)間。然後計算(m+n)/2,計算f((m+n)/2),如果它大於零,那麼a就在區間(m,(m+n)/2)之間。小於零,就在((m+n)/2,n)之間,如果等於零,那麼(m+n)/2當然就是a。這樣重復幾次,你可以把a存在的范圍一步步縮小,在最後足夠精確的區間內隨便取一個值,它就約等於a。計算方法三:以上的方法都不是很直接,在上世紀80年代的初中數學書上,都還在介紹一種比較直接的計算方法:(1)如求54756的算術平方根時先由個位向左兩位兩位地定位:定位為5,47,56,接著象一般除法那樣列出除式.(2)先從最高位用最大平方數試商:最大平方數不超過5的是2,得商後,除式5-4後得1。把商2寫上除式上。(3)加上下一位的數:得147。(4)用20去乘商後去試商147:2×20=40
這40可試商為3,那就把試商的3加上40去除147。得147÷43=3,把3寫上除式上。這時147-129=18。(5)加上下一位的數:得1856。(6)用20去乘商後去試商1856:23×20=460
這460可試商為4,那就把試商的4加到460去除1856。得4,把4寫上除式上。這時1856-1856=0,無余數啦。(7)這時除式上的商是234,即是54756的平方根。哪么這種計算方法是怎麼得來的呢?查找了好久都沒有找到答案。靜下心來仔細分平方根的計算過程,後來的步驟都有20乘以也有的商再加上預計的商乘上預計的商。設也有的商為a預計的商為b就是(20*a+b)*b即20ab+b*b。而實質上預計的商是平方根中已有的商的後一位數字,平方根實際為10a+b再乘以10的N次方(N為整數),這里我們可以簡化為平方根為10a+b(因為乘10的N次方隻影響平方的小數點位置,對數字計算沒有影響)。這下終於明白了,設a為A的平方根的前n位,b為A的平方根的n位後面的數字,哪么(10a+b)就是A的平方根。有:(10a+b)(10a+b)=100a*a+20ab+b*b=A變形後:(20a+b)b=A-100a*a上面的計算中第一次商2,然後從結果中減4實質就是A-100a*a第二次再預計商3再減去(20*2+3)*3實質就是:A-100a*a-20ab-b*b即:A-(10a+b)(10a+b)此時10a+b看作為新的已有商a,再求下一個b值。這樣就可以一位一位地進行平方根的求解了。

㈦ 平方根怎麼計算

一般學習中數學考試的開方數一般都是整數的平法...非整數根的開方數不會出現在高考以及高考之前的考試中,
整數根的開方數就不說了
計算非整數根的開方數也有很多種類方法...建議直接看第二種,第一種就是爆破...(暴力破解)我更傾向於爆破...因為不用記那麼多內容,而且我也不經常去計算這些數
一:
最簡單的就是式商,,也就是說大概估算一下這個數的結果,需要非常了解100以內的數的平法值(可以很快計算10000以內的數的開方)比如開方40,根據平時的經驗平方數是在6~7之間(6*6=36
7*7=49)並且更接近於6,那麼就設定值為6.5
,6.5*6.5
=
42.25大於40---則設定為6.3
,6.3*6.3
=
39.69
---則設定6.35,6.35*6.35
=
40.3225
---則設定6.32

,6.32*6.32
=
39.9424這個數已經很接近40了,可以使用.....
二:
述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:
1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11'56),分成幾段,表示所求平方根是幾位數;
2.根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);
3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);
4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(3×20除
256,所得的最大整數是
4,即試商是4);
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
6.用同樣的方法,繼續求平方根的其他各位上的數.

㈧ 算數平方根有哪些步驟方法

分為整數開平方和小數開平方。 1、整數開平方步驟: (1)將被開方數從右向左每隔2位用撇號分開; (2)從左邊第一段求得算數平方根的第一位數字; (3)從第一段減去這個第一位數字的平方,再把被開方數的第二段寫下來,作為第一個余數; (4)把所得的第一位數字乘以20,去除第一個余數,所得的商的整數部分作為試商(如果這個整數部分大於或等於10,就改用9左試商,如果第一個余數小於第一位數字乘以20的積,則得試商0); (5)把第一位數字的20倍加上試商的和,乘以這個試商,如果所得的積大於余數時,就要把試商減1再試,直到積小於或等於余數為止,這個試商就是算數平方根的第二位數字; (6)用同樣方法繼續求算數平方根的其他各位數字。 2、小數部分開平方法: 求小數平方根,也可以用整數開平方的一般方法來計算,但是在用撇號分段的時候有所不同,分段時要從小數點向右每隔2段用撇號分開,如果小數點後的最後一段只有一位,就填上一個0補成2位,然後用整數部分開平方的步驟計算。

閱讀全文

與如何用簡單的方法計算平方根相關的資料

熱點內容
anica迷你手機設置日期方法 瀏覽:409
銅線和鋁線連接正確方法家用 瀏覽:118
德育如何掌握人際交往的方法 瀏覽:899
白兔的探視用說明方法怎麼描寫 瀏覽:111
中深孔采礦是什麼采礦方法 瀏覽:229
oppo顯示電量百分比在哪裡設置方法 瀏覽:927
電話銷售如何開發新客戶的方法 瀏覽:543
默認簡訊在哪裡設置方法 瀏覽:645
治療腳跟骨刺的好方法 瀏覽:914
風管漏風檢測方法 瀏覽:253
東風菱智車頂棉安裝方法 瀏覽:571
什麼方法能讓嬰兒去痰 瀏覽:258
羽毛球的使用方法 瀏覽:581
接球技術包括哪些技術方法 瀏覽:79
臉頰周圍長痘解決方法 瀏覽:73
水電瓶充電視頻教學方法 瀏覽:524
丙肝修復最佳方法 瀏覽:816
棗片的作用及食用方法 瀏覽:3
初中生如何復習的方法 瀏覽:306
聽神經瘤治療方法 瀏覽:293