導航:首頁 > 方法技巧 > 台積電的製作方法和技巧

台積電的製作方法和技巧

發布時間:2022-11-22 12:33:17

『壹』 檢查IC的五步驟是什麼

最近,三星以及台積電在先進半導體製程打得相當火熱,彼此都想要在晶圓代工中搶得先機以爭取訂單,幾乎成了 14 納米與 16 納米之爭,然而 14 納米與 16 納米這兩個數字的究竟意義為何,指的又是哪個部位?而在縮小工藝後又將來帶來什麼好處與難題?以下我們將就納米工藝做簡單的說明。

納米到底有多細微?

在開始之前,要先了解納米究竟是什麼意思。在數學上,納米是 0.000000001 米,但這是個相當差的例子,畢竟我們只看得到小數點後有很多個零,卻沒有實際的感覺。如果以指甲厚度做比較的話,或許會比較明顯。

用標尺實際測量的話可以得知指甲的厚度約為 0.0001 米(0.1 毫米),也就是說試著把一片指甲的側面切成 10 萬條線,每條線就約等同於 1 納米,由此可略為想像得到 1 納米是何等的微小了。

知道納米有多小之後,還要理解縮小工藝的用意,縮小晶體管的最主要目的,就是可以在更小的晶元中塞入更多的晶體管,讓晶元不會因技術提升而變得更大;其次,可以增加處理器的運算效率;再者,減少體積也可以降低耗電量;最後,晶元體積縮小後,更容易塞入行動裝置中,滿足未來輕薄化的需求。

再回來探究納米工藝是什麼,以 14 納米為例,其工藝是指在晶元中,線最小可以做到 14 納米的尺寸,下圖為傳統晶體管的長相,以此作為例子。縮小晶體管的最主要目的就是為了要減少耗電量,然而要縮小哪個部分才能達到這個目的?左下圖中的 L 就是我們期望縮小的部分。藉由縮小閘極長度,電流可以用更短的路徑從 Drain 端到 Source 端(有興趣的話可以利用 Google 以 MOSFET 搜尋,會有更詳細的解釋)。

(Source:www.slideshare.net)

此外,計算機是以 0 和 1 作運算,要如何以晶體管滿足這個目的呢?做法就是判斷晶體管是否有電流流通。當在 Gate 端(綠色的方塊)做電壓供給,電流就會從 Drain 端到 Source 端,如果沒有供給電壓,電流就不會流動,這樣就可以表示 1 和 0。(至於為什麼要用 0 和 1 作判斷,有興趣的話可以去查布爾代數,我們是使用這個方法作成計算機的)

尺寸縮小有其物理限制

不過,工藝並不能無限制的縮小,當我們將晶體管縮小到 20 納米左右時,就會遇到量子物理中的問題,讓晶體管有漏電的現象,抵銷縮小 L 時獲得的效益。作為改善方式,就是導入 FinFET(Tri-Gate)這個概念,如右上圖。在 Intel 以前所做的解釋中,可以知道藉由導入這個技術,能減少因物理現象所導致的漏電現象。

(Source:www.slideshare.net)

更重要的是,藉由這個方法可以增加 Gate 端和下層的接觸面積。在傳統的做法中(左上圖),接觸面只有一個平面,但是採用 FinFET(Tri-Gate)這個技術後,接觸面將變成立體,可以輕易的增加接觸面積,這樣就可以在保持一樣的接觸面積下讓 Source-Drain 端變得更小,對縮小尺寸有相當大的幫助。

最後,則是為什麼會有人說各大廠進入 10 納米製程將面臨相當嚴峻的挑戰,主因是 1 顆原子的大小大約為 0.1 納米,在 10 納米的情況下,一條線只有不到 100 顆原子,在製作上相當困難,而且只要有一個原子的缺陷,像是在製作過程中有原子掉出或是有雜質,就會產生不知名的現象,影響產品的良率。

如果無法想像這個難度,可以做個小實驗。在桌上用 100 個小珠子排成一個 10×10 的正方形,並且剪裁一張紙蓋在珠子上,接著用小刷子把旁邊的的珠子刷掉,最後使他形成一個 10×5 的長方形。這樣就可以知道各大廠所面臨到的困境,以及達成這個目標究竟是多麼艱巨。

隨著三星以及台積電在近期將完成 14 納米、16 納米 FinFET 的量產,兩者都想爭奪 Apple 下一代的 iPhone 晶元代工,我們將看到相當精彩的商業競爭,同時也將獲得更加省電、輕薄的手機,要感謝摩爾定律所帶來的好處呢。

【半導體科普】半導體產業的根基:硅晶圓是什麼?

在半導體的新聞中,總是會提到以尺寸標示的晶圓廠,如 8 吋或是 12 吋晶圓廠,然而,所謂的晶圓到底是什麼東西?其中 8 吋指的是什麼部分?要產出大尺寸的晶圓製造又有什麼難度呢?以下將逐步介紹半導體最重要的基礎——「晶圓」到底是什麼。

何謂晶圓?

晶圓(wafer),是製造各式計算機晶元的基礎。我們可以將晶元製造比擬成用樂高積木蓋房子,藉由一層又一層的堆棧,完成自己期望的造型(也就是各式晶元)。然而,如果沒有良好的地基,蓋出來的房子就會歪來歪去,不合自己所意,為了做出完美的房子,便需要一個平穩的基板。對晶元製造來說,這個基板就是接下來將描述的晶圓。

(Souse:Flickr/Jonathan Stewart?CC BY 2.0)

首先,先回想一下小時候在玩樂高積木時,積木的表面都會有一個一個小小圓型的凸出物,藉由這個構造,我們可將兩塊積木穩固的迭在一起,且不需使用膠水。晶元製造,也是以類似這樣的方式,將後續添加的原子和基板固定在一起。因此,我們需要尋找表面整齊的基板,以滿足後續製造所需的條件。

在固體材料中,有一種特殊的晶體結構──單晶(Monocrystalline)。它具有原子一個接著一個緊密排列在一起的特性,可以形成一個平整的原子表層。因此,採用單晶做成晶圓,便可以滿足以上的需求。然而,該如何產生這樣的材料呢,主要有二個步驟,分別為純化以及拉晶,之後便能完成這樣的材料。

如何製造單晶的晶圓

純化分成兩個階段,第一步是冶金級純化,此一過程主要是加入碳,以氧化還原的方式,將氧化硅轉換成 98% 以上純度的硅。大部份的金屬提煉,像是鐵或銅等金屬,皆是採用這樣的方式獲得足夠純度的金屬。但是,98% 對於晶元製造來說依舊不夠,仍需要進一步提升。因此,將再進一步採用西門子製程(Siemens process)作純化,如此,將獲得半導體製程所需的高純度多晶硅。

▲硅柱製造流程(Source: Wikipedia)

接著,就是拉晶的步驟。首先,將前面所獲得的高純度多晶硅融化,形成液態的硅。之後,以單晶的硅種(seed)和液體表面接觸,一邊旋轉一邊緩慢的向上拉起。至於為何需要單晶的硅種,是因為硅原子排列就和人排隊一樣,會需要排頭讓後來的人該如何正確的排列,硅種便是重要的排頭,讓後來的原子知道該如何排隊。最後,待離開液面的硅原子凝固後,排列整齊的單晶硅柱便完成了。

單晶硅柱(Souse:Wikipedia)

然而,8吋、12吋又代表什麼東西呢?他指的是我們產生的晶柱,長得像鉛筆筆桿的部分,表面經過處理並切成薄圓片後的直徑。至於製造大尺寸晶圓又有什麼難度呢?如前面所說,晶柱的製作過程就像是在做棉花糖一樣,一邊旋轉一邊成型。有製作過棉花糖的話,應該都知道要做出大而且扎實的棉花糖是相當困難的,而拉晶的過程也是一樣,旋轉拉起的速度以及溫度的控制都會影響到晶柱的質量。也因此,尺寸愈大時,拉晶對速度與溫度的要求就更高,因此要做出高質量 12 吋晶圓的難度就比 8 吋晶圓還來得高。

只是,一整條的硅柱並無法做成晶元製造的基板,為了產生一片一片的硅晶圓,接著需要以鑽石刀將硅晶柱橫向切成圓片,圓片再經由拋光便可形成晶元製造所需的硅晶圓。經過這么多步驟,晶元基板的製造便大功告成,下一步便是堆棧房子的步驟,也就是晶元製造。至於該如何製作晶元呢?接著往下看。

【半導體科普】IC 晶元的製造,層層打造的高科技工藝

在介紹過硅晶圓是什麼東西後,同時,也知道製造 IC 晶元就像是用樂高積木蓋房子一樣,藉由一層又一層的堆棧,創造自己所期望的造型。然而,蓋房子有相當多的步驟,IC 製造也是一樣,製造 IC 究竟有哪些步驟?本文將將就 IC 晶元製造的流程做介紹。

層層堆棧的晶元架構

在開始前,我們要先認識 IC 晶元是什麼。IC,全名集成電路(Integrated Circuit),由它的命名可知它是將設計好的電路,以堆棧的方式組合起來。藉由這個方法,我們可以減少連接電路時所需耗費的面積。下圖為 IC 電路的 3D 圖,從圖中可以看出它的結構就像房子的梁和柱,一層一層堆棧,這也就是為何會將 IC 製造比擬成蓋房子。

▲ IC 晶元的 3D 剖面圖。(Source:Wikipedia)

從上圖中 IC 晶元的 3D 剖面圖來看,底部深藍色的部分就是上一篇介紹的晶圓,從這張圖可以更明確的知道,晶圓基板在晶元中扮演的角色是何等重要。至於紅色以及土黃色的部分,則是於 IC 製作時要完成的地方。

首先,在這里可以將紅色的部分比擬成高樓中的一樓大廳。一樓大廳,是一棟房子的門戶,出入都由這里,在掌握交通下通常會有較多的機能性。因此,和其他樓層相比,在興建時會比較復雜,需要較多的步驟。在 IC 電路中,這個大廳就是邏輯閘層,它是整顆 IC 中最重要的部分,藉由將多種邏輯閘組合在一起,完成功能齊全的 IC 晶元。

黃色的部分,則像是一般的樓層。和一樓相比,不會有太復雜的構造,而且每層樓在興建時也不會有太多變化。這一層的目的,是將紅色部分的邏輯閘相連在一起。之所以需要這么多層,是因為有太多線路要連結在一起,在單層無法容納所有的線路下,就要多迭幾層來達成這個目標了。在這之中,不同層的線路會上下相連以滿足接線的需求。

分層施工,逐層架構

知道 IC 的構造後,接下來要介紹該如何製作。試想一下,如果要以油漆噴罐做精細作圖時,我們需先割出圖形的遮蓋板,蓋在紙上。接著再將油漆均勻地噴在紙上,待油漆干後,再將遮板拿開。不斷的重復這個步驟後,便可完成整齊且復雜的圖形。製造 IC 就是以類似的方式,藉由遮蓋的方式一層一層的堆棧起來。

製作 IC 時,可以簡單分成以上 4 種步驟。雖然實際製造時,製造的步驟會有差異,使用的材料也有所不同,但是大體上皆採用類似的原理。這個流程和油漆作畫有些許不同,IC 製造是先塗料再加做遮蓋,油漆作畫則是先遮蓋再作畫。以下將介紹各流程。

1.金屬濺鍍:將欲使用的金屬材料均勻灑在晶圓片上,形成一薄膜。
2.塗布光阻:先將光阻材料放在晶圓片上,透過光罩(光罩原理留待下次說明),將光束打在不要的部分上,破壞光阻材料結構。接著,再以化學葯劑將被破壞的材料洗去。
3.蝕刻技術:將沒有受光阻保護的硅晶圓,以離子束蝕刻。
4.光阻去除:使用去光阻液皆剩下的光阻溶解掉,如此便完成一次流程。
最後便會在一整片晶圓上完成很多 IC 晶元,接下來只要將完成的方形 IC 晶元剪下,便可送到封裝廠做封裝,至於封裝廠是什麼東西?就要待之後再做說明啰。

▲ 各種尺寸晶圓的比較。(Source:Wikipedia)

【半導體科普】IC 功能的關鍵,復雜繁瑣的晶元設計流程

在前面已經介紹過晶元製造的過程就如同用樂高蓋房子一樣,先有晶圓作為地基,再層層往上迭的晶元製造流程後,就可產出必要的 IC 晶元。然而,沒有設計圖,擁有再強製造能力都沒有用,因此,建築師的角色相當重要。但是 IC 設計中的建築師究竟是誰呢?接下來要針對 IC 設計做介紹。

在 IC 生產流程中,IC 多由專業 IC 設計公司進行規劃、設計,像是聯發科、高通、Intel 等知名大廠,都自行設計各自的 IC 晶元,提供不同規格、效能的晶元給下游廠商選擇。因為 IC 是由各廠自行設計,所以 IC 設計十分仰賴工程師的技術,工程師的素質影響著一間企業的價值。然而,工程師們在設計一顆 IC 晶元時,究竟有那些步驟?設計流程可以簡單分成如下。

設計第一步,訂定目標

在 IC 設計中,最重要的步驟就是規格制定。這個步驟就像是在設計建築前,先決定要幾間房間、浴室,有什麼建築法規需要遵守,在確定好所有的功能之後在進行設計,這樣才不用再花額外的時間進行後續修改。IC 設計也需要經過類似的步驟,才能確保設計出來的晶元不會有任何差錯。

規格制定的第一步便是確定 IC 的目的、效能為何,對大方向做設定。接著是察看有哪些協議要符合,像無線網卡的晶元就需要符合 IEEE 802.11 等規范,不然,這晶元將無法和市面上的產品兼容,使它無法和其他設備聯機。最後則是確立這顆 IC 的實作方法,將不同功能分配成不同的單元,並確立不同單元間鏈接的方法,如此便完成規格的制定。

設計完規格後,接著就是設計晶元的細節了。這個步驟就像初步記下建築的規畫,將整體輪廓描繪出來,方便後續制圖。在 IC 晶元中,便是使用硬體描述語言(HDL)將電路描寫出來。常使用的 HDL 有 Verilog、VHDL 等,藉由程序代碼便可輕易地將一顆 IC 地菜單達出來。接著就是檢查程序功能的正確性並持續修改,直到它滿足期望的功能為止。

▲ 32 bits 加法器的 Verilog 範例。

有了計算機,事情都變得容易

有了完整規畫後,接下來便是畫出平面的設計藍圖。在 IC 設計中,邏輯合成這個步驟便是將確定無誤的 HDL code,放入電子設計自動化工具(EDA tool),讓計算機將 HDL code 轉換成邏輯電路,產生如下的電路圖。之後,反復的確定此邏輯閘設計圖是否符合規格並修改,直到功能正確為止。

▲ 控制單元合成後的結果。

最後,將合成完的程序代碼再放入另一套 EDA tool,進行電路布局與繞線(Place And Route)。在經過不斷的檢測後,便會形成如下的電路圖。圖中可以看到藍、紅、綠、黃等不同顏色,每種不同的顏色就代表著一張光罩。至於光罩究竟要如何運用呢?

▲ 常用的演算晶元- FFT 晶元,完成電路布局與繞線的結果。

層層光罩,迭起一顆晶元

首先,目前已經知道一顆 IC 會產生多張的光罩,這些光罩有上下層的分別,每層有各自的任務。下圖為簡單的光罩例子,以集成電路中最基本的組件 CMOS 為範例,CMOS 全名為互補式金屬氧化物半導體(Complementary metal–oxide–semiconctor),也就是將 NMOS 和 PMOS 兩者做結合,形成 CMOS。至於什麼是金屬氧化物半導體(MOS)?這種在晶元中廣泛使用的組件比較難說明,一般讀者也較難弄清,在這里就不多加細究。

下圖中,左邊就是經過電路布局與繞線後形成的電路圖,在前面已經知道每種顏色便代表一張光罩。右邊則是將每張光罩攤開的樣子。製作是,便由底層開始,依循上一篇 IC 晶元的製造中所提的方法,逐層製作,最後便會產生期望的晶元了。

至此,對於 IC 設計應該有初步的了解,整體看來就很清楚 IC 設計是一門非常復雜的專業,也多虧了計算機輔助軟體的成熟,讓 IC 設計得以加速。IC 設計廠十分依賴工程師的智能,這里所述的每個步驟都有其專門的知識,皆可獨立成多門專業的課程,像是撰寫硬體描述語言就不單純的只需要熟悉程序語言,還需要了解邏輯電路是如何運作、如何將所需的演算法轉換成程序、合成軟體是如何將程序轉換成邏輯閘等問題。

在了解 IC 設計師如同建築師,晶圓代工廠是建築營造廠之後,接下來該暸解最終如何把晶元包裝成一般用戶所熟知的外觀,也就是「封裝」。下面將介紹 IC 封裝是什麼以及幾個重要的技術。

【半導體科普】封裝,IC 晶元的最終防護與統整

經過漫長的流程,從設計到製造,終於獲得一顆 IC 晶元了。然而一顆晶元相當小且薄,如果不在外施加保護,會被輕易的刮傷損壞。此外,因為晶元的尺寸微小,如果不用一個較大尺寸的外殼,將不易以人工安置在電路板上。因此,本文接下來要針對封裝加以描述介紹。

目前常見的封裝有兩種,一種是電動玩具內常見的,黑色長得像蜈蚣的 DIP 封裝,另一為購買盒裝 CPU 時常見的 BGA 封裝。至於其他的封裝法,還有早期 CPU 使用的 PGA(Pin Grid Array;Pin Grid Array)或是 DIP 的改良版 QFP(塑料方形扁平封裝)等。因為有太多種封裝法,以下將對 DIP 以及 BGA 封裝做介紹。

傳統封裝,歷久不衰

首先要介紹的是雙排直立式封裝(Dual Inline Package;DIP),從下圖可以看到採用此封裝的 IC 晶元在雙排接腳下,看起來會像條黑色蜈蚣,讓人印象深刻,此封裝法為最早採用的 IC 封裝技術,具有成本低廉的優勢,適合小型且不需接太多線的晶元。但是,因為大多採用的是塑料,散熱效果較差,無法滿足現行高速晶元的要求。因此,使用此封裝的,大多是歷久不衰的晶元,如下圖中的 OP741,或是對運作速度沒那麼要求且晶元較小、接孔較少的 IC 晶元。

▲ 左圖的 IC 晶元為 OP741,是常見的電壓放大器。右圖為它的剖面圖,這個封裝是以金線將晶元接到金屬接腳(Leadframe)。(Source :左圖Wikipedia、右圖Wikipedia)

至於球格數組(Ball Grid Array,BGA)封裝,和 DIP 相比封裝體積較小,可輕易的放入體積較小的裝置中。此外,因為接腳位在晶元下方,和 DIP 相比,可容納更多的金屬接腳,相當適合需要較多接點的晶元。然而,採用這種封裝法成本較高且連接的方法較復雜,因此大多用在高單價的產品上。

▲ 左圖為採用 BGA 封裝的晶元,主流的 X86 CPU 大多使用這種封裝法。右圖為使用覆晶封裝的 BGA 示意圖。(Source: 左圖Wikipedia)

移動設備興起,新技術躍上舞台

然而,使用以上這些封裝法,會耗費掉相當大的體積。像現在的移動設備、可穿戴設備等,需要相當多種組件,如果各個組件都獨立封裝,組合起來將耗費非常大的空間,因此目前有兩種方法,可滿足縮小體積的要求,分別為 SoC(System On Chip)以及 SiP(System In Packet)。

在智能型手機剛興起時,在各大財經雜志上皆可發現 SoC 這個名詞,然而 SoC 究竟是什麼東西?簡單來說,就是將原本不同功能的 IC,整合在一顆晶元中。藉由這個方法,不單可以縮小體積,還可以縮小不同 IC 間的距離,提升晶元的計算速度。至於製作方法,便是在 IC 設計時間時,將各個不同的 IC 放在一起,再透過先前介紹的設計流程,製作成一張光罩。

然而,SoC 並非只有優點,要設計一顆 SoC 需要相當多的技術配合。IC 晶元各自封裝時,各有封裝外部保護,且 IC 與 IC 間的距離較遠,比較不會發生交互干擾的情形。但是,當將所有 IC 都包裝在一起時,就是噩夢的開始。IC 設計廠要從原先的單純設計 IC,變成了解並整合各個功能的 IC,增加工程師的工作量。此外,也會遇到很多的狀況,像是通訊晶元的高頻訊號可能會影響其他功能的 IC 等情形。

此外,SoC 還需要獲得其他廠商的 IP(intellectual property)授權,才能將別人設計好的組件放到 SoC 中。因為製作 SoC 需要獲得整顆 IC 的設計細節,才能做成完整的光罩,這同時也增加了 SoC 的設計成本。或許會有人質疑何不自己設計一顆就好了呢?因為設計各種 IC 需要大量和該 IC 相關的知識,只有像 Apple 這樣多金的企業,才有預算能從各知名企業挖角頂尖工程師,以設計一顆全新的 IC,透過合作授權還是比自行研發劃算多了。

折衷方案,SiP 現身

作為替代方案,SiP 躍上整合晶元的舞台。和 SoC 不同,它是購買各家的 IC,在最後一次封裝這些 IC,如此便少了 IP 授權這一步,大幅減少設計成本。此外,因為它們是各自獨立的 IC,彼此的干擾程度大幅下降。

▲ Apple Watch 採用 SiP 技術將整個計算機架構封裝成一顆晶元,不單滿足期望的效能還縮小體積,讓手錶有更多的空間放電池。(Source:Apple 官網)

採用 SiP 技術的產品,最著名的非 Apple Watch 莫屬。因為 Watch 的內部空間太小,它無法採用傳統的技術,SoC 的設計成本又太高,SiP 成了首要之選。藉由 SiP 技術,不單可縮小體積,還可拉近各個 IC 間的距離,成為可行的折衷方案。下圖便是 Apple Watch 晶元的結構圖,可以看到相當多的 IC 包含在其中。

▲ Apple Watch 中採用 SiP 封裝的 S1 晶元內部配置圖。(Source:chipworks)

完成封裝後,便要進入測試的階段,在這個階段便要確認封裝完的 IC 是否有正常的運作,正確無誤之後便可出貨給組裝廠,做成我們所見的電子產品。至此,半導體產業便完成了整個生產的任務。

『貳』 硅基晶元物理極限是七納米,為何台積電卻依然能做出五納米的晶元

其實在各種晶元領域,所謂的物理極限都只是當時人們技術水平不夠所導致的理論極限,就比如在若干年之前,當時研究硅基晶元的人難道會想到現在的硅基晶元能做成這樣嗎?時代是在進步的,人類的科技水平每日都在更新,硅基晶元的物理極限被不斷被突破是一個非常正常的現象。

隨著人類的工藝進程不斷突破物理上的極限,人類的製造工藝也會達到一個又一個新的標准,不想被時代拋棄的話,只能不斷的自我進步,晶元絕對是世界上一個經久不衰的領域,這個領域的突破是可以直接代表了人類在科技水平上的突破。

『叄』 台積電4nm工藝將提前量產,台積電的晶元為何如此厲害

台積電是全球最大的晶元製造商,擁有世界最先進的晶元生產技術。台積電的市場價值甚至超過了美國晶元巨頭英特爾。

日前,台積電在其官網所披露的二季度財報分析師電話會議材料中,提及4nm工藝的。台積電CEO、副董事長魏哲家在會上表示,他們將推出4nm工藝,作為5nm工藝家族的延伸。4nm工藝將兼容5nm工藝的設計規則,計劃在2022年大規模量產。

台積電的業務厲害在哪?

台積電主營業務是晶元加工,而晶元加工主要依賴於光刻機,而光刻機,真的很難。比晶元要難得多,而真正高端晶元用到的頂尖光刻機,全世界只有荷蘭的ASML可以生產。而這個公司的股東飛利浦也是最初台積電的股東。也就是因為這一層關系,台積電才能沾光做大。如果ASML不賣光刻機給它了,台積電也就是個普通的晶元加工企業。而ASML雖是荷蘭企業,股東卻是美國及其盟友企業,高端光刻機對大陸封鎖。

『肆』 低功耗CPU是怎麼做到的CPU是如何工作的

低功耗CPU其實就是通過更高密度的製造工藝做到的,而且CPU往往是通過集成電路加上代碼運行程序才可以實現運作。

一、低功耗CPU是通過高密度製造工藝做到的

其實目前的手機CPU已經實現了兩納米的製造工藝,而且這種工藝最終也會在明年的時候全面商用,這對於許多消費者來說都是一個新鮮事物,畢竟大家很關注低功耗的CPU是怎麼樣的,同時也關注CPU的運作過程,但是對於某些具體的參數未必就能夠耳熟能詳。但是不管怎麼說,目前CPU製造工藝的進一步提升,這將能夠直接改變手機市場以及消費者的體驗。

『伍』 台積電是做什麼的

台灣積體電路製造股份有限公司,中文簡稱:台積電,英文簡稱:tsmc,屬於半導體製造公司。成立於1987年,是全球第一家專業積體電路製造服務(晶圓代工foundry)企業,總部與主要工廠位於中國台灣省新竹市科學園區。

目前台積電的主要營收,就來自於這些世界上赫赫有名的晶元設計公司們,根據財報猜測,目前台積電前兩大客戶分別是蘋果與華為海思,兩大手機晶元巨頭貢獻台積電收入超過40%,緊跟其後的則是高通、博通、NVIDIA、AMD、聯發科等世界上最著名的晶元設計企業。

(5)台積電的製作方法和技巧擴展閱讀

台積電可以說是創造了晶元代工產業。以前的晶元設計公司都是設計之後自己製造的,典型的現在的因特爾還是這個模式。後來隨著晶元技術越來越先進,製造晶元的成本也就越來越高,風險隨之也就越來越大。張忠謀看準了這個時機創造了台積電。某種意義上說台積電就是矽谷第一次產業升級以及亞洲四小龍崛起的標志。

2020年7月16日,在台積電二季度業績說明會上,發言人在會上透露,未計劃在9月14日之後為華為技術有限公司繼續供貨。而美國政府5月15日宣布的對華為限制新規將於9月15日生效。2020年7月13日,台媒鉅亨網曾報道,台積電已向美國政府遞交意見書,希望能在華為禁令120天寬限期滿之後,可繼續為華為供貨。

『陸』 tsmc mmy技巧

tsmc mmy技巧如下:

tsmc mmy屬於指針編程,快慢指針一起從 head 出發,每次快指針走 2 步,慢指針只走 1 步,如果存在環,那麼兩個指針一定會相遇。而快慢指針有一個永遠不變的真理:快指針走的長度永遠是慢指針走的長度的 2 倍。

『柒』 集成電路是怎樣製造出來

微電子技術涉及的行業很多,包括化工、光電技術、半導體材料、精密設備製造、軟體等,其中又以集成電路技術為核心,包括集成電路的設計、製造.集成電路(IC)常用基本概念有:

晶圓,多指單晶硅圓片,由普通硅沙拉制提煉而成,是最常用的半導體材料,按其直徑分為4英寸、5英寸、6英寸、8英寸等規格,近來發展出12英寸甚至更大規格.晶圓越大,同一圓片上可生產的IC就多,可降低成本;但要求材料技術和生產技術更高.

前、後工序:IC製造過程中, 晶圓光刻的工藝(即所謂流片),被稱為前工序,這是IC製造的最要害技術;晶圓流片後,其切割、封裝等工序被稱為後工序.

光刻:IC生產的主要工藝手段,指用光技術在晶圓上刻蝕電路.

線寬:4微米/1微米/0.6微未/0.35微米/035微米等,是指IC生產工藝可達到的最小導線寬度,是IC工藝先進水平的主要指標.線寬越小,集成度就高,在同一面積上就集成更多電路單元.

封裝:指把矽片上的電路管腳,用導線接引到外部接頭處,以便與其它器件連接.

存儲器:專門用於保存數據信息的IC.

邏輯電路:以二進制為原理的數字電路。

1.集成電路
隨著電子技術的發展及各種電器的普及,集成電路的應用越來越廣,大到飛入太空的"神州五號",小到我們身邊的電子手錶,裡面都有我們下面將要說到的集成電路。
我們將各種電子元器件以相互聯系的狀態集成到半導體材料(主要是硅)或者絕緣體材料薄層片子上,再用一個管殼將其封裝起來,構成一個完整的、具有一定功能的電路或系統。這種有一定功能的電路或系統就是集成電路了。就像人體由不同器官組成,各個器官各司其能而又相輔相成,少掉任何一部分都不能完整地工作一樣。任何一個集成電路要工作就必須具有接收信號的輸入埠、發送信號的輸出埠以及對信號進行處理的控制電路。輸入、輸出(I/O)埠簡單的說就是我們經常看到的插口或者插頭,而控制電路是看不到的,這是集成電路製造廠在凈化間里製造出來的。
如果將集成電路按集成度高低分類,可以分為小規模(SSI)、中規模(MSI)、大規模(LSI)和超大規模(VLSI)。近年來出現的特大規模集成電路(UISI),以小於1um為最小的設計尺寸,這樣將在每個片子上有一千萬到一億個元件。

2.系統晶元(SOC)
不知道大家有沒有看過美國大片《終結者》,在看電影的時候,有沒有想過,機器人為什麼能夠像人一樣分析各種問題,作出各種動作,好像他也有大腦,也有記憶一樣。其實他裡面就是有個系統晶元(SOC)在工作。當然,那個是科幻片,科技還沒有發展到那個水平。但是SOC已成為集成電路設計學領域里的一大熱點。在不久的未來,它就可以像"終結者"一樣進行工作了。
系統晶元是採用低於0.6um工藝尺寸的電路,包含一個或者多個微處理器(大腦),並且有相當容量的存儲器(用來記憶),在一塊晶元上實現多種電路,能夠自主地工作,這里的多種電路就是對信號進行操作的各種電路,就像我們的手、腳,各有各的功能。這種集成電路可以重復使用原來就已經設計好的功能復雜的電路模塊,這就給設計者節省了大量時間。
SOC技術被廣泛認同的根本原因,並不在於它擁有什麼非常特別的功能,而在於它可以在較短的時間內被設計出來。SOC的主要價值是可以有效地降低電子信息系統產品的開發成本,縮短產品的上市周期,增強產品的市場競爭力。

3.集成電路設計
對於"設計"這個詞,大家肯定不會感到陌生。在修建三峽水電站之前,我們首先要根據地理位置、水流緩急等情況把它在電腦上設計出來。製造集成電路同樣也要根據所需要電路的功能把它在電腦上設計出來。
集成電路設計簡單的說就是設計硬體電路。我們在做任何事情之前都會仔細地思考究竟怎麼樣才能更好地完成這件事以達到我們預期的目的。我們需要一個安排、一個思路。設計集成電路時,設計者首先根據對電路性能和功能的要求提出設計構思。然後將這樣一個構思逐步細化,利用電子設計自動化軟體實現具有這些性能和功能的集成電路。假如我們現在需要一個火警電路,當室內的溫度高於50℃就報警。設計者將按照我們的要求構思,在計算機上利用軟體完成設計版圖並模擬測試。如果模擬測試成功,就可以說已經實現了我們所要的電路。
集成電路設計一般可分為層次化設計和結構化設計。層次化設計就是把復雜的系統簡化,分為一層一層的,這樣有利於發現並糾正錯誤;結構化設計則是把復雜的系統分為可操作的幾個部分,允許一個設計者只設計其中一部分或更多,這樣其他設計者就可以利用他已經設計好的部分,達到資源共享。

4.矽片製造
我們知道許多電器中都有一些薄片,這些薄片在電器中發揮著重要的作用,它們都是以矽片為原材料製造出來的。矽片製造為晶元的生產提供了所需的矽片。那麼矽片又是怎樣製造出來的呢?
矽片是從大塊的硅晶體上切割下來的,而這些大塊的硅晶體是由普通硅沙拉制提煉而成的。可能我們有這樣的經歷,塊糖在溫度高的時候就會熔化,要是粘到手上就會拉出一條細絲,而當細絲拉到離那顆糖較遠的地方時就會變硬。其實我們這兒製造矽片,首先就是利用這個原理,將普通的硅熔化,拉制出大塊的硅晶體。然後將頭部和尾部切掉,再用機械對其進行修整至合適直徑。這時看到的就是有合適直徑和一定長度的"硅棒"。再把"硅棒"切成一片一片薄薄的圓片,圓片每一處的厚度必須是近似相等的,這是矽片製造中比較關鍵的工作。最後再通過腐蝕去除切割時殘留的損傷。這時候一片片完美的硅圓片就製造出來了。

5.硅單晶圓片
我們製造一個晶元,需要先將普通的硅製造成硅單晶圓片,然後再通過一系列工藝步驟將硅單晶圓片製造成晶元。下面我們就來看一下什麼是硅單晶圓片。
從材料上看,硅單晶圓片的主要材料是硅,而且是單晶硅;從形狀上看,它是圓形片狀的。硅單晶圓片是最常用的半導體材料,它是硅到晶元製造過程中的一個狀態,是為了晶元生產而製造出來的集成電路原材料。它是在超凈化間里通過各種工藝流程製造出來的圓形薄片,這樣的薄片必須兩面近似平行且足夠平整。硅單晶圓片越大,同一圓片上生產的集成電路就越多,這樣既可降低成本,又能提高成品率,但材料技術和生產技術要求會更高。
如果按直徑分類,硅單晶圓片可以分為4英寸、5英寸、6英寸、8英寸等規格,近來又發展出12英寸甚至更大規格。最近國內最大的硅單晶圓片製造廠——中芯國際就准備在北京建設一條12英寸的晶圓生長線。

6.晶元製造
隨著科學技術的飛速發展,晶元的性能越來越高,而體積卻越來越小。我們在使用各種電子產品時無不嘆服現代科技所創造的奇跡。而這樣的奇跡,你知道是怎樣被創造出來的嗎?
晶元是用地球上最普遍的元素硅製造出來的。地球上呈礦石形態的砂子,在對它進行極不尋常的加工轉變之後,這種簡單的元素就變成了用來製作集成電路晶元的矽片。
我們把電腦上設計出來的電路圖用光照到金屬薄膜上,製造出掩膜。就象燈光從門縫透過來,在地上形成光條,若光和金屬薄膜能起作用而使金屬薄膜在光照到的地方形成孔,那就在其表面有電路的地方形成了孔,這樣就製作好了掩膜。我們再把剛製作好的掩膜蓋在矽片上,當光通過掩膜照射,電路圖就"印製"在硅晶片上。如果我們按照電路圖使應該導電的地方連通,應該絕緣的地方斷開,這樣我們就在矽片上形成了所需要的電路。我們需要多個掩膜,形成上下多層連通的電路,那麼就將原來的矽片製造成了晶元。所以我們說矽片是晶元製造的原材料,矽片製造是為晶元製造准備的。

7.EMS
提起EMS,大家可能會想到郵政特快專遞,但我們集成電路產業裡面所說的EMS是指沒有自己的品牌產品,專門替品牌廠商生產的電子合約製造商,也稱電子製造服務企業。那麼就讓我們來看一下電子合約製造商到底是干什麼的。
所謂電子合約製造商,就是把別人的定單拿過來,替別人加工生產,就像是我們請鍾點工回來打掃衛生、做飯一樣,他們必須按照我們的要求來做事。EMS在各個方面,各個環節都有優勢,從采購到生產、銷售甚至在設計方面都具有自己的特色。因而它成了專門為品牌廠商生產商品的企業。EMS的優勢在於它的製造成本低,反應速度快,有自己一定的設計能力和強大的物流渠道。
最近,一些國際知名的EMS電子製造商正在將他們的製造基地向中國全面轉移。他們的到來當然會沖擊國內做製造的企業。但是對其他企業來說可能就是個好消息,因為這些EMS必須要依靠本地的供應商提供零部件。

8.流片
在觀看了電影《摩登時代》後,我們可能經常想起卓別林鈕螺絲的那個鏡頭。大家知道影片中那種流水線一樣的生產就是生產線。只是隨著科學技術的發展,在現在的生產線上卓別林所演的角色已經被機器取代了。我們像流水線一樣通過一系列工藝步驟製造晶元,這就是流片。
在晶元製造過程中一般有兩段時間可以叫做流片。在大規模生產晶元時,那流水線一樣地生產就是其中之一。大家可能很早就已經知道了這個過程叫流片,但下面這種情況就不能盡說其詳了。我們在搞設計的時候發現某個地方可以進行修改以取得更好的效果,但又怕這樣的修改會給晶元帶來意想不到的後果,如果根據這樣一個有問題的設計大規模地製造晶元,那麼損失就會很大。所以為了測試集成電路設計是否成功,必須進行流片,即從一個電路圖到一塊晶元,檢驗每一個工藝步驟是否可行,檢驗電路是否具備我們所要的性能和功能。如果流片成功,就可以大規模地製造晶元;反之,我們就需要找出其中的原因,並進行相應的優化設計。

9.多項目晶圓(MPW)
隨著製造工藝水平的提高,在生產線上製造晶元的費用不斷上漲,一次0.6微米工藝的生產費用就要20-30萬元,而一次0.35微米工藝的生產費用則需要60-80萬元。如果設計中存在問題,那麼製造出來的所有晶元將全部報廢。為了降低成本,我們採用了多項目晶圓。
所謂多項目晶圓(簡稱MPW),就是將多種具有相同工藝的集成電路設計放在同一個硅圓片上、在同一生產線上生產,生產出來後,每個設計項目可以得到數十片晶元樣品,這一數量足夠用於設計開發階段的實驗、測試。而實驗費用就由所有參加多項目晶圓的項目按照各自所佔的晶元面積分攤,極大地降低了實驗成本。這就很象我們都想吃巧克力,但是我們沒有必要每個人都去買一盒,可以只買來一盒分著吃,然後按照各人吃了多少付錢。
多項目晶圓提高了設計效率,降低了開發成本,為設計人員提供了實踐機會,並促進了集成電路設計成果轉化,對IC設計人才的培訓,及新產品的開發研製均有相當的促進作用。

10.晶圓代工
我們知道中芯國際是中國大陸知名的IT企業,可能也聽說了這樣一個消息,就是"台積電"將要來大陸投資建廠。他們所從事的工作都是晶圓代工。那現在讓我們來了解一下什麼是晶圓代工。
我們是熟悉加工坊的,它使用各種設備把客戶送過去需要加工的小麥、水稻加工成為需要的麵粉、大米等。這樣就沒有必要每個需要加工糧食的人都來建造加工坊。我們現在的晶圓代工廠就像是一個加工坊。晶圓代工就是向專業的集成電路設計公司或電子廠商提供專門的製造服務。這種經營模式使得集成電路設計公司不需要自己承擔造價昂貴的廠房,就能生產。這就意味著,台積電等晶圓代工商將龐大的建廠風險分攤到廣大的客戶群以及多樣化的產品上,從而集中開發更先進的製造流程。
隨著半導體技術的發展,晶圓代工所需投資也越來越大,現在最普遍採用的8英寸生產線,投資建成一條就需要10億美元。盡管如此,很多晶圓代工廠還是投進去很多資金、采購了很多設備。這足以說明晶圓代工將在不久的未來取得很大發展,佔全球半導體產業的比重也將與日俱增。

11.SMT
我們經常會看到電器里有塊板子,上面有很多電子器件。要是有機會看到板子的背面,你將看到正面器件的"腳"都通過板子上的孔到背面來了。現在出現了一種新興技術,比我們剛才說的穿孔技術有更多優點。
SMT 即表面貼裝技術,是電子組裝業中的一個新秀。隨著電子產品的小型化,占面積太大的穿孔技術將不再適合,只能採用表面貼裝技術。它不需要在板上穿孔,而是直接貼在正面。當然器件的"腳"就得短一點,細一點。SMT使電子組裝變得越來越快速和簡單,使電子產品的更新換代速度越來越快,價格也越來越低。這樣廠方就會更樂意採用這種技術以低成本高產量生產出優質產品以滿足顧客需求和加強市場競爭力。
SMT的組裝密度高、電子產品體積和重量只有原來的十分之一左右。一般採用SMT技術後,電子產品的可靠性高,抗振能力強。而且SMT易於實現自動化,能夠提高生產效率,降低成本,這樣就節省了大量的能源、設備、人力和時間。

12.晶元封裝
我們在走進商場的時候,就會發現裡面幾乎每個商品都被包裝過。那麼我們即將說到的封裝和包裝有什麼區別呢?
封裝就是安裝半導體集成電路晶元用的外殼。因為晶元必須與外界隔離,以防止空氣中的雜質對晶元電路的腐蝕而造成電路性能下降,所以封裝是至關重要的。封裝後的晶元也更便於安裝和運輸。封裝的這些作用和包裝是基本相似的,但它又有獨特之處。封裝不僅起著安放、固定、密封、保護晶元和增強電路性能的作用,而且還是溝通晶元內部世界與外部電路的橋梁--晶元上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印製板上的導線與其他器件建立連接。因此,封裝對 CPU和其他大規模集成電路都起著重要的作用。隨著CPU和其他大規模電路的進步,集成電路的封裝形式也將有相應的發展。
晶元的封裝技術已經歷了好幾代的變遷,技術指標一代比一代先進,晶元面積與封裝面積之比(衡量封裝技術水平的主要指標)越來越接近於1,適用頻率越來越高,耐溫性能也越來越好。它還具有重量小,可靠性高,使用方便等優點。

13.晶元測試
為了能在當今激烈的市場競爭中立於不敗之地,電子產品的生產廠家就必需確保產品質量。而為了保證產品質量,在生產過程中就需要採用各類測試技術進行檢測,以及時發現缺陷和故障並進行修復。
我們在使用某個晶元的時候,經常發現這樣的現象,就是晶元的其中幾個引腳沒有用到。我們甚至還會以為這樣子使用這個晶元是用錯了。其實這幾個引腳是用來測試用的。在晶元被製造出來之後,還要由晶元測試工程師對晶元進行測試,看這些生產出來的晶元的性能是否符合要求、晶元的功能是否能夠實現。實際上,我們這種測試方法只是接觸式測試,晶元測試技術中還有非接觸式測試。
隨著線路板上元器件組裝密度的提高,傳統的電路接觸式測試受到了極大的限制,而非接觸式測試的應用越來越普遍。所謂非接觸測試,主要就是利用光這種物質對製造過程中或者已經製造出來的晶元進行測試。這就好像一個人覺得腿痛,他就去醫院進行一個X光透視,看看腿是不是出現骨折或者其他問題。這種方法不會收到元器件密度的影響,能夠以很快的測試速度找出缺陷。
14.覆晶封裝技術
我們都知道鳥籠是用竹棒把上下兩塊木板撐出一個空間,鳥就生活在這裡面。我們將要說到的覆晶封裝和鳥籠是有相似之處的。下面我們就來看一下什麼是覆晶封裝技術。
我們通常把晶片經過一系列工藝後形成了電路結構的一面稱作晶片的正面。原先的封裝技術是在襯底之上的晶片的正面是一直朝上的,而覆晶技術是將晶片的正面反過來,在晶片(看作上面那塊板)和襯底(看作下面那塊板)之間及電路的外圍使用凸塊(看作竹棒)連接,也就是說,由晶片、襯底、凸塊形成了一個空間,而電路結構(看作鳥)就在這個空間裡面。這樣封裝出來的晶元具有體積小、性能高、連線短等優點。
隨著半導體業的迅速發展,覆晶封裝技術勢必成為封裝業的主流。典型的覆晶封裝結構是由凸塊下面的冶金層、焊點、金屬墊層所構成,因此冶金層在元件作用時的消耗將嚴重影響到整個結構的可靠度和元件的使用壽命。

15.凸塊製程
我們小時候經常玩橡皮泥,可能還這樣子玩過,就是先把橡皮泥捏成一個頭狀,再在上面加上眼睛、鼻子、耳朵等。而我們長凸塊就和剛剛說到的"長"眼睛、鼻子、耳朵差不多了。
晶圓製造完成後,在晶圓上進行長凸塊製程。在晶圓上生長凸塊後,我們所看到的就像是一個平底鍋,鍋的邊沿就是凸塊,而中間部分就是用來形成電路結構的。按凸塊的結構分,可以把它分為本體和球下冶金層(UBM)兩個部分。
就目前晶圓凸塊製程而言,可分為印刷技術和電鍍技術,兩種技術各擅勝場。就電鍍技術而言,其優勢是能提供更好的線寬和凸塊平面度,可提供較大的晶元面積,同時電鍍凸塊技術適合高鉛製程的特性,可更大幅度地提高晶元的可靠度,增加晶元的強度與運作效能。而印刷技術的製作成本低廉較具有彈性,適用於大量和小量的生產,但是製程式控制制不易,使得這種方法較少運用於生產凸塊間距小於150μm的產品。

16.晶圓級封裝
在一些古董展覽會上,我們經常會看到這樣的情形,即用一隻玻璃罩罩在古董上。為了空氣不腐蝕古董,還會採用一些方法使玻璃罩和下面的座墊之間密封。下面我們借用這個例子來理解晶圓級封裝。
晶圓級封裝(WLP)就是在其上已經有某些電路微結構(好比古董)的晶片(好比座墊)與另一塊經腐蝕帶有空腔的晶片(好比玻璃罩)用化學鍵結合在一起。在這些電路微結構體的上面就形成了一個帶有密閉空腔的保護體(硅帽),可以避免器件在以後的工藝步驟中遭到損壞,也保證了晶片的清潔和結構體免受污染。這種方法使得微結構體處於真空或惰性氣體環境中,因而能夠提高器件的品質。
隨著IC晶元的功能與高度集成的需求越來越大,目前半導體封裝產業正向晶圓級封裝方向發展。它是一種常用的提高矽片集成度的方法,具有降低測試和封裝成本,降低引線電感,提高電容特性,改良散熱通道,降低貼裝高度等優點。

17.晶圓位階的晶元級封裝技術
半導體封裝技術在過去二十年間取得了長足的發展,預計在今後二十年裡還會出現更加積極的增長和新一輪的技術進步。晶圓位階的晶元級封裝技術是最近出現的有很大積極意義的封裝技術。
我們把晶元原來面積與封裝後面積之比接近1:1的理想情況的封裝就叫做晶元級封裝。就像我們吃桔子,總希望它的皮殼薄點。晶圓位階的晶元級封裝技術就是晶圓位階處理的晶元級封裝技術。它可以有效地提高硅的集成度。晶圓位階處理就是在晶圓製造出來後,直接在晶圓上就進行各種處理,使相同面積的晶圓可以容納更多的經晶元級封裝的晶元,從而提高硅的集成度。同理,假如我們讓人站到一間屋子裡去,如果在冬天可能只能站十個人,而在夏天衣服穿少了,那就可以站十一或者十二個人。
晶圓位階的晶元級封裝製程將在今後的幾年裡以很快的速度成長,這將會在手機等手提電子設備上體現出來。我們以後的手機肯定會有更多的功能,比如可以看電視等,但是它們可能比我們現在使用的更小,那就用到了晶圓位階的晶元級封裝技術。

資料來源:COB邦定技術(http://www.bonding-cob.com/index.asp)

『捌』 台積電晶元為什麼那麼厲害

1、台積電掌握著世界上最先進的晶元製造技術。是晶元界的老牌公司,有十分充足的技術儲備。

2、市場佔有率高,美國等西方國家沒有限制它,反而支持它,給它很大的空間。

在全球晶元界中,台積電的地位是毋庸置疑的。台積電作為目前世界排名第一的晶圓代工廠,說明它掌握了晶元製作的最後一步。

簡介:

台灣積體電路製造股份有限公司,中文簡稱:台積電,英文簡稱:tsmc,屬於半導體製造公司。成立於1987年,是全球第一家專業積體電路製造服務(晶圓代工foundry)企業,總部與主要工廠位於中國台灣省的新竹市科學園區。

台積電是半導體製造公司,主要是通過各種半導體設備,刻蝕機,蒸鍍機,沉積設備,光刻機等把客戶設計好的ic 加工出來。核心技術:工藝流程式控制制、晶元的研發。

台積電作為全球最大的代工產業之一,在美國的壓力下不得不終止和華為的合作,是華為出現了無晶元可用的局面,而且台積電在晶元代工行業已經成為了行業的領頭羊,率先研發成功了5nm晶元的生產。

閱讀全文

與台積電的製作方法和技巧相關的資料

熱點內容
小學語文有效教學方法之探析 瀏覽:559
和田玉白玉項鏈的鑒別方法 瀏覽:679
露娜潔面儀mini2使用方法 瀏覽:916
閹雞快速止血的方法 瀏覽:878
蘋果微信清理緩存在哪裡設置方法 瀏覽:748
金鋼窗安裝方法 瀏覽:124
測排卵什麼方法最准確 瀏覽:850
抒情方法有哪些 瀏覽:432
青島梅毒治療最好的方法 瀏覽:998
臉上汗斑的治療方法 瀏覽:60
好的教育方法的視頻 瀏覽:58
快速上枕頭荷葉邊方法 瀏覽:736
手機拍照的視頻在哪裡設置方法 瀏覽:934
什麼方法治口臭 瀏覽:173
幼兒美術活動教學方法 瀏覽:126
瑞典輕症治療方法 瀏覽:616
原始股退出計算方法 瀏覽:409
水泵間隙的測量方法 瀏覽:520
材料分析方法視頻 瀏覽:332
杜蘭特真正的訓練方法 瀏覽:320