❶ 用配方法解方程的詳細步驟是什麼
(1)化二次項系數為1,即方程兩邊同時除以二次項系數.
(2)移項,使方程左邊為二次項和一次項,右邊為常數項.
(3)要在方程兩邊各加上一次項系數一半的平方.(註:一次項系數是帶符號的)
(4)方程變形為
配方法
❷ 數學解方程配方法
1.轉化: 將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2.移項: 常數項移到等式右邊
3.系數化1: 二次項系數化為1
4.配方: 等號左右兩邊同時加上一次項系數一半的平方
5.求解: 用直接開平方法求解
6.整理 (即可得到原方程的根)
代數式表示方法:注(^2是平方的意思.)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
例:解方程2x^2+4=6x
1. 2x^2-6x+4=0
2. x^2-3x+2=0
3. x^2-3x=-2
4. x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同時-2也要加上3一半的平方讓等式兩邊相等)
5. (x-1.5)^2=0.25 (a^2+2a+1=0 即 (a+1)^2=0)
6. x-1.5=±0.5
7. x1=2
x2=1 (一元二次方程通常有兩個解,X1 X2)
❸ 如何用配方法解方程
配方法解方程,方法如下:
1、首先,先進行移項,即將方程左邊的常數移到方程右邊。
2、在對方程進行配方,我們選擇一次項的系數除以2作為方程左邊的常數,再將常熟平方,放置方程左邊。方程右邊也加該常數的平方,使左右相等。
3、方程左邊整理成平方的形式,再將右邊系數整合。
4、最後通過因式分解計算結果。
❹ 用配方法解一元二次方程的步驟是什麼
用配方法解一元二次方程的一般步驟:
1、把原方程化為的形式;
2、將常數項移到方程的右邊;方程兩邊同時除以二次項的系數,將二次項系數化為1;
3、方程兩邊同時加上一次項系數一半的平方;
4、再把方程左邊配成一個完全平方式,右邊化為一個常數;
5、若方程右邊是非負數,則兩邊直接開平方,求出方程的解;若右邊是一個負數,則判定此方程無實數解。
(4)配方法解方程技巧擴展閱讀:
配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。由於問題中的完全平方具有(x+y)²=x²+ 2xy+y²的形式,可推出2xy= (b/a)x,因此y=b/2a。等式兩邊加上y²= (b/2a)²。
例分解因式:x²-4x-12
解:x²-4x-12=x²-4x+4-4-12
=(x-2)²-16
=(x -6)(x+2)
求拋物線的頂點坐標
【例】求拋物線y=3x²+6x-3的頂點坐標。
解:y=3(x²+2x-1)=3(x²+2x+1-1-1)=3(x+1)²-6
所以這條拋物線的頂點坐標為(-1,-6)
❺ 該如何使用配方法解一元二次方程
配方法其實是基於直接開方法,利用開方和的完全平方公式特性來解。完全平方公式是將一個兩項系數的式子的平方變成三項,進行因式分解。用字母表示為:(a+b)²=a²+2ab+b²、(a-b)²=a²-2ab+b²。用配方法解一元二次方程的一般步驟:
(1)把常數項移到等號的右邊;
(2)把二次頂系數化為1;
(3)等式兩邊同時加上一次項系數一半的平方;
(4)運用直接開平方法求得方程的根。
(5)配方法解方程技巧擴展閱讀:
當二次項系數不為一時,用配方法解一元二次方程的一般步驟:
1、化二次項系數為1。
2、移常數項到方程右邊。
3、方程兩邊同時加上一次項系數一半的平方。
4、化方程左邊為完全平方式。
5、(若方程右邊為非負數)利用直接開平方法解得方程的根。
❻ 如何用配方法解方程
ax²+bx+c=0,簡單說一下如何用配方法解方程式。
以-x2+4x-3=0為例。
常數移項,方程左邊的常數移到方程的右邊。
把二次項系數變為1。
然後在左右兩邊同時加上一次項系數-4的一半的平方。
配方
將方程左邊化成完全平方未展開的形式。
開方並解出結果
方程兩邊同時開方,可將x的次數將為一次。得出x的兩個結果即可。
上述是解二次項系數不為一的方程。所以在第二部需要把把二次項系數變為1。
普通方程式第二部直接移項就可以了。後續步驟都是一樣的。
在計算時有幾個注意要點:
當二次項系數不為1時移項要注意符號的變化;
系數為-1或1時只需要變更方程式里的符號即可;
不為-1或1時則需要除去ax方的a的數字。
❼ 用配方法怎樣解方程
在一元二次方程中,配方法其實就是把一元二次方程移項之後,在等號兩邊都加上一次項系數絕對值一半的平方。
配方法:用配方法解方程ax^2+bx+c=0 (a≠0)
先將常數c移到方程右邊:ax^2+bx=-c
將二次項系數化為1:x^2+(b/a)x = -c/a
方程兩邊分別加上一次項系數的一半的平方:x^2+b/ax+(b/2a)^2= - c/a+(b/2a)^2
方程左邊成為一個完全平方式:(x+b/2a)^2 = -c/a__b/2a)^2;
當b^2-4ac≥0時,x+b/2a =±√(_c/a___b/2a)^2;
∴x={-b±[√(b^2;_4ac)]}/2a(這就是求根公式)
例:解方程:2x²+6x+6=4
分析:原方程可整理為:x²+3x+3=2,通過配方可得(x+1.5)²=1.25通過開方即可求解。
解:2x²+6x+6=4<=>(x+1.5)²=1.25x+1.5=1.25的平方根。
配方法是指將一個式子(包括有理式和超越式)或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和,這種方法稱之為配方法。這種方法常常被用到恆等變形中,以挖掘題目中的隱含條件。
(7)配方法解方程技巧擴展閱讀:
配方法解決其他數學問題:
求最值
1、已知實數x,y滿足x²+3x+y-3=0,則x+y的最大值為____。
分析:將y用含x的式子來表示,再代入(x+y)求值。
解:x²+3x+y-3=0<=>y=3-3x-x²,
代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。
由於(x+1)²≥0,故4-(x+1)²≤4.故推測(x+y)的最大值為4,此時x,y有解,故(x+y)的最大值為4。
2、證明非負性
證明:a²+2b+b²-2c+c²-6a+11≥0
解:a²+2b+b²-2c+c²-6a+11=(a-3)²+(b+1)²+(c-1)²,結論顯然成立。
例分解因式:x²-4x-12
解:x²-4x-12=x²-4x+4-4-12=(x-2)²-16=( x -6)(x+2)。
參考資料來源:網路-解方程
網路-配方法
❽ 配方法的基本步驟
1、第一步:把原方程化為一般式
把原方程化為一般形式,也就是aX²+bX+c=0(a≠0)的形式。
2、第二步:系數化為1
把方程的兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊。
3、第三步:把方程兩邊平方
將方程兩邊同時加上一次項系數一半的平方,把左邊配成一個完全平方式,右邊化為一個常數項。
4、第四步:開平方求解
進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。
概述
在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。
配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。
❾ 用配方法解一元二次方程的基本步驟
將一元二次方程配成,進而得出方程的根。
(4)注意:
①等號左邊是一個數的平方的形式而等號右邊是一個常數。
②降次的實質是由一個一元二次方程轉化為兩個一元一次方程。
③方法是根據平方根的意義開平方。