Ⅰ 7個快速計算的方法與技巧,可以讓你的孩子成為數學大師
加,減,乘。這3個字把我們重新帶回到了數學課堂。盡管這些是我們在課堂上的記憶,但是,在我們的日常生活中仍然需要它。
對於我們的孩子來說,他們需要一種快速而輕松的計算方法。如果孩子有一些計算技巧,學習就會變得輕鬆快樂很多。而且,不會再說「狗吃了我的作業」等逃避學習的把戲了。
現在就分享一些關於數學計算的秘密,以便您的孩子能輕松愉快地學習。最好在開始之前拿出一張紙和一支筆,自己先嘗試一下。
1、用手乘以9
把手伸出來,然後給手指編號。
例如,假設需要計算4×9。首先找到4號,然後彎曲該手指,數一數彎曲的手指左右有多少根手指。左側有3根,右側有6根。
最後,把數字放在一起,正確答案就是36。
2、三位數相乘
比如,我們來計算652×6,首先如圖所示畫一張表格,然後填上數字。
每個數字都分別乘以6,填入表格中:
6×6 = 36
5×6 = 30
2×6 = 12
最後將數字相加,第一個數字和最後一個數字不變,就能得出答案。
3、大數相乘
例如,計算7×531,盡可能地拆散數字為10、100等等的倍數。
4、乘以12
將被乘數乘以10,然後將其相加兩次,然後將這些數字相加即可得出答案。
5、關於15%的計算
如果想計算一個數字的15%,首先需要算出10%。讓我們以400為例。將小數點向左移動一位。然後將該數字除以2,結果加40。最後,400的15%就等於60。
6、三位數的加法
將三位數分解成幾部分後,更容易計算。
7、乘以9
如果需要乘以9,則可以乘以10。只要不忘記從結果中減去被乘數,就能輕松得出正確的答案。
你的孩子喜歡數學嗎?孩子都在使用哪些計算技巧呢?評論告訴大家吧!
Ⅱ 如何提高數學運算能力,又快又准。我是想多練,有耐心,盡量算出正確答案,越不行越要多反復。
要想又快又准,必須嚴格要求自己,甚至說是苛刻。不允許自己出錯,認真對待,堅持不懈,要是錯了就給自己一巴掌。在草稿紙上計算的時候,步驟一定要清晰,要按順序,不要東一塊西一塊,要從上到下或從左到右寫下來。至於運算能力的提高,具體來說,有3種方法,一是心算,二是記憶,三是簡便運算。許多的題目,根本就不用去用草稿紙,直接自己心算就可以完成,要養成這種習慣,到時候計算的時候,草稿紙就不用那麼多了,有些很煩的計算,寫在紙上要活花費很多筆墨的,要是能夠心算就省了筆墨,也省時間。第二是記憶一些常用的運算結果和一些特定的式子化簡技巧,比如:13×13=169。第三是,簡便運算,通常在初中的簡便運算,都是合並同類項,分解因式等等,到了高中,就是根據式子的結構來化簡運算,物理也是。當然,最重要的還是根據這些方法,還有注意的問題,去多點訓練自己 多點練習,多點做運算量大的數學題。
Ⅲ 快速學會數學的方法有什麼
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
如何學好數學2
高中生要學好數學,須解決好兩個問題:第一是認識問題;第二是方法問題。
有的同學覺得學好教學是為了應付升學考試,因為數學分所佔比重大;有的同學覺得學好數學是為將來進一步學習相關專業打好基礎,這些認識都有道理,但不夠全面。實際上學習教學更重要的目的是接受數學思想、數學精神的熏陶,提高自身的思維品質和科學素養,果能如此,將終生受益。曾有一位領導告訴我,他的文科專業出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執筆起草。可見,即使將來從事文秘工作,也得要有較強的科學思維能力,而學習數學就是最好的思維體操。有些高一的同學覺得自己剛剛初中畢業,離下次畢業還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學、初中就是這樣「先松後緊」地混過來作為「成功」的經驗。殊不知,第一,現在高中數學的教學安排是用兩年的時間學完三年的課程,高三全年搞總復習,教學進度排得很緊;第二,高中數學最重要、也是最難的內容(如函數、立幾)放在高一年級學,這些內容一旦沒學好,整個高中數學就很難再學好,因此一開始就得抓緊,那怕在潛意識里稍有鬆懈的念頭,都會削弱學習的毅力,影響學習效果。
至於學習方法的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,我這里主要根據教材的特點提出幾點供大家學習時參考。
l、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關於直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
2『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。
3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。
4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。
參考資料:晴天Love貓
Ⅳ 數學快速計算有哪些方法
乘法口訣你自然要背很熟了,否側一切都是浮雲。平時多記記下平方公式,在計算時非常有用的,其他的還是多練練,就到這里吧,下面是個簡單的方法:
1、十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
2、例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3、第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4.幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
4、例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。
6、十幾乘任意數:
口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。
Ⅳ 小學快速計算方法與技巧 小學數學簡單高效計算方法
1、運用加法的交換律、結合律進行計算。要求學生善於觀察題目,同時要有湊整意識。
如:5.7+3.1+0.9+1.3,等。
2、運用乘法的交換律、結合律進行簡算。
如:2.5×0.125×8×4等,如果遇到除法同樣適用,或將除法變為乘法來計算。如:8.3×67÷8.3÷6.7等。
3、運用乘法分配律進行簡算,遇到除以一個數,先化為乘以一個數的倒數,再分配。
如:2.5×(100+0.4),還應注意,有些題目是運用分配律的逆運算來簡算:即提取公因數。如:0.93×67+33×0.93。
4、運用減法的性質進行簡算。減法的性質用字母公式表示:A-B-C=A-(B+C),同時注意逆進行。
如:7691-(691+250)。
Ⅵ 數學快數學快速計算方法
5大數學速算技巧,讓孩子做題又快又准確
如果說學語文,最重要的基礎是字詞,那麼學數學,最重要的基礎就是口算了。當代教育家,數學特級教師邱學華老師曾經說過:「計算要過關,必須抓口算。」
5大數學速算技巧,讓孩子做題又快又准確
那麼,怎樣才能算得既快又准確呢?只要熟練掌握計演算法則和運算順序,根據題目本身的特點,使用合理、靈活的計算方法,化繁為簡,化難為易,就能算得又快又准確。先為大家介紹5個速算技巧:
5大數學速算技巧,讓孩子做題又快又准確
1. 方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
例如:
23-11+7=23+7-11
4×14×5=4×5×14
10÷8×4=10×4÷8
2. 方法二:結合律法
加括弧法
(1)在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
例如:
23+19-9=23+(19-9)
33-6-4=33-(6+4)
(2)在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
例如:
2×6÷3=2×(6÷3)
10÷2÷5=10÷(2×5)
去括弧法
(1)在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。
例如:
17+(13-7)=17+13-7
23-(13-9)=23-13+9
23-(13+5)=23-13-5
(2)在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)
例如:
1×(6÷2)=1×6÷2
24÷(3×2)=24÷3÷2
24÷(6÷3)=24÷6×3
3. 方法三:乘法分配律法
分配法
括弧里是加或減運算,與另一個數相乘,注意分配。
例如:
8×(5+11)=8×5+8×11
提取公因式法
注意相同因數的提取。
例如:
9×8+9×2=9×(8+2)
4. 方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦,有借有還,再借不難嘛。
例如:
99+9=(100-1)+(10-1)
5. 方法五:拆分法
拆分法就是為了方便計算,把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
例如:
32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
要想讓孩子熟練運用速算方法,需要通過持之以恆的練習,提升計算能力,這樣,無論平時做作業還是考試都能游刃有餘。
Ⅶ 什麼方法可以學算數算的快呢!請問
算數算的快,就是不論心算、口算、筆算都速度快,正確率高。就是數學的計算能力強。
計算能力是數學能力的一種,是學好數學的基礎。要提高數學的計算能力,可以有以下幾種方法。
1、熟能生巧。算數的計演算法則、速算方法要記熟,運用熟練。
2、進行快速計算訓練,每天3分鍾,每次20題以上。
3、學習心算知識,進行心算訓練。
Ⅷ 數學速算方法與技巧有哪些
開普勒說:「數學對觀察自然做出重要的貢獻,它解釋了規律結構中簡單的原始元素,而天體就是用這些原始元素建立起來的」。下面是數學速算技巧,歡迎各位閱讀和借鑒。
1,加法速算 :計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣 ——「本位相加(針對進位數) 減加補,前位相加多加一 」就可以徹底解決任意位數從高位數到低位數的加法速算方法,比如:(1)67+48=(6+5)×10+(7-2)=115(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
2,減法速算 :計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣 ——「本位相減(針對借位數) 加減補,前位相減多減一 」就可以徹底解決任意位數從高位數到低位數的減法速算方法,比如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
3,乘法速算 :魏氏乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗數×10。
估演算法
估計,就是在精度要求不太高的情況下,粗略估計快速的方法。
它通常用於選項非常不同的情況,或者比較的數據非常不同的情況。評估的方式多種多樣,更需要每個考生在實戰中多加訓練和掌握。
只有當選項或要比較的數字之間的差異很大時,才會進行評估,而差異的大小決定了「評估」所需的精度。
化同法
所謂「同化法」,是指「在比較兩個分數時,在較大的小時內,將兩個分數的分子或分母化為相同或相似,從而簡化計算」的快速方法。
1.或分母變成完全一樣的,所以只需要看一下分母或分子就可以了。
2. 當分子或分母降為相似時,可以直接判斷某一分數的分母大,分子小,或某一分數的分母小,分子大。
直除法
「直除法」是在比較或計算復數時,用「直除法」求商的第一名,從而得到正確答案的一種快速方法。「直接劃分」一般包括兩種問題類型:
1. 當比較多個分數時,第一個最大/最小的數是等值數量級下的最大/小數。
2. 在計算分數時,可以通過計算不同選項的第一個位置來選擇正確的答案。
「直接除法」一般按難度分為三個梯度:
1.直接能看到第一筆生意。
2.動手計算可以看到第一筆生意。
3.對於一些復雜的分數,需要計算分數的倒數的第一位來確定答案。
Ⅸ 小學數學速算技巧都有哪些方法
小學數學速算技巧都有哪些方法
小學數學速算技巧都有哪些方法,數學這門課程是很多的同學都很頭疼的一門課程,好的開始就已經是成功的一半,因此計算能力從小學抓起,以下詳細介紹小學數學速算技巧都有哪些方法。
1、速算要領
「頭同,尾和10」演算法口訣:頭加1乘頭,兩尾乘積接後頭(不足兩位十補0)。是指個位數字之和是10,十位數字相同的兩個兩位數相乘時,則用第一個兩位數十位上的數字加1,乘以第二個兩個位數十位上的數字,其乘積構成該兩個兩位數乘積結果的前兩位;而兩數個位數字的乘積
則構成該兩個兩位數乘積的後兩位(如果個位數的乘積不滿10,則在其乘積結果前補0形成兩位),再把兩個乘積所形成的兩個兩位數順序排列,就形成了「頭同,尾合10」兩位數的乘積結果。
2、演算法分析
依據速算口訣,將其轉化為科學計數法表示為:有(10a+b)與(10a+d)兩個兩位數相乘,且b+d=10,求證:(10a+b)×(10a+d)=100a(a+1)+bd。
證明:根據代數式(10a+b)×(10a+d)運算可得:(10a+b)×(10a+d)=10a×10a+10ad+10ab+bd=10a×(10a+b+d)+bd又∵b+d=10∴10a(10a+b+d)+bd=10a(10a+10)+bd=10a×10(a+1)+bd故證:(10a+b)×(10a+d)=100a(a+1)+bd對結果的.形象表述,即是這一演算法的基本口訣:AB和AD兩個兩位數相乘,且B+D=10。其結果為四位數EFGH,其中EF=A(A+1),GH=BD。
二、「尾同,頭和10」演算法分析
速算要領
頭乘頭加尾,兩尾乘積接後頭(兩尾乘積不足10時在十位上補0)。是指兩個兩位數相乘時,如果兩數的個位數字相同,而十位數字之和是10,則以兩個兩位數十位上的數字相乘後加上任一兩位數的個位之和
構成該兩位數乘積結果的前兩位;而用兩位乘數個位上的乘積(如不滿兩位則在十位補0),則組成該兩位數乘積結果的後兩位,再把兩個乘積所形成的兩個兩位數順序排列就形成了「尾同,頭合10」兩位數的乘積結果。
2、演算法分析依據速算口訣,將其轉化為科學計數法則為:有(10b+a)與(10d+a)兩個兩位數,且b+d=10,求證:(10b+a)×(10d+a)=100(bd+a)+aa。
證明:根據代數式(10b+a)×(10d+a)運算可得:
(10b+a)×(10d+a)=10b×10d+10b×a+a×10d+aa=10b10d+10a(b+d)+aa
又∵b+d=10
∴10b10d+10a(b+d)+aa=100bd+100a+aa=100×(bd+a)+aa
對結果的形象表述,正是這一演算法的基本口訣:BA和DA兩個兩位數相乘,且B+D=10。其結果為四位數EFGH,其中EF=BD+A,GH=AA。
三、「尾5,頭和偶」演算法分析
1、速算要領「尾5,頭和偶」演算法口訣:頭乘頭加頭和折半,兩尾乘積接後頭。是指在兩數相乘時,如果個位數字是5,十位數字之和是偶數,則其十位數之積與十位數和的一半之和,構成該兩位數乘積的前兩位,而兩數個位數之積則構成了該兩位數乘積的後兩位,按順序組合之後,就形成了該兩位數的乘積。
2、演算法分析
依據速算口訣,將其轉化為科學計數法則為:尾數為5的兩個兩位數(10b+5)與(10d+5),且b與d之和為偶數,求證:(10b+5)×(10d+5)=100[bd+(b+d)/2]+5×5
證明:根據代數式(10b+5)×(10d+5)運算可得:
(10b+5)×(10d+5)=10b×10d+10b×5+5×10d+5×5=10b10d+50×(b+d)+5×5
又∵b+d=偶數
∴10b10d+50(b+d)+5×5=100bd+100(b+d)/2+5×5
故證:(10b+5)×(10d+5)=100[bd+(b+d)/2]+5×5
對結果的形象表述,正是這一演算法的基本口訣:尾數為5的兩位數B5和D5,且B+D=偶數。其乘積為四位數EFGH,其中EF=BD+(B+D)/2,GH=5×5。
1.十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3.第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4.幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。
拓展資料
數學速演算法是指利用數與數之間的特殊關系進行較快的加減乘除運算的計算方法。數學速演算法分為金華速算、魏德武速算、史豐收速算以及古人創造的「袖裡吞金」四大類速算方法。
在數學中,算式(suàn shì)是指在進行數(或代數式)的計算時所列出的式子,包括數(或代替數的字母)和運算符號(四則運算、乘方、開方、階乘、排列組合等)兩部分。按照計算方法的不同,算式一般分為橫式和豎式兩種。與表達式不同,表達式是將同類型的數據(如常量、變數、函數等),用運算符號按一定的規則連接起來的、有意義的式子。
1、湊整法:根據運算定律和運算性質,把算式中能湊成整數(特別是整十數、整百數等)的部分合並或拆開,然後求得結果。
例如:8+4.1+1+5.9
=(8+1)+(4.1+5.9)
=10+10
=20
例如:1.25×18
=1.25×(10+8)
=1.25×10+1.25×8
=12.5+10
=22.5
例如:78×98
=78×(100-2)
=78×100-78×2
=7800-156
=7644
2、變化法:適當轉變運算方法,即以加代減,以減代加,以乘代除,以除代乘;或改變運算順序,或利用約分、加減進行化簡等。
例如:4.7×0.25+7.3÷4
=(4.7+7.3)×0.25
=3
例如:3÷4-0.5÷0.7-0.3÷0.4+5÷7
=(3÷4-0.3÷0.4)+(5÷7-0.5÷0.7)
=0
簡便計算的作用:
1、簡便計算使得學生在短暫的時間內快速准確地算出正確答案。
2、簡便運算與四則混合運算的演算法是有區別的,它不按四則混合運算的運算順序進行運算,而是運用各種運算性質和運算定律進行運算,是一種特別的運算方式。
3、「簡便運算」的試題種類很多,一般可分為兩大類:用「運算定律」和「運算性質」進行運算。
4、在數學當中運用簡便計算方法可以很大程度節省做題的時間。