導航:首頁 > 方法技巧 > 整式的因式分解方法與技巧

整式的因式分解方法與技巧

發布時間:2022-12-06 09:06:36

❶ 因式分解的方法與技巧

1、如果多項式的首項為負,應先提取負號;

這里的「負」,指「負號」。如果多項式的第一項是負的,一般要提出負號,使括弧內第一項系數是正的。

2、如果多項式的各項含有公因式,那麼先提取這個公因式,再進一步分解因式;

要注意:多項式的某個整項是公因式時,先提出這個公因式後,括弧內切勿漏掉1;提公因式要一次性提干凈,並使每一個括弧內的多項式都不能再分解。

(1)整式的因式分解方法與技巧擴展閱讀

1、分解因式是多項式的恆等變形,要求等式左邊必須是多項式。

2、分解因式的結果必須是以乘積的形式表示。

3、每個因式必須是整式,且每個因式的次數都必須低於原來多項式的次數。

4、結果最後只留下小括弧,分解因式必須進行到每一個多項式因式都不能再分解為止;

5、結果的多項式首項一般為正。 在一個公式內把其公因子抽出,即透過公式重組,然後再抽出公因子;

6、括弧內的首項系數一般為正;

7、如有單項式和多項式相乘,應把單項式提到多項式前。如(b+c)a要寫成a(b+c);

❷ 因式分解的方法與技巧有哪些

把一個多項式在一個范圍化為幾個整式的積的形式,這種式子變形叫做這個多項式的因式分解,因式分解的方法有十字相乘法、提公因式法、待定系數法等。

十字相乘法

1.十字相乘法:十字左邊相乘等於二次項系數,右邊相乘等於常數項,交叉相乘再相加等於一次項系數。其實就是運用乘法公式運算來進行因式分解。

2.用十字相乘法分解公因式的步驟:

(1)把二次項系數和常數項分別分解因數;

(2)嘗試十字圖,使經過十字交叉線相乘後所得的數的和為一次項系數;

(3)確定合適的十字圖並寫出因式分解的結果;

(4)檢驗。

提公因式法

1.提公因式法:如果多項式的各項有公因式,可以把這個公因式提到括弧外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法。

2.提取公因式法分解因式的解題步驟

(1)提公因式。把各項中相同字母或因式的最低次冪的積作為公因式提出來;當系數為整數時,還要把它們的最大公約數也提出來,作為公因式的系數;當多項式首項符號為負時,還要提出負號

(2)用公因式分別去除多項式的每一項,把所得的商的代數和作為另一個因式,與公因式寫成積的形式。

待定系數法

1.待定系數法:待定系數法是初中數學的一個重要方法。用待定系數法分解因式,就是先按已知條件把原式假設成若干個因式的連乘積,這些因式中的系數可先用字母表示,它們的值是待定的,由於這些因式的連乘積與原式恆等,然後根據恆等原理,建立待定系數的方程組,最後解方程組即可求出待定系數的值。

2.使用待定系數法解題的一般步驟是:

(1)確定所求問題含待定系數的一般解析式;

(2)根據恆等條件,列出一組含待定系數的方程;

(3)解方程或消去待定系數,從而使問題得到解決。

因式分解口訣

兩式平方符號異,因式分解你別怕。

兩底和乘兩底差,分解結果就是它。

兩式平方符號同,底積2倍坐中央。

因式分解能與否,符號上面有文章。

同和異差先平方,還要加上正負號。

同正則正負就負,異則需添冪符號。

因式分解常用公式

1.平方差公式:a²-b²=(a+b)(a-b)。

2.完全平方公式:a²+2ab+b²=(a+b)²。

3.立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4.立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5.完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6.完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

7.三項完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。

8.三項立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。

❸ 整式的乘法和因式分解的所有重要公式還有技巧

因式分解,也叫分解因式,
因式分解,是主謂短語,
分解因式,是動賓短語,
就是把多項式,變成一個個式子相乘的形式;
如果需要示意圖,就看看漢字 「目」、「月」 和 「朋」、「用」,
「月」 和 「目」 就是長為 3,寬分別是 a、b 的兩個長方形,
寫成 3a + 3b 像 「朋」 就是一個兩項式,
如果 「月」 和 「目」 拼成一個 「用」,就是 3(a + b) 的一個長方形,
把 3a + 3b 兩項相加的式子變成 3(a+b) 乘積的式子,就是因式分解.
分解因式,也正如分解質因數,
分解質因數,是要把整數變成一個個質數的乘積,在因數中去掉合數;
分解因式,就是把整式變成一個個因式的乘積,盡量降低各個因式的次數,
具體方法,
【第一步,提取公因式】
這也是最簡單的方法,
公因式不僅有:系數、字母、單項式(這些相信我們都熟悉了),
而且,公因式還可能是一個式子,
例如 (a + b)(3m + 2n) + (2m + 3n)(a + b),公因式是 (a+b)
原式 = ( a + b )( 3m + 2n + 2m + 3n )
= ( a + b )( 5m + 5n ) ——這樣再提取系數 5
= 5( a + b )( m + n )
【第二步,公式法】
就是把整式乘法的公式倒過來用,
a" - b" = (a - b)(a + b) ——平方差,
a" + 2ab + b" = (a + b)" ——完全平方和,
a" - 2ab + b" = ( a - b )" ——完全平方差,
a"' + b"' = (a + b)(a" - ab + b") ——立方和,
a"' - b"' = ( a - b )(a" + ab + b") ——立方差,
熟悉公式,熟悉平方數、立方數是關鍵,
【平方差】還有兩個完全平方相減的式子,
例如 9( x + y )" - 4( x + y - 1 )"
= [ 3(x + y) - 2(x + y - 1) ][ 3(x + y) + 2(x + y - 1) ]
= ( 3x + 3y - 2x - 2y + 2 )( 3x + 3y + 2x + 2y - 2 )
= ( x + y + 2 )( 5x + 5y - 2 )
【完全平方式】應該注意
( a - b )"
= [ - ( b - a ) ]" = ( b - a )"
= a" - 2ab + b" = b" - 2ab + a"
而且
( a - b )" = [ a + ( - b ) ]"
= a" - 2ab + b" = a" + 2a(-b) + (-b)"
公式或許就只有一個
( a + b )" = a" + 2ab + b"
不管是和的平方,還是差的平方,
最先也都是平方和,
a" - 2ab - b" 就錯了.
【立方和、立方差】
原來兩個三次項,分解因式變成五個項,
兩個是一次項、三個是二次項,
a"' + b"' = ( a + b )( a" - ab + b" )
a"' - b"' = ( a - b )( a" + ab + b" )
我們看看特徵,
兩個一次項 a 和 b,正負與原來的三次項 a"' 和 b"' 一樣;
三個二次項,a" + b" 還是平方和,中間項 ab 就要與一次項相反.
或者,
看分解因式的五個項,
立方和,只有二次項 ab 為負,其餘全都是正;
立方差,除了一次項 b 為負,其餘全都是正.
想一想,
二次項 ab,如果立方和換成 +ab,立方差換成 -ab,
再變成 2 不就成了完全立方嗎?怎麼是立方和、立方差呢?
( a + b )( a" + 2ab + b" ) =( a + b )( a + b )" =( a + b )"'
( a - b )( a" - 2ab + b" ) = ( a - b )( a - b )" = ( a - b )"'
這樣看來,立方和是 -ab,立方差是 +ab,就是要加大與完全立方的差別啊!
為了熟悉公式,我們也應該取簡單的數字算一算,
2"' - 1"' = 8 - 1
= 7 = 1 X 7
= ( 2 - 1 )( 4 + 2 + 1 )
= ( 2 - 1 )( 2" + 2 + 1 )
相信我們都知道,分解因式是這五個項,
相對困難就是正負符號,不知怎樣確定,
這樣只要算一算,就能夠幫助自己確定符號了.
【第三步,二次三項式分解】
我建議,十字相乘法,結合分組分解法一同使用,
正如 x" + (a + b)x + ab = ( x + a )( x + b )
把單項式 mx = (a+b)x ,拆開變成 ax + bx ,
就能夠分組提公因式進行分解.
【】關鍵是看常數項的正負,決定一次項怎樣一分為二,
如果常數項是正數,一次項的絕對值,就是拆開兩個項的和;
如果常數項是負數,一次項的絕對值,就是拆開兩個項的差.
前面已經說過,完全平方,b" 必然都是 +b",
x" + 10x + 25 = ( x + 5 )"
x" - 10x + 25 = ( x - 5 )"
再看看 x" ± 10x ± 24,分解因式 4 種情況都有,
【】如果常數項是正數,
一次項拆開兩個項的絕對值,就都比原來小;
x" + 10x + 24
= x" + 4x + 6x + 24
= x( x + 4 ) + 6( x + 4 )
= ( x + 4 )( x + 6 )
常數項 +24 不變,一次項 ±10x 就都是拆開 4x 與 6x 的和,
x" - 10x + 24
= x" - 4x - 6x + 24
= x( x - 4 ) - 6( x - 4 )
= ( x - 4 )( x - 6 )
【】如果常數項是負數,
一次項的絕對值,就是拆開兩個項的相差數;
x" - 10x - 24
= x" - 12x + 2x - 24
= x( x - 12 ) + 2( x - 12 )
= ( x - 12 )( x + 2 )
常數項 -24 不變,一次項 ±10x 就都是拆開 12x 與 2x 的相差數,
x" + 10x - 24
= x" + 12x - 2x - 24
= x( x + 12 ) - 2( x + 12 )
= ( x + 12 )( x - 2 )
這樣我們也就發現,
【】為什麼看常數項的正負,決定一次項怎樣一分為二呢?這是因為:
常數項不變,只是一次項變成相反數,一次項一分為二的絕對值就不變;
一次項不變,只要常數項變成相反數,一次項就要改變一分為二的方式;
像這樣的二次三項式,還有
x" ± 5x ± 6,
x" ± 10x ± 24,
x" ± 15x ± 54,
x" ± 20x ± 96,
x" ± 25x ± 150,
……
其實,它們都是 x" ± 5xy ± 6y" ,
這個式子千變萬化,還有
6x" ± 5x ± 1,
6x" ± 10x ± 4,
6x" ± 15x ± 9,
6x" ± 20x ± 16,
6x" ± 25x ± 25,
……
這樣的式子還不只一個,還有
8x" ± 26x ± 15,
8x" ± 52x ± 60,
8x" ± 78x ± 135,
8x" ± 104x ± 240,
8x" ± 130x ± 375,
……
其實,這樣也都是 8x" ± 26xy ± 15y" ,
這個千變萬化的式子,同樣還有
15x" ± 26x ± 8,
15x" ± 52x ± 32,
15x" ± 78x ± 72,
15x" ± 104x ± 128,
15x" ± 130x ± 200,
……
它們包括了多種具體情況,
讓我們也都取值做一做,
感受一下其中的奧秘吧.
【】二次三項式,分解因式,
這樣也是技巧、竅門,
關鍵就看 c 與 a 的正負,
只要熟悉這個方法,
x" + bx + c,
ax" + bx + c,
ax" + bxy + cy",
我們都同樣做得方便.
【復雜的多項式,配方法】
如果上面這些方式方法都不熟悉,
或者二次三項式看起來復雜,不知所措,
還可以使用配方法,
我們還是看看 x" - 10x - 24 ,
x" - 10x - 24
首先配方,把二次項和一次項,變成完全平方,
= x" - 10x + 5" - 25 - 24
= ( x - 5 )" - 49
分解因式,用平方差公式
= ( x - 5 )" - 7"
= ( x - 5 - 7 )( x - 5 + 7 )
= ( x - 12 )( x + 2 )
【分解之後,還要檢驗】
確保分解徹底,因式分解變形正確,
例如 x^6 - y^6,應該
= ( x"' - y'" )( x"' + y"' )
= ( x - y )( x + y )( x" - xy + y" )( x" + xy + y" )
相當於 64 - 1,
= ( 8 - 1 )( 8 + 1 )
= ( 2 - 1 )( 4 + 2 + 1 )( 2 + 1 )( 4 - 2 + 1 )
= 1 X 7 X 3 X 3
如果先用立方差,做成
= ( 4 - 1 )( 4" + 4 + 1 )
= ( 2 - 1 )( 2 + 1 )( 16 + 4 + 1 )
= 1 X 3 X 21
就還有 21 不是質因數,分解不徹底,也就不正確了.
正如現在的平方差,有兩個完全平方式相減,
現在要求分解的式子都比較復雜,要想還原就不方便了,
各種類型的式子,我們就都要熟悉兩三種解答方式,
看看不同的方式方法是不是同一個結果,
這樣才能夠相互檢驗,確保解答正確.
如果要看技巧、訣竅,我還發布了網路經驗
http://jingyan..com/article/11c17a2c749061f446e39d9a.html
http://jingyan..com/article/8275fc86baa46346a13cf651.html
希望你看過也有用,對你也有所幫助.

❹ 因式分解的方法與技巧口訣

因式分解並不難,分解方法要記全,各項若有公因式,首先提取莫遲緩,各項若無公因式,套用公式來試驗。如果是個二項式,平方差公式要領先,如果是個三項式,完全平方想周全,以上方法都不行,運用分組看一看,面對二次三項式,十字相乘求方便,能分解的再分解,不能分解是答案。

把一個多項式在一個范圍(如實數范圍內分解,即所有項均為實數)化為幾個整式的積的形式,這種式子變形叫做這個多項式的因式分解,也叫作把這個多項式分解因式。

分解一般步驟

1、如果多項式的首項為負,應先提取負號;

這里的「負」,指「負號」。如果多項式的第一項是負的,一般要提出負號,使括弧內第一項系數是正的。

2、如果多項式的各項含有公因式,那麼先提取這個公因式,再進一步分解因式;

要注意:多項式的某個整項是公因式時,先提出這個公因式後,括弧內切勿漏掉1;提公因式要一次性提干凈,並使每一個括弧內的多項式都不能再分解。

3、如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;

4、如果用上述方法不能分解,再嘗試用分組、拆項、補項法來分解。

口訣:先提首項負號,再看有無公因式,後看能否套公式,十字相乘試一試,分組分解要合適。

❺ 因式分解的方法與技巧

因式分解的十二種方法
把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解。因式分解的方法多種多樣,現總結如下:
1、
提公因法
如果一個多項式的各項都含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。
例1、
分解因式x
-2x
-x(2003淮安市中考題)
x
-2x
-x=x(x
-2x-1)
2、
應用公式法
由於分解因式與整式乘法有著互逆的關系,如果把乘法公式反過來,那麼就可以用來把某些多項式分解因式。
例2、分解因式a
+4ab+4b
(2003南通市中考題)
解:a
+4ab+4b
=(a+2b)
3、
分組分解法
要把多項式am+an+bm+bn分解因式,可以先把它前兩項分成一組,並提出公因式a,把它後兩項分成一組,並提出公因式b,從而得到a(m+n)+b(m+n),又可以提出公因式m+n,從而得到(a+b)(m+n)
例3、分解因式m
+5n-mn-5m
解:m
+5n-mn-5m=
m
-5m
-mn+5n
=
(m
-5m
)+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、
十字相乘法
對於mx
+px+q形式的多項式,如果a×b=m,c×d=q且ac+bd=p,則多項式可因式分解為(ax+d)(bx+c)
例4、分解因式7x
-19x-6
分析:
1
-3
7
2
2-21=-19
解:7x
-19x-6=(7x+2)(x-3)
5、配方法
對於那些不能利用公式法的多項式,有的可以利用將其配成一個完全平方式,然後再利用平方差公式,就能將其因式分解。
例5、分解因式x
+3x-40
解x
+3x-40=x
+3x+(
)
-(
)
-40
=(x+
)
-(
)
=(x+
+
)(x+
-
)
=(x+8)(x-5)
6、拆、添項法
可以把多項式拆成若幹部分,再用進行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、
換元法
有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來。
例7、分解因式2x
-x
-6x
-x+2
解:2x
-x
-6x
-x+2=2(x
+1)-x(x
+1)-6x
=x
[2(x
+
)-(x+
)-6
令y=x+
,
x
[2(x
+
)-(x+
)-6
=
x
[2(y
-2)-y-6]
=
x
(2y
-y-10)
=x
(y+2)(2y-5)
=x
(x+
+2)(2x+
-5)
=
(x
+2x+1)
(2x
-5x+2)
=(x+1)
(2x-1)(x-2)
8、
求根法
令多項式f(x)=0,求出其根為x
,x
,x
,……x
,則多項式可因式分解為f(x)=(x-x
)(x-x
)(x-x
)……(x-x
)
例8、分解因式2x
+7x
-2x
-13x+6
解:令f(x)=2x
+7x
-2x
-13x+6=0
通過綜合除法可知,f(x)=0根為
,-3,-2,1
則2x
+7x
-2x
-13x+6=(2x-1)(x+3)(x+2)(x-1)
9、
圖象法
令y=f(x),做出函數y=f(x)的圖象,找到函數圖象與X軸的交點x
,x
,x
,……x
,則多項式可因式分解為f(x)=
f(x)=(x-x
)(x-x
)(x-x
)……(x-x
)
例9、因式分解x
+2x
-5x-6
解:令y=
x
+2x
-5x-6
作出其圖象,見右圖,與x軸交點為-3,-1,2
則x
+2x
-5x-6=(x+1)(x+3)(x-2)
10、
主元法
先選定一個字母為主元,然後把各項按這個字母次數從高到低排列,再進行因式分解。
例10、分解因式a
(b-c)+b
(c-a)+c
(a-b)
分析:此題可選定a為主元,將其按次數從高到低排列
解:a
(b-c)+b
(c-a)+c
(a-b)=a
(b-c)-a(b
-c
)+(b
c-c
b)
=(b-c)
[a
-a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、
利用特殊值法
將2或10代入x,求出數P,將數P分解質因數,將質因數適當的組合,並將組合後的每一個因數寫成2或10的和與差的形式,將2或10還原成x,即得因式分解式。
例11、分解因式x
+9x
+23x+15
解:令x=2,則x
+9x
+23x+15=8+36+46+15=105
將105分解成3個質因數的積,即105=3×5×7
注意到多項式中最高項的系數為1,而3、5、7分別為x+1,x+3,x+5,在x=2時的值
則x
+9x
+23x+15=(x+1)(x+3)(x+5)
12、待定系數法
首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。
例12、分解因式x
-x
-5x
-6x-4
分析:易知這個多項式沒有一次因式,因而只能分解為兩個二次因式。
解:設x
-x
-5x
-6x-4=(x
+ax+b)(x
+cx+d)
=
x
+(a+c)x
+(ac+b+d)x
+(ad+bc)x+bd
所以
解得
則x
-x
-5x
-6x-4
=(x
+x+1)(x
-2x-4)

❻ 分解因式的方法與技巧有哪些

1、提公因式法:公因式是指各項都含有公共的因式。提公因式法是指當一個多項式的各項都有公因式時,把這個公因式提出來,將多項式化成兩個或多個因式乘積的形式。

2、公式法:公式法主要是指平方差公式,完全平方公式,立方差公式,立方和公式。

3、十字相乘法:十字相乘法口訣:首尾分解,交叉相乘,求和湊中。

4、待定系數法:首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。

5、換元法:有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來,這種方法叫做換元法。

6、求根公式法:令多項式f(x)=0,求出其根為x1,x2,x3,……xn,則該多項式可分解為f(x)=(x-x1)(x-x2)(x-x3)……(x-xn)

7、分組分解法:能分組分解的方程有四項或大於四項,一般的分組分解有兩種形式:二二分法,三一分法。如:a·x+a·y+b·x+b·y=a·(x+y)+b·(x+y)=(a+b)·(x+y),把ax和ay分一組,bx和by分一組,利用乘法分配律,兩兩相配。

❼ 因式分解的方法與技巧

導語:因式分解是中學數學中最重要的恆等變形之一,它被廣泛地應用於初等數學之中,在數學求根作圖、解一元二次方程方面也有很廣泛的應用。是解決許多數學問題的有力工具。把一個多項式在一個范圍(如有理數范圍內分解,即所有項均為有理數)化為幾個整式的積的形式,這種式子變形叫做這個多項式的因式分解,也叫作把這個多項式分解因式。

因式分解的方法與技巧

1、 提公因法

如果一個多項式的各項都含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。

例1、 分解因式x3 -2x 2-x

x3 -2x2 -x=x(x2 -2x-1)

2、 應用公式法

由於分解因式與整式乘法有著互逆的關系,如果把乘法公式反過來,那麼就可以用來把某些多項式分解因式。

例2、分解因式a2 +4ab+4b2

解:a2 +4ab+4b2 =(a+2b)2

3、 分組分解法

要把多項式am+an+bm+bn分解因式,可以先把它前兩項分成一組,並提出公因式a,把它後兩項分成一組,並提出公因式b,從而得到a(m+n)+b(m+n),又可以提出公因式m+n,從而得到(a+b)(m+n)

例3、分解因式m2 +5n-mn-5m

解:m2 +5n-mn-5m= m 2-5m -mn+5n

= (m2 -5m )+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、 十字相乘法

對於mx2 +px+q形式的多項式,如果a×b=m,c×d=q且ac+bd=p,則多項式可因式分解為(ax+d)(bx+c)

例4、分解因式7x2 -19x-6

分析: 1 ×7=7, 2×(-3)=-6

1×2+7×(-3)=-19

解:7x2 -19x-6=(7x+2)(x-3)

5、配方法

對於那些不能利用公式法的多項式,有的可以利用將其配成一個完全平方式,然後再利用平方差公式,就能將其因式分解。

例5、分解因式x2 +6x-40

解x2 +6x-40=x2 +6x+( 9) -(9 ) -40

=(x+ 3)2 -(7 ) 2

=[(x+3)+7]*[(x+3) – 7]

=(x+10)(x-4)

6、拆、添項法

可以把多項式拆成若幹部分,再用進行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b)

7、 換元法

有時在分解因式時,可以選擇多項式中的.相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來。

例7、分解因式2x4 –x3 -6x2 -x+2(也叫相反式,在這里以二次項系數為中心對稱項的系數是相等的,如四次項與常數項對稱,系數相等,解法也是把對稱項結合在一起)

解:2x 4–x3 -6x2 -x+2=2(x4 +1)-x(x2 +1)-6x2

=x2 {2[x2 + ()2]-(x+ )-6}

令y=x+ ,

x2 {2[x2 +( )2]-(x+)-6}

= x2 [2(y2 -2)-y-6]

= x2 (2y2 -y-10)

=x 2(y+2)(2y-5)

=x2 (x+ +2)(2x+ -5)

= (x2 +2x+1) (2x2 -5x+2)

=(x+1)2 (2x-1)(x-2)

8、 求根法

令多項式f(x)=0,求出其根為x1,x2 ,x3 ,……xn ,則多項式可因式分解為f(x)=(x-x1 )(x-x 2)(x-x3 )……(x-xn ) (一般情況下是試根法,並且一般試-3,-2,-1,0,1,2,3這些數是不是方程的根)

例8、分解因式2x4 +7x3 -2x2 -13x+6

解:令f(x)=2x4 +7x3 -2x2 -13x+6=0

通過綜合除法可知,f(x)=0根為 ,-3,-2,1 ,

則2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)

9、 圖象法(這種方法在以後學函數的時候會用到。現在只是作為了解內容,它和第八種方法是類似的)

令y=f(x),做出函數y=f(x)的圖象,找到函數圖象與X軸的交點x1 ,x2 ,x3 ,……xn ,則多項式可因式分解為

f(x)= f(x)=(x-x1 )(x-x2 )(x-x3)……(x-xn )

例9、因式分解x3 +2x2 -5x-6

解:令y= x3 +2x2 -5x-6

作出其圖象,可知與x軸交點為-3,-1,2

則x3 +2x 2-5x-6=(x+1)(x+3)(x-2)

10、 主元法

先選定一個字母為主元,然後把各項按這個字母次數從高到低排列,再進行因式分解。

例10、分解因式a2 (b-c)+b2 (c-a)+c2 (a-b)

分析:此題可選定a為主元,將其按次數從高到低排列

解:a2 (b-c)+b2 (c-a)+c2 (a-b)=a2 (b-c)-a(b2 -c 2)+bc(b-c)

=(b-c) [a2 -a(b+c)+bc]

=(b-c)(a-b)(a-c)

11、 利用特殊值法

將2或10(或其它數)代入x,求出數P,將數P分解質因數,將質因數適當的組合,並將組合後的每一個因數寫成2或10的和與差的形式,將2或10還原成x,即得因式分解式。例11、分解因式x 3+9x2 +23x+15

解:令x=2,則x3 +9x 2+23x+15=8+36+46+15=105

將105分解成3個質因數的積,即105=3×5×7

注意到多項式中最高項的系數為1,而3、5、7分別為x+1,x+3,x+5,在x=2時的值

則x3 +9x2 +23x+15=(x+1)(x+3)(x+5)

12、待定系數法

首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。

例12、分解因式x4 –x3 -5x2 -6x-4

如果已知道這個多項式沒有一次因式,因而只能分解為兩個二次因式。

解:設x4 –x3 -5x2 -6x-4=(x2 +ax+b)(x2 +cx+d)

= x4 +(a+c)x3 +(ac+b+d)x2 +(ad+bc)x+bd

從而a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4

所以 解得

則x4 –x3 -5x2 -6x-4 =(x 2+x+1)(x2 -2x-4)。

因式分解應該注意哪些問題?

一、要注意到“1”的存在而避免漏項

在提取公因式時,多數同學易忘記觀察被分解多項式的項數是多少,更沒有理解因式分解與乘法運算之間的關系,而在分解因式時應注意到“1”在這個多項式分解中的存在和作用。

例1分解因式23x+5xy+x=x(3x+5y)

錯解: 23x+5xy+x=x(3x+5y),這樣就漏了“x”這一項,提出“x”後應由“1”來補其位。 正解: 23x+5xy+x=x(3x+5y+1)

二、提取公因式時要注意符號的變化

牢記在有理數的乘法運算中“括弧前是負號,去括弧時括弧里的各項都要變號”這一運算律,而因式分解與乘法運算之間互為逆變形,首相為負號應提取負號,但加括弧並且括弧里的各項都要變號。

例2分解因式2-10x+10xy.

錯解: 2-10x+10xy=-10x(x+y),錯在括弧里沒有變號。

正解: 2-10x+10xy=-10x(x-y).

三、要注意整體與個體之間的關系

在公式22a-b=(a+b)(a-b) ,222a+2ab+b=(a+b), 222a-2ab+b=(a-b)中,a、b代表符合這一特點的整個代數式里的整個因式,而不只代表這個代數式里的某一個因式。如216x是表示2(4x),而不是216x.因此再分解因式時要注意整體與個體之間的關系。

例3分解因式29x-1

錯解: 29x-1=(9x+1)(9x-1),錯在29x-1隻能寫為2(3x)不能寫為29x. 正解: 29x-1=(3x+1)(3x-1).

四、要注意分解完整

因式分解即是把一個多項式分解為幾個不能再分解的因式的乘積形式,因式分解需要分解到不能再分解為止。

例4分解因式4216x-72x+81

錯解: 4216x-72x+81=22(4x-9),很多學生就分解到此為止,但沒有注意到24x-9還可以分解。因為24x可以寫成2(2x),9可以寫成2(3),故24x-9符合平方差公式的特點應繼續分解。

正解: 4216x-72x+81=22(4x-9)=2[(2x+3)(2x-3)]=22(2x+3)(2x-3) 例5分解因式4x-9 (在實數范圍內)

錯解: 4x-9=22(x+3)(x-3),錯在許多學生還未注意到2(x-3)中的“3”還可以寫為

2(3),因此2(x-3)寫為2x-2(3),這就符合平方差公式的特點應繼續分解。

正解: 4x-9=22(x+3)(x-3)=2(x+3)(x+3)(x-3) 五、應注意因式與整式乘法的關系

因式分解是要把一個多項式分解為幾個整式的乘積形式;然而整式的乘法是要把幾個正式的乘積形式化成一個多項式的形式。 例6分解因式4224a-2ab+b.

錯解: 4224a-2ab+b=222(a-b)=22(a+b)(a-b)=2222(a+2ab+b)(a-2ab+b),錯在又把22(a+b)(a-b)化為了2222(a+2ab+b)(a-2ab+b)

正解: 4224a-2ab+b=222(a-b)=22(a+b)(a-b)。

❽ 高中數學因式分解的方法與技巧

高中數學因式分解的方法與技巧

01因式分解的重要意義

把一個多項式化成幾個整式的乘積的形式,這種式子變形叫作這個多項式的因式分解。因式分解是初中代數最重要的知識點之一,它上承代數式,下啟方程與函數。甚至可以這么說,初高中代數需要掌握的解題技巧,在因式分解的解題技巧中都有。

同時,因式分解也是初高中數學銜接課中最重要的知識點之一,它是高中數學的重要基礎!但是只有部分優質高中會開設初高中銜接課,大多數高中都默認學生在初中已經熟練掌握了代數基礎。因此,初中生強化因式分解的學習則更加有必要。

因式分解的基本技巧主要有三個:提取公因式、公式法、十(雙)字相乘法;高階技巧主要有三個:因式定理法、待定系數法、輪換對稱法。這兩類技巧主要分別用於處理二次多項式的分解和高次多項式(三次及以上)的分解。

進階技巧主要有三個:分組分解(添拆項)、換元法、主元法,這三個技巧的技巧性很強,並且一般不能直接分解因式,而是用於輔助前兩類分解技巧進行因式分解。

閱讀全文

與整式的因式分解方法與技巧相關的資料

熱點內容
四年級檢測電路有兩種方法分別是 瀏覽:935
安阻法的測量方法 瀏覽:142
兒童低燒怎麼辦簡單的退燒方法 瀏覽:396
淘寶上的存錢方法怎麼存 瀏覽:107
貓術後化膿最佳治療方法 瀏覽:12
夾核桃的工具安裝方法 瀏覽:17
二年級畫小汽車簡便方法 瀏覽:39
螺旋式led燈泡安裝方法 瀏覽:220
酸奶的食用方法 瀏覽:139
神經性胃炎的治療方法 瀏覽:258
人工整枝的主要技術方法有哪些 瀏覽:184
大田玉米收割方法視頻 瀏覽:700
山東省教學方法 瀏覽:825
支付密碼一般怎麼設置在哪裡設置方法 瀏覽:794
乳腺癌治療方法及中葯 瀏覽:553
老年人駝背有什麼方法治療 瀏覽:746
圖片批量重命名編號的方法 瀏覽:286
目前測量兒童發育最常用的方法 瀏覽:442
重鏈沉積病最新治療方法 瀏覽:7
斑禿怎麼治療方法好 瀏覽:938