Ⅰ 如何高效復習小升初數學
小升初數學重點知識的復習方法一:
小學數學的應用題往往是概念、公式的應用,正方形、平行四邊形、三角形的、梯形的面積計算方法等等。
(一)分數、百分數的應用題
分率的概念是解題的關鍵,其中標准量「1」的選取是解題突破口。
(二)工程問題
工程問題要弄清工作量、工作效率、工作時間三者之間的關系。
(三)行程問題
從表層意義上是考查學生對路程、時間、速度三者關系的認識,從深層次的角度分析,實際上是檢查學生的變通能力,因為需要考慮的不僅僅是路程=時間×速度等,往往還涉及到時間、地點和方向等諸多要素。
(四)濃度問題
這類題目要求了解的關系式:溶液=溶質+溶劑;濃度=溶質/溶液;溶液=溶質/濃度等等。小升初常考的幾何問題
面積、體積問題,主要考慮以下內容:平行四邊形面積計算公式怎樣得到的?三角形和梯形面積計算公式怎樣得到的?圓的面積計算公式呢?思索正方形面積是怎樣計算的?為什麼?求表面積就是求立體圖形的什麼?長方體表面積是怎樣算的?這類題還有什麼簡便的方法?圓柱體表面積是怎樣算的?求長方體和圓柱的體積有什麼相同的地方?
圓柱(錐)問題:要認識圓柱的底面、側面和高;認識圓錐的底面和高。要知道圓柱側面展開的圖形,理解求圓柱的側面積、表面積的計算方法,會計算圓柱體的側面積和表面積,能根據實際情況靈活應用計算方法,並認識近似數的進一法。小升初常考的統計題
簡單的統計表、統計圖、還學過求平均數和求百分數等都是統計初步知識。
在統計工作中除了對數據進行分類整理用統計表來表示以外,有時還可以用統計圖來表示。常見統計圖有以下三類:條形統計圖;折線統計圖;扇形統計圖。
要認識統計圖,並明確統計圖的特點和作用,經歷收集、整理數據和用統計圖表示數據、整理結果過程。能根據繪制出的統計圖,分析數據所反映的一些簡單事實,能做出一些簡單的推理與判斷,進一步認識統計是解決實際問題的一種策略和方法。
小升初(xiaoxue.chazidian.com)數學重點知識的復習方法二:
抓住課堂
理科學習重在平日功夫,不適於突擊復習。平日學習最重要的是課堂上課,聽講要聚精會神,思維緊跟老師。同時要說明一點,許多同學容易忽略老師所講的數學思想、數學方法,而注重題目的解答,其實諸如「化歸」、「數形結合」等思想方法遠遠重要於某道題目的解答。
高質量完成作業
所謂高質量是指高正確率和高速度。寫作業時,有時同一類型的題重復練習,這時就要有意識的考查速度和准確率,並且在每做完一次時能夠對此類題目有更深層的思考,諸如它考查的內容,運用的數學思想方法,解題的規律、技巧等。另外對於老師布置的思考題,也要認真完成。如果不會決不能輕易放棄,要發揚「釘子」精神,一有空就靜心思考,靈感總是突然來到你身邊的。最重要的是,這是一次挑戰自我的機會。成功會帶來自信,而自信對於學習理科十分重要;即使失敗,這道題也會給你留下深刻的印象。
勤思考,多提問
首先對於老師給出的規律、定理,不僅要知「其然」還要「知其所以然」,做到刨根問底,這便是理解的最佳途徑。其次,學習任何學科都應抱著懷疑的態度,尤其是理科。對於老師的講解,課本的內容,有疑問應盡管提出,與老師討論。總之,思考、提問是清除學習隱患的最佳途徑。
總結比較,理清思緒
(1)知識點的總結比較。每學完一章都應將本章內容做一個框架圖或在腦中過一遍,整理出它們的關系。對於相似易混淆的知識點應分項歸納比較,有時可用聯想法將其區分開。
(2)題目的總結比較。同學們可以建立自己的題庫。我就有兩本題集。一本是錯題,一本是精題。對於平時作業,考試出現的錯題,有選擇地記下來,並用紅筆在一側批註注意事項,考試前只需翻看紅筆寫的內容即可。我還把見到的一些極其巧妙或難度高的題記下來,也用紅筆批註此題所用方法和思想。時間長了,自己就可總結出一些類型的解題規律,也用紅筆記下這些規律。最終它們會成為你寶貴的財富,對你的數學學習有極大的幫助。
有選擇地做課外練習
課余時間對我們中學生來說是十分珍貴的,所以在做課外練習時要少而精,只要每天做兩三道題,天長日久,你的思路就會開闊許多。
小升初數學重點知識的復習方法三:
第一,考生要學會構建知識脈絡
這樣一方面便於對整個數學的知識節點梳理,另一方面有利於加深對重點知識的印象。對於小升初數學來講,數學概念十分重要,它是構建知識網路的出發點,也是數學中考考查的重點。因此,一對一輔導學思堂教育強調,各位小升初的考生在開學期間一定要確保自己掌握好代數和幾何中各種概念、分類,定義、性質和判定,並會應用這些概念去解決問題。
第二,是時刻立足於課本,夯實基礎知識
對於任何一門科目的復習來說,立足於課本基礎知識都是最基本也是最重要的一個環節。一對一輔導學思堂教育在小升初數學方面有豐富教研經驗的楊老師稱,在小升初復習數學的過程中,不但要夯實基礎,還要注意知識的不斷深化,注意知識之間的內在聯系,將新知識及時納入已有知識體系,逐步形成和擴充知識結構系統,這樣在解題時就能由題目所提供的信息,從記憶系統中檢索出有關信息,尋找最佳解題途徑。
第三,要善於建立錯題集
對於數學來講,重點就是對平時錯題一個反復整理研究。想要吃透每個知識點,這就要求大家一定要把平時犯的錯誤記下來,揭示出錯誤的原因,強化知識點的同時,還能拓寬個人的解題思維。尤其是在開學這個能夠集中進行自我復習的階段,經常地把錯題集拿出來看看,想想錯在哪裡、怎麼改正等等,能夠有效幫助自己積累解題經驗、總結解題思路,掌握學習方法。 第四,加強對數學常用公式的記憶與巧用
曾有一篇報道揭示稱:小升初數學考試,有將近百分之七十的題都是立足於數學常用公式,即使是剩下的百分之三十也是公式的不規則運用而已。所以,加強對常用數學公式的運用,對於解題來說是事半功倍的,再加上巧妙的運用,復習效果一定高品質。
第四,是適當有效的多做題
多做題不僅可以拓寬學生的解題思維,還能潛移默化的提高解題速度。一對一輔導學思堂教育揭示,小升初學生在做題時應該注意以下幾點:除了做基礎訓練題、平面幾何每日一題外,還可以做一些綜合題,並且養成解題後反思的習慣;反思自己的思維過程,反思知識點和解題技巧,反思多種解法的優劣和縱橫聯系;總結所用到的數學思想方法,並把思想方法相近的題目編成一組,不斷提煉深化,做到舉一反三、觸類旁通;逐步學會觀察、試驗、分析、猜想、歸納、類比、聯想等思想方法,主動地發現問題和提出問題。
由於篇幅所限,家長可以到我朋友圈去看更多教育文章,我是中學老師,致力於學習法和記憶法教學,開設免費課程。
小升初數學重點知識的復習方法四:
一、注重指導學生復習方法,提高復習效率
1、指導學生巧復習
數學學習中概念,公式,計算等等是很枯燥的。俗話說:「熟能生巧。」良好的復習方法是提高復習效率的重要途徑。利用一切有效手段充分調動學生復習的主動性,創造性知識和技能。教師指導復習時要做到四點:第一是定調。給出復習「導引單」,學生依「綱」復習,掌握基本的知識和技能。第二是給法。對復習方法給予具體指導。善於抓住重點組織復習。第三是樹靶。對復習中的疑難問題展開辨論,審視真偽。第四是立樣。對辨論的結果給出是與否的肯定回答,澄清模糊認識,樹立正確觀點。
2、指導學生定好學習計劃
復習前,教師應當認真鑽研新《課程標准》和小學數學復習指導說明,讓學生明確畢業考試的方向、內容和題形,明確復習內容,指導學生合理分配復習時間,根據每個學生的實際情況,確定復習進度。這樣讓學生心中有譜,克服盲目性,積極的投入到復習中去。
首先我們用一半的時間指導學生復習課本的內容,重在復習教材中的重點、難點、考點和疑點。方法是教師指導與學生自主復習相結合。學生在復習中注重查漏補缺,教師注重解疑和檢查。在復習中注重發現學生在綜合練習中出現的問題、及時檢查學生知識掌握情況及對知識的運用的能力。並要做到及時反饋、及時補缺補差,把遺漏點降到最低。然後用四分之一的時間進行階段復習,把內容相關的單元內容分項復習。比如:數的復習,幾何知識的復習等等。結合不同的復習內容。確定不同的復習重點難點 分類整理、梳理,強化復習的系統性。這樣有利於知識的系統化和對其內在聯系的把握,便於融合貫通。做到梳理--訓練--拓展,有序發展,真正提高復習的效果。最後用四分之一的時間進行綜合復習,各種題型,等等全面開展訓練。在每一次綜合復習中學生的能力呈現螺旋上升狀態。
3. 指導學生摸索技巧與規律,提高能力
能力測試是現代數學測試的主要方面,如實踐能力。創新能力。等。因此在復習過程中,要指導學生定期做一些計算練習及創新練習。知道學生抓住解題的關鍵條件及應用題中的數學關系,歸納出規律和方法;指導學生排除障礙;對一些看似復雜的難題,引導學生斬枝去葉,找出其核心部分,更快,更准地對題意進行理解,從而有效地完成規定的答題。在這一過程中,提醒學生切勿死記硬背,重在開闊視野,培養實踐能力,摸索技巧與規律。
二、 注重研究教法,讓復習省時、高效
1 . 准確處理好集中教學與精講的關系
「集中教學是強化教學,它集中思想、集中時間、集中一切手段與方法,創造環境與條件,突破難點,帶動全面」。根據這一原則,我覺得應該擺脫原有知識體系的束縛,打破原有知識結構,重新調整、編輯知識體系,將那些基礎知識重新編排、重新組合。通過超前集中、隨機集中、綜合集中,以及啟發、引導、討論、歸納、綜合等一系列雙邊活動使知識點、熱點、重點具體化。這即夯實了基礎,突出了重點,又給了學生新的感受。
精講是指對學生自主學習的積極引導,尤其是針對前面的自主復習活動和討論過程中思而不解或有誤的問題進行講解,目的在於掃除學生的學習障礙,指引學習的途徑,培養正確的學習方法。復習中選擇一些恰當、新視覺、最能體現復習內容本質特徵、喚起學生思維靈感而引起思維共鳴的例題而施教,達到溫故而知新。擇例時要做到「三性」。一是准確性;符合新課程標准和教材要求,謹防過深或過偏而加重學生過重的課業負擔;二是典範性:體現重要知識點,其有「範例」作用;三是綜合性:體現各類知識的橫向聯系,培養學生綜合解題能力。一般而言,復習時應精選學生平時漏缺的知識,精選學生易混淆的知識,精選帶有關鍵性、規律性的知識。
2.教師要准備好每一堂課
不管是復習基礎知識,還是復習重點,難點及要點;也不管是專題訓練,還是試卷評講,教師都要對所授內容認真分析, 精心准備。教師要在課下仔細鑽研教材與新《課程標准》,要把握教材內容,善於提煉和歸納教材的知識要點和訓練重點,要把握准知識的廣度與深度。在復習過程中,我們應重視對教材的使用,切不可拋開教材,大搞所謂的「標准化訓練」,盲目追求學生能力的提高,輕視對基礎知識的復習。
3. 精心編排練習題
我們應該把這一點作為重要的一點提出來,我覺得精心編排練習題是實施教學論斷和反饋的好辦法。要堅持每天布置適量的習題作業,從作業中發現問題,並且引導學生集體討論,利用課余時間針對問題進行個別糾正,這一方法行之有效。較好地貫徹了「因才施教」,易於操作,效果明顯,復習中配以靈活多變的訓練,能達到鞏固知識、理解規律、強化記憶、靈活應用知識的目的。首先在訓練的內容上要活。要選擇內容新穎、規律隱藏、思路靈活的習題訓練,創造新的思維意境。其次,在訓練層次上要活。採取鞏固訓練、模仿訓練、變式訓練和綜合訓練等靈活方式。再次在訓練形式上要活。加強「一題多變」的訓練。盡可能覆蓋知識點、網路知識線、擴大知識面,增強應變能力。加強「一題多解」的訓練,尋找多種解題途徑,擇其精要解題方法,逐步提離學生的創新能力。練習題不在於多,一道好的題目,往往能「牽一發而動全身」,起到事半功倍的作用。這里指的練習題也不僅僅指動筆的書面作業題,還包括動口的討論題和動手的實踐操作題等。要在眾多的復習資料中挑選和重心組織質量高、針對性較強的題目(題組),要重視根據教學實際和當前的教改形勢創造設計一些新穎的題目。
4.充分相信學生,放手讓學生自主整理復習,及時評價
復習課必須針對知識的重點、學習的難點、學生的弱點,引導學生按一定的標准把有關知識進行整理、分類、綜合,這樣才能搞清楚來龍去脈。教學時應放手讓學生整理知識,形成各異、互助評價,開展爭辨。這樣有利於主體性的發揮,學生主動參與,體驗成功,同時也可以培養他們的概括能力。在進行階段性復習時,結合每一單元的內容進行專項訓練,採用自主復習的形式,反復鞏固基礎知識,強化運用能力,提高解題技巧和解題速度。學生不但可以自己查閱資料,收集信息,獨立式學習,還可以自由選擇學習內容與方式,自己控制學習進度和方向。自始至終積極參與活動,成為真正意義上學習的主人。
另外,總復習期間,六年級數學組教師在每一節課之前互相研究每節課怎樣上,如何組織,採用何種方法,在上完每節課後,要用較少的時間及時交流課堂中的疑難點,處理方法,讓教師迅速成長。在學生方面,值得一提的是通過開展「四自」活動:自訂一本數學改錯本,自製一本數學筆記,自辦一期數學小報,自出一份期末試卷,並進行交流、評比,讓學生充分享受成功的喜悅,以不斷的成功提高復習效果。
總而言之, 採用自主復習的形式,可以讓「能飛的飛起來」,「能跑的跑起來」,「能走的走起來」,使不同層次的學生都有所提高。小學畢業的最後階段,就象長跑運動員最後的沖刺階段,教師要及早精心安排,使學生的能量充分的發揮出來,才能得到最滿意的結果。
Ⅱ 分數簡便計算的竅門和技巧
分數計算是小學計算部分的重要部分,也是小升初競賽的常考內容。對於分數的運算,除了掌握常規的運演算法則外,還應該掌握一些特殊的運算技巧,才能提高運算速度,解答較難的問題。今天小升匯總了分數巧算的五大方法,一起來學習吧!
」
分數運算的技巧主要表現在兩方面:一是,所有的整數、小數計算技巧全都可以在分數的巧算上加以應用,例如乘法的運算定律、提取公因式、字母替換等常用方法;二是,分數簡算中獨有的方法,包括分數裂項、整體約分法等。
湊整法
與整數運算中的「湊整法」相同,在分數運算中,充分利用四則運演算法則和運算律(如交換律、結合律、分配律),使部分的和、差、積、商成為整數、整十數...從而使運算得到簡化。
改順序
通過改變分數式中的先後順序,使運算算簡便。常見有以下幾種方法:
01加括弧性質
在一個只有加減法運算的算式中,給算式的一部分添上括弧,如果括弧前面是加號,那麼括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:
a+b-c=a+(b-c)
a-b+c=a-(b-c)
a-b-c=a-(b+c)
02去括弧性質
在一個有括弧的加減法運算的算式中,將算式中的括弧去掉,如果括弧前面是加號,那麼去掉括弧後,括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:
a+(b-c)=a+b-c
a-(b+c)=a-b-c
a-(b-c)=a-b+c
03分數搬家
在連減或加減混合運算中,如果算式中沒有括弧,那麼計算時,可以帶著符號「搬家」,用「字母」表示:
a-b-c=a-c-b
a-b+c=a+c-b
提取公因式
當幾個乘積相加減,而這些乘積中又有相同的因數時,我們可以採用提取公因數的方法進行巧算。如果乘積中另外幾個因數相加減的結果正好湊成整十、整百、整千、整萬的數,或是是一些比較簡單的數,那麼計算就更為簡便。這種方法叫「提取公因數法」。
01簡單提取法
02創造條件法
對於復雜的分數算式,要根據算式特點,進行一定的轉化,創造條件後再運用提取公因數的方法來簡算。
拆數
一組分數混合運算時,為了能夠「湊整」或湊成比較簡單的數,常常需要先把分數中分子或分母進行拆分,再來進行分組運算。這種巧算方法叫「拆分法」,也叫「分解分組法」。
代數法
在相同數字較多的分數式中,用字母表示式子中的一部分,使運算更加方便。這就是分數式中的代數法。
易錯點糾正
「孩子做分數運算題目,有幾個容易犯的錯誤,家長要注意糾正:
🔼 異分母分數相加減:要先通分,化成相同的分母,再加減,計算結果能約分的要約分。
🔼在計算過程中要注意統一分數單位。
🔼 在比較分數與小數大小時,要先統一他們的表現形式。將分數轉化為小數或者將小數轉化為分數。只有表現形式統一了,才有可能比較大小。分數化成小數的方法:用分子除以分母所得的商即可,除不盡時通常保留三位小數。
Ⅲ 小升初數學技巧:雞兔同籠解法
「雞兔同籠問題」是我國古算書《孫子算經》中著名的數學問題,也是小學奧數中的高頻考點。許多小學算術應用題,都可以轉化為雞兔同籠問題來加以計算。所以,如果能熟練掌握「雞兔同籠問題」的解法,小學奧數的很多題目也可以迎刃而解了。我在這里整理了相關資料,希望能幫到您。
「雞兔同籠問題」的4種理解方法
▶題目:
有若干只雞和兔在同個籠子里,從上面數,有三十五個頭;從下面數,有九十四隻腳。求籠中各有幾只雞和兔?
解法1 站隊法
讓所有的雞和兔子都列隊站好,雞和兔子都聽哨子指揮。那麼,吹一聲哨子讓所有動物抬起一隻腳,籠中站立的腳:94-35=59(只)。
那麼再吹一聲哨子,然後再抬起一隻腳,這時候雞兩只腳都抬起來就一屁股坐地上了,只剩下用兩只腳站立的兔子,站立腳:59-35=24(只)兔:24÷2=12(只);雞:35-12=23(只)
解法2 松綁法
由於兔子的腳比雞的腳多出了兩個,因此把兔子的兩只前腳用繩子捆起來,看作是一隻腳,兩只後腳也用繩子捆起來,看作是一隻腳。
那麼,兔子就成了2隻腳。則捆綁後雞腳和兔腳的總數:35×2=70(只)比題中所說的94隻要少:94-70=24(只)。
現在,我們松開一隻兔子腳上的繩子,總的腳數就會增加2隻,不斷地一個一個地松開繩子,總的腳數則不斷地增加2,2,2,2……,一直繼續下去,直至增加24,因此兔子數:24÷2=12(只)從而雞數:35-12=23(只)
解法3 假設替換法
實際上替代法的做題步驟跟上述松綁法相似,只不過是換種方式進行理解。
假設籠子里全是雞,則應有腳70隻。而實際上多出的部分就是兔子替換了雞所形成。每一隻兔子替代雞,則增加每隻兔腳減去每隻雞腳的數量。
兔子數=(實際腳數-每隻雞腳數*雞兔總數)/(每隻兔腳數-每隻雞腳數)與前相似,假設籠子里全是兔,則應有腳120隻。而實際上不足的部分就是雞替換了兔子所形成。每一隻雞替代兔子,則減少每隻兔腳減去每隻雞腳的數量,即2隻。
雞數=(每隻兔腳數*雞兔總數-實際腳數)/(每隻兔腳數-每隻雞腳數)
將上述數值代入方法(1)可知,兔子數為12隻,再求出雞數為23隻。將上述數值代入方法(2)可知,雞數為23隻,再求出兔子數為12隻。
由計算值可知,兩種替代方法得出的答案完全一致,只是順序不同。由替代法的順序不同可知,求雞設兔,求兔設雞,可以根據題目問題進行假設以減少計算步驟。
解法4 方程法
隨著年級的增加,學生開始接觸方程思想,這個時候雞兔同籠問題運用方程思想則變得十分簡單。
解:設兔有x只,則雞有(35-x)只
4x+2(35-x)=94
4x+70-2x=94
x=12
註:方程結果不帶單位,從而計算出雞數為35-12=23(只)
以述四種方法就是這一典型雞兔同籠問題的四種不同理解和計算方法,在沒有接觸方程思想之前,用前三種方式進行理解。在接觸方程思想之後,則可以用第四種方法進行學習。
同類突破:雞兔同籠問題衍生題
各位家長可以先把題目發給孩子,讓孩子自己做,有一個思考的過程,做完再給孩子答案,效果更好哦。
▶ 100個和尚140個饃,大和尚1人分3個饃,小和尚1人分1個饃。問:大、小和尚各有多少人?
分析與解:本題由中國古算名題「百僧分饃問題」演變而得。如果將大和尚、小和尚分別看作雞和兔,饃看作腿,那麼就成了雞兔同籠問題,可以用假設法來解。
假設100人全是大和尚,那麼共需饃300個,比實際多300—140=160(個)。現在以小和尚去換大和尚,每換一個總人數不變,而饃就要減少3—1=2(個),因為160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。同樣,也可以假設100人都是小和尚,同學們不妨自己試試。
▶ 彩色文化用品每套19元,普通文化用品每套11元,這兩種文化用品共買了16套,用錢280元。問:兩種文化用品各買了多少套?
分析與解:我們設想有一隻「怪雞」有1個頭11隻腳,一種「怪兔」有1個頭19隻腳,它們共有16個頭,280隻腳。這樣,就將買文化用品問題轉換成雞兔同籠問題了。
假設買了16套彩色文化用品,則共需19×16=304(元),比實際多304-280=24(元),現在用普通文化用品去換彩色文化用品,每換一套少用19—11=8(元),所以買普通文化用品 24÷8=3(套),買彩色文化用品 16-3=13(套)。
▶ 一批鋼材,用小卡車裝載要45輛,用大卡車裝載只要36輛。已知每輛大卡車比每輛小卡車多裝4噸,那麼這批鋼材有多少噸?
分析:要算出這批鋼材有多少噸,需要知道每輛大卡車或小卡車能裝多少噸。
利用假設法,假設只用36輛小卡車來裝載這批鋼材,因為每輛大卡車比每輛小卡車多裝4噸,所以要剩下4×36=144(噸)。根據條件,要裝完這144噸鋼材還需要45—36=9(輛)小卡車。這樣每輛小卡車能裝144÷9=16(噸)。由此可求出這批鋼材有多少噸。 解:4×36÷(45—36)×45=720(噸)。
答:這批鋼材有720噸。
▶ 樂樂百貨商店委託搬運站運送500隻花瓶,雙方商定每隻運費0.24元,但如果發生損壞,那麼每打破一隻不僅不給運費,而且還要賠償1.26元,結果搬運站共得運費115.5元。問:搬運過程中共打破了幾只花瓶?
分析:假設500隻花瓶在搬運過程中一隻也沒有打破,那麼應得運費0.24×500=120(元)。實際上只得到115.5元,少得120—115.5二4.5(元)。搬運站每打破一隻花瓶要損失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。
解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
答:共打破3隻花瓶。
▶ 小樂與小喜一起跳繩,小喜先跳了2分鍾,然後兩人各跳了3分鍾,一共跳了780下。已知小喜比小樂每分鍾多跳12下,那麼小喜比小樂共多跳了多少下?
分析與解:利用假設法,假設小喜的跳繩速度減少到與小樂一樣,那麼兩人跳的總數減少了12×(2+3)=60(下)。可求出小樂每分鍾跳
(780-60)÷(2+3+3)=90(下),
小樂一共跳了90×3=270(下),因此小喜比小樂共多跳
780—270×2=240(下)。
Ⅳ 小學數學速算技巧順口溜
在平時練習中,掌握簡便演算法可以給孩子大大節省時間。下面是我為大家整理的關於小學數學速算技巧 順口溜 ,希望對您有所幫助。歡迎大家閱讀參考學習!
簡便計算三字經
做簡算,是享受。細觀察,找特點。
連續加,結 對子 。連續乘,找朋友。
連續減,減去和。連續除,除以積。
減去和,可連減。除以積,可連除。
乘和差,分別乘。積加減,莫慌張,
同因數,提出來,異因數,括弧放。
同級算,可交換。特殊數,巧拆分。
合理算,我能行。
常用的七種簡便運算 方法
方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b
方法二:結合律法
(一)加括弧法
1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
(二)去括弧法
1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。
2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)。
方法三:乘法分配律法
1.分配法
括弧里是加或減運算,與另一個數相乘,注意分配。
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因數的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意構造,讓算式滿足乘法分配律的條件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧變除為乘
除以一個數等於乘以這個數的倒數。
方法七:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
遇到裂項的計算題時,需注意:
1.連續性
2.等差性
計算方法:頭減尾。除公差。
相關 文章 :
1. 2020小升初數學速算技巧順口溜
2. 小學數學概念學習竅門
3. 小學數學快速提高計算能力學習技巧
4. 小學二年級數學的快速計算方法附練習題
5. 小學二年級數學學習方法指導
Ⅳ 小升初數學知識點
一、小學生數學法則知識歸類
(一)筆算兩位數加法,要記三條
1、相同數位對齊;
2、從個位加起;
3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條
1、相同數位對齊;
2、從個位減起;
3、個位不夠減從十位退1,在個位加10再減。
(三)混合運算計演算法則
1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;
2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;
3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;
2、中間有一個0或兩個0隻讀一個「零」;
3、末位不管有幾個0都不讀。
(五)四位數寫法
1、從高位起,按照順序寫;
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。
(六)四位數減法也要注意三條
1、相同數位對齊;
2、從個位減起;
3、哪一位數不夠減,從前位退1,在本位加10再減。
(七)一位數乘多位數乘法法則
1、從個位起,用一位數依次乘多位數中的每一位數;
2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則
1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;
2、除數除到哪一位,就把商寫在那一位上面;
3、每求出一位商,餘下的數必須比除數小。
(九)一個因數是兩位數的乘法法則
1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;
2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;
3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則
1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,
2、除到被除數的哪一位就在哪一位上面寫商;
3、每求出一位商,餘下的數必須比除數小。
(十一)萬級數的讀法法則
1、先讀萬級,再讀個級;
2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;
3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。
(十二)多位數的讀法法則
1、從高位起,一級一級往下讀;
2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;
3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。
(十三)小數大小的比較
比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。
(十五)小數乘法的計演算法則
計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則
除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。
(十七)除數是小數的除法運演算法則
除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟
1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;
2、確定每一步該怎樣算,列出算式,算出得數;
3、進行檢驗,寫出答案。
(十九)列方程解應用題的一般步驟
1、弄清題意,找出未知數,並用X表示;
2、找出應用題中數量之間的相等關系,列方程;
3、解方程;
4、檢驗、寫出答案。
(二十)同分母分數加減的法則
同分母分數相加減,分母不變,只把分子相加減。
(二十一)同分母帶分數加減的法則
帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。
(二十二)異分母分數加減的法則
異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。
(二十三)分數乘以整數的計演算法則
分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計演算法則
分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。
(二十五)一個數除以分數的計演算法則
一個數除以分數,等於這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;
把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。
(二十七)把分數化成百分數和把百分數化成分數的方法
把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;
把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
二、小學數學口決定義歸類
1、什麼是圖形的周長?
圍成一個圖形所有邊長的總和就是這個圖形的周長。
2、什麼是面積?
物體的表面或圍成的平面圖形的大小叫做他們的面積。
3、加法各部分的關系:
一個加數=和-另一個加數
4、減法各部分的關系:
減數=被減數-差 被減數=減數+差
5、乘法各部分之間的關系:
一個因數=積÷另一個因數
6、除法各部分之間的關系:
除數=被除數÷商 被除數=商×除數
7、角
(1)什麼是角?
從一點引出兩條射線所組成的圖形叫做角。
(2)什麼是角的頂點?
圍成角的端點叫頂點。
(3)什麼是角的邊?
圍成角的射線叫角的邊。
(4)什麼是直角?
度數為90°的角是直角。
(5)什麼是平角?
角的兩條邊成一條直線,這樣的角叫平角。
(6)什麼是銳角?
小於90°的角是銳角。
(7)什麼是鈍角?
大於90°而小於180°的角是鈍角。
(8)什麼是周角?
一條射線繞它的端點旋轉一周所成的角叫周角,一個周角等於360°.
8、(1)什麼是互相垂直?什麼是垂線?什麼是垂足?
兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
(2)什麼是點到直線的距離?
從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。
9、三角形
(1)什麼是三角形?
有三條線段圍成的圖形叫三角形。
(2)什麼是三角形的邊?
圍成三角形的每條線段叫三角形的邊。
(3)什麼是三角形的頂點?
每兩條線段的交點叫三角形的頂點。
(4)什麼是銳角三角形?
三個角都是銳角的三角形叫銳角三角形。
(5)什麼是直角三角形?
有一個角是直角的三角形叫直角三角形。
(6)什麼是鈍角三角形?
有一個角是鈍角的三角形叫鈍角三角形。
(7)什麼是等腰三角形?
兩條邊相等的三角形叫等腰三角形。
(8)什麼是等腰三角形的腰?
有等腰三角形里,相等的兩個邊叫做等腰三角形的腰。
(9)什麼是等腰三角形的頂點?
兩腰的交點叫做等腰三角形的頂點。
(10)什麼是等腰三角形的底?
在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。
(11)什麼是等腰三角形的底角?
底邊上兩個相等的角叫等腰三角形的底角。
(12)什麼是等邊三角形?
三條邊都相等的三角形叫等邊三角形,也叫正三角形。
(13)什麼是三角形的高?什麼叫三角形的底?
從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。
(14)三角形的內角和是多少度?
三角形內角和是180°.
10、四邊形
(1)什麼是四邊形?
有四條線段圍成的圖形叫四邊形。
(2)什麼是平等四邊形?
兩組對邊分別平行的四邊形叫做平行四邊形。
(3)什麼是平行四邊形的高?
從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。
(4)什麼是梯形?
只有一組對邊平行的四邊形叫做梯形。
(5)什麼是梯形的底?
在梯形里互相平等的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。
(6)什麼是梯形的腰?
在梯形里,不平等的一組對邊叫梯形的腰。
(7)什麼是梯形的高?
從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。
(8)什麼是等腰梯形?
兩腰相等的梯形叫做等腰梯形。
11、什麼是自然數?
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。
12、什麼是四捨五入法?
求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。這種求近似數的方法,叫做四捨五入法。
13、加法意義和運算定律
(1)什麼是加法?
把兩個數合並成一個數的運算叫加法。
(2)什麼是加數?
相加的兩個數叫加數。
(3)什麼是和?
加數相加的結果叫和。
(4)什麼是加法交換律?
兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。
14、什麼是減法?
已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。
15、什麼是被減數?什麼是減數?什麼叫差?
在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。
16、加法各部分間的關系:
和=加數+加數 加數=和-另一加數
17、減法各部分間的關系:
差=被減數-減數 減數=被減數-差 被減數=減數+差
18、乘法
(1)什麼是乘法?
求幾個相同加數的和的簡便運算叫乘法。
(2)什麼是因數?
相乘的兩個數叫因數。
(3)什麼是積?
因數相乘所得的數叫積。
(4)什麼是乘法交換律?
兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。
(5)什麼是乘法結合律?
三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。
19、除法
(1)什麼是除法?
已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。
(2)什麼是被除數?
在除法中,已知的積叫被除數。
(3)什麼是除數?
在除法中,已知的一個因數叫除數。
(4)什麼是商?
在除法中,求出的未知因數叫商。
20、乘法各部分的關系:
積=因數×因數 一個因數=積÷另一個因數
21、(1)除法各部分間的關系:
商=被除數÷除數 除數=被除數÷商
(2)有餘數的除法各部分間的關系:
被除數=商×除數+余數
22、什麼是名數?
通常量得的數和單位名稱合起來的數叫名數。
23、什麼是單名數?
只帶有一個單位名稱的數叫單名數。
24、什麼是復名數?
有兩個或兩個以上單位名稱的數叫復名數。
25、什麼是小數?
仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數叫小數。
26、什麼是小數的基本性質?
小數的末尾添上零或者去掉零,小數大小不變,這叫小數的基本性質。
27、什麼是有限小數?
小數部分的位數是有限的小數叫有限小數。
28、什麼是無限小數?
小數部分的位數是無限的小數叫無限小數。
29、什麼是循環節?
一個循環小數的部分依次不斷重復出現的數叫做這個數的循環節。
30、什麼是純循環小數?
循環節從小數第一位開始的叫純循環小數。
31、什麼是混循環小數?
循環節不是從小數部分第一位開始的叫做混循環小數。
32、什麼是四則運算?
我們把學過的加、減、乘、除四種運算統稱四則運算。
33、什麼是方程?
含有未知數的等式叫方程。
34、什麼是解方程?
求方程解的過程叫解方程。
35、什麼是倍數?什麼叫約數?
如果a能被b整除,a就是b的倍數,b就叫a的約數(或a的因數)。
36、什麼樣的數能被2整除?
個位上是0、2、4、6、8的數都能被2整除。
37、什麼是偶數?
能被2整除的數叫偶數。
38、什麼是奇數?
不能被2整除的數叫奇數。
39、什麼樣的數能被5整除?
個位上是0或5的數能被5整除。
40、什麼樣的數能被3整除?
一個數的各位上的和能被3整除,這個數就能被3整除。
41、什麼是質數(或素數)?
一個數如果只有1和它本身兩個約數,這樣的數叫質數。
42、什麼是合數?
一個數除了1和它本身還有別的約數,這樣的數叫合數。
43、什麼是質因數?
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。
44、什麼是分解質因數?
把一個合數用質因數相乘的形式表示出來叫做分解質因數。
45、什麼是公約數?什麼叫最大公約數?
幾個數公有的約數叫公約數。其中最大的一個叫最大公約數。
46、什麼是互質數?
公約數只有1的兩個數叫互質數。
47、什麼是公倍數?什麼是最小公倍數?
幾個數公有的倍數叫這幾個數的公倍數。其中最小的一個叫這幾個數的最小公倍數。
48、分數
(1)什麼是分數?
把單位1平均分成若干份,表示這樣的一份或者幾份的數叫分數。
(2)什麼是分數線?
在分數里中間的橫線叫分數線。
(3)什麼是分母?
分數線下面的部分叫分母。
(4)什麼是分子?
分數線上面的部分叫分子。
(5)什麼是分數單位?
把單位「1」平均分成若干份,表示其中的一份叫分數單位。
49、怎麼比較分數大小?
(1)分母相同的兩個分數,分子大的分數比較大。
(2)分子相同的兩個分數,分母小的分子比較大。
(3)什麼是真分數?
分子比分母小的分數叫真分數。
(4)什麼是假分數?
分子比分母大或者分子和分母相等的分數叫假分數。
(5)什麼是帶分數?
由整分數和真分數合成的數通常叫帶分數。
(6)什麼是分數的基本性質?
分數的分子和分母同時乘或除以相同的數(0除外),分數大小不變,這就是分數的基本性質。
(7)什麼是約分?
把一個分數化成同它相等,但分子、分母都比較小的數叫做約分。
(8)什麼是最簡分數?
分子、分母是互質數的分數叫最簡分數。
50、比
(1)什麼是比?
兩個數相除又叫兩個數的比。
(2)什麼是比的前項?
比號前面的數叫比的前項。
(3)什麼是比的後項?
比號後面的數叫比的後項。
(4)什麼是比值?
比的前項除以後項所得的商叫比值。
(5)什麼是比的基本性質?
比的前項和後項同時乘以或者同時除以相同的數(0除外)比值不變,這叫比的基本性質。
51、長方體和正方體
(1)什麼是棱?
兩個面相交的邊叫棱。
(2)什麼是頂點?
三條棱相交的點叫頂點。
(3)什麼是長方體的長、寬、高?
相交於一個頂點的三條棱的長度分別叫長方體的長、寬、高。
(4)什麼是正方體(立方體)?
長寬高都相等的長方體叫正方體(或立方體)。
(5)什麼是長方體的表面積?
長方體六個面的總面積叫長方體的表面積。
(6)什麼是物體體積?
物體所佔空間的大小叫做物體的體積。
52、圓
(1)什麼是圓心?
圓中心的點叫圓心。
(2)什麼是半徑?
連接圓心和圓上任意一點的線段叫半徑。
(3)什麼是直徑?
通過圓心、並且兩端都在圓上的線段叫直徑。
(4)什麼是圓的周長?
圍成圓的曲線叫圓的周長。
(5)什麼是圓周率?
我們把圓的周長和直徑的比值叫圓周率。
(6)什麼是圓的面積?
圓所圍平面的大小叫圓的面積。
(7)什麼是扇形?
一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫扇形。
(8)什麼是弧?
在圓上兩點之間的部分叫弧。
(9)什麼是圓心角?
頂點在圓心上的角叫圓心角。
(10)什麼是對稱圖形?
如果一個圖形沿著一條直線對折,兩側圖形能夠完全重合,這樣的圖形就是對稱圖形。
53、什麼是百分數?
表示一個數是另一個數百分之幾的數叫百分數,百分數也叫百分率或百分比。
54、比例
(1)什麼是比例?
表示兩個比相等的式子叫比例。
(2)什麼是比例的項?
組成比例的四個數叫比例的項。
(3)什麼是比例外項?
兩端的兩項叫比例外項。
(4)什麼是比例內項?
中間的兩項叫比例內項。
(5)什麼是比例的基本性質?
在比例中兩個外項的積等於兩個內項的積。
(6)什麼是解比例?
求比例中的未知項叫解比例。
(7)什麼是正比例關系?
兩種相關的量,一種變化,另一種量也變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量叫正比例的量,它們的關系叫正比例關系。
(8)什麼是反比例關系?
兩種相關的量,一種變化,另一種也隨著變化,如果這兩種量中相對應的積一定,這兩種量叫反比例的量,它們的關系成反比例關系。
55、圓柱
(1)什麼是圓柱底面?
圓柱的上下兩個面叫圓柱的底面。
(2)什麼是圓柱的側面?
圓柱的曲面叫圓柱的側面。
(3)什麼是圓柱的高?
圓柱兩個底面的距離叫圓柱的高。
三、小學數學量的計算單位及進率歸類
1、長度計量單位及進率:千米(公里)、米、分米、厘米、毫米
1千米=1公里 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
2、面積計量單位及進率:平方千米、公頃、平方米、平方分米、平方厘米
1平方千米=100公頃 1平方千米=1000000平方米
1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米
3、體積容積計量單位及進率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
4、質量單位及進率:噸、千克、公斤、克
1噸=1000千克 1千克=1公斤 1千克=1000克
5、時間單位及進率:世紀、年、月、日、小時、分、秒
1世紀=100年 1年=12月 1天=24小時 1小時=60分 1分=60秒
(31天的月份有1、3、5、7、8、10、12月份,
30天的月份有4、6、9、11月份,
平年2月28天,閏年2月29天)
四、常用計算公式表
1、長方形面積=長×寬,計算公式S=ab
2、正方形面積=邊長×邊長,計算公式S=a×a=a2
3、長方形周長=(長+寬)×2,計算公式C=(a+b)×2
4、正方形周長=邊長×4,計算公式C=4a
5、平行四邊形面積=底×高,計算公式S=ah
6、三角形面積=底×高÷2,計算公式S=a×h÷2
7、梯形面積=(上底+下底)×高÷2,計算公式S=(a+b)×h÷2
8、長方體體積=長×寬×高,計算公式V=abh
9、圓的面積=圓周率×半徑平方,計算公式V=πr2
10、正方體體積=棱長×棱長×棱長,計算公式V=a3
11、長方體和正方體的體積都可以寫成底面積×高,計算公式V=sh
12、圓柱的體積=底面積×高,計算公式V=sh
Ⅵ 小升初數學簡便計算
小升初數學簡便計算
現在,越來越多的家長希望孩子進入民校。數學是每年民校小升初測評的核心,簡便運算又是考試的重要題型,我整理了小學簡便運算的方法技巧,相信一定可以幫到各位家長。
提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
拆 分 法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
加法結合律
注意對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
拆分法和乘法分配律結
這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的`時候,要首先考慮拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再現: 57×101=?
利用公式法
01
加法:
交換律,a+b=b+a,
結合律,(a+b)+c=a+(b+c).
02
減法運算性質:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
03
乘法:
交換律,a*b=b*a,
結合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
04
除法運算性質:
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前邊的運算定律、性質公式很多是由於去掉或加上括弧而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括弧,後面數值的運算符號不變。
例1:
283+52+117+148
=(283+117)+(52+48)
(運用加法交換律和結合律)
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律)
例3:
195-(95+24)
=195-95-24
=100-24
(運用減法性質)
例4:
150-(100-42)
=150-100+42
(運用減法性質)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (運用乘法分配律)
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(運用乘法分配律)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
(運用除法性質)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(運用除法性質)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(運用除法性質)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(運用乘法交換律和結合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(運用加法性質和結合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(運用除法性質, 相當加法性質)
裂 項 法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.
常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
分數裂項的三大關鍵特徵:
①分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
②分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」
③分母上幾個因數間的差是一個定值。
公式:
Ⅶ 小升初數學速算口訣
小升初數學速算口訣
1、十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2、頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3、第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4、幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。
6、十幾乘任意數:
口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,
再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。
;Ⅷ 小升初數學計算題最常見的10個簡便方法
例子:125×32×25簡便計算
解題思路:四則運算規則(按順序計算、先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
125×32×25
=125×8×(4×25)
=1000×100
=100000
(8)小升初速算方法和技巧擴展閱讀:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
125×32解題過程:
步驟一:2×125=250
步驟二:3×125=3750
根據以上步驟結果相加積為4000
驗算:4000÷32=125
存疑請追問,滿意請採納
Ⅸ 小升初分班考數學必考題型是什麼
四捨五入、因數倍數、中位數、眾數或平均數、量與計量、分數、小數、百分數及比的互化、抽屜原理、判斷是否成比例及比例的性質。
1、求近似值改寫用「萬」、「億」做單位或省略「萬」、「億」後面的尾數或「四捨五入」以及數的組成。
2、中位數、眾數或平均數。
3、因數倍數(重點考質數、合數、偶數、奇數、互質數、最大公因數、最小公倍數)。
4、量與計量。
5、分數、小數、百分數及比的互化。
6、比例尺。
7、雞兔同籠。
8、抽屜原理。
9、現價與原價問題關系的計算(重點考打折問題)。
10、求每份數和分數。
答小升初數學題方法:
1、運算技巧的考察。
2、幾何直觀的觀察。
3、推理演繹能力的考察。
Ⅹ 數學速算方法及分析方法
小學數學速算 方法 有哪些?小學數學是一些簡單的數學知識方法,孩子在學習的時候只要掌握好知識點就可以了。下面我給大家整理了關於數學速算方法及分析方法,希望對你有幫助!
數學速算方法
1數學速算的方法
小學數學是一些簡單的數學知識方法,孩子在學習的時候只要掌握好知識點就可以了。對於新的知識接受,一定要讓孩子在學校認真聽講,跟著老師的思路走,做好筆記,即使有不懂的地方也要及時的請教老師或者同學。
數學成績決定孩子的理科綜合能力,影響到理化生等多學科的成績,小學階段適時進行奧數訓練,更有助於孩子初中理科成績的提升。不要讓我們的孩子進入初中後因為數學影響總排名,進而影響到中考成績!掌握良好的速算技巧,是讓孩子們在最短的時間內,學好速算的關鍵之處,所以,家長要善於引導孩子們發現和使用速算技巧,並且多多將這些技巧進行驗證,讓這些技巧好好為孩子服務。
2方法一:指演算法
個位數比十位數大1乘以9的運算方法:前面因數的個位數是幾,就把第幾個手指彎回來,彎指左邊有幾個手指,則表示乘積的百位數是幾。彎指讀0,則表示乘積的十位數是0,彎指右邊有幾個手指,則表示乘積的個位數是幾。口訣:個位是幾彎回幾,彎指左邊是百位,彎指讀0為十位,彎指右邊是個位。例:34×9=306;
個位數比十位數大任意數乘以9的運算方法:凡是個位數比十位數大任意數乘以9時,仍是前面因數的個位數是幾,將第幾個手指彎回來,彎回來的手指不讀數,作為乘積的十位數與個位數的分界線。前面因數的十位數是幾,從左邊起數過幾個手指,則表示乘積的百位數就是幾,彎指左邊減去百位數,還剩幾個手指,則表示乘積的十位數是幾,彎指的右邊有幾個手指,則表示乘積的個位數是幾。口訣:個位是幾彎回幾,原十位數為百位。左邊減去百位數,剩餘手指為十位。彎指作為分界線,彎指右邊是個位。
3方法二:兩位數加兩位數的進位加法
口訣:加9要減1,加8要減2,加7要減3,加6要減4,加5要減5,加4要減6,加3要減7,加2要減8,加1要減9。(註:口決中的加幾都是說個位上的數)例:26+38=64 解 :加8要減2,誰減2?26上的6減2。38里十位上的3要進4。(註:後一個兩位數上的十位怎麼進位,是1我進2,是2我進3,是3我進4,依次類推。那朝什麼地方進位呢,進在第二個兩位數上十位上。如本次是3我進4,就是這兩個兩位數里的2+4=6。)這里的26+38=64就是6-2=4寫在個位上,是3進4加2就等於6寫在十位上。再如42+29=71。就用加9要減1這句
口決,2-1=1,把1寫在個位上,是2我進3,4+3=7,把7寫在十位上即得71。兩位數加兩位數不進位的加法,就直接寫得數就行,如25+34=59,個位加個位寫在等號後的個位上5+4=9,十位加十位寫在十位上即可2+3=5,即59。不必列豎式計算。本辦法學會了百試百靈,比計算器還快。
4方法三:乘法速算方法
個位前的數字加1乘自己的積的末尾添上個位上的數字的積。如:56×54 5+1=6,6×5=30,在30的末尾添上個位上的數4與6的積24,得到3024,這樣56×54=3024。再如:61×69 (6+1)×6=42,1×9=9,當個位上的數相乘的積是一位數時,仍要佔兩位,故在9的前面還應添一個0。故61×69=4209。練習:98×92 75×75 29×21;
十位相同,個位數字和不為10的兩位數乘兩位數的速算方法。用一個數加上另一個數的個位上的數,乘以由十位上的數字組成的整十數,再加上個位上兩個數的積。例如:53×54=(53+4)×50+3×4=57×50+12=2850+12=2862練習:85×84 67×68 31×38
數學分析方法
1數學分析方法
對於考數學與應用數學專業研究生的學生來說,數學分析是必考科目,由於這門專業課內容多、難點也多,怎麼在有限的時間內復習好這門課程、做好充分的准備取得好成績呢?
2數學分析方法
首先要想一想自己到底對數學有沒有興趣,無論你是不是數學專業的,興趣是最好的老師。此外要對自己要有信心,數學的本質就很抽象,但那也是人類的智慧。數學是崇高的。
首先學習數學分析。推薦看數學分析卓里奇寫的書,可以去買一本看看。想輕松點的可以先看微積分學教程,菲赫金哥爾茨的書。書里題目多,證明嚴謹。不可急著看後面的,後面與前面可是有很多的聯系。
在學數學分析同時可以附帶看代數。先看張禾端的高等代數,基本沒有難度。抽象代數看高等近世代數Rotman。還有本書代數學引論,俄羅斯柯斯特利金的,可以當作參考,這本書後面可能有點難度,裡面涉及內容也比較多。
最重要的是堅持與思考,不可以一會看書的前面,一會兒看書的後面,該休息時還是要休息的,書里的題目都很好,大師寫得能不好嗎?一定要好好思考,也做點題目。建議一年半學習,然後有了這些基礎,可以向數學的王國更高層出發了。
3數學分析方法
知識掌握過程中的三種不良習慣:忽略理解,死記硬背:認為只要記住公式、定理就萬事大吉,而忽略了知識導出過程的理解,既造成提取應用知識的困難,更一次又一次地失去了對知識推導過程中孕含的思想方法的吸取。如三角公式「常記常忘,屢記不會」的根本原因就在於此,進而也談不上用三角變換解題的自覺性了。
注重結論,輕視過程:數學命題的特點是條件和結論之間緊密相聯的因果關系,不注意條件的掌握,常會導致錯誤的結果,甚至是正確的結果、錯誤的過程。如學習中看不出何時需討論、如何討論。原因之一在於數學知識的前提條件模糊(如指對數函數的單調性,不等式的性質,等比數列求和公式,最值定理等知識)
忽略及時復習和強化理解:「溫故而知新」這一淺顯的道理誰都懂,但在學習過程中持之以恆地應用者不多。由於在老師的精心誘導教誨下,每節課的內容好像都「懂」,因此也就捨不得花八至十分鍾的「寶貴」時間回顧當天的舊知。殊不知課上的「懂」是師生共同參與努力的結果,要想自己「會」,必須有一個「內化」的過程,而這個過程必須從課內延伸到課外。切記從「懂」到「會」必須有一個自身「領悟」的過程,這是誰也無法取締的過程。
忽視解題過程的規范化,只追求答案:數學解題的過程是一個化歸與轉化的過程,當然離不開規范嚴謹的推理與判斷。解題中跳躍太大、亂寫字母、徒手作圖,如此態度對待稍難的問題,是難以產生正確答案的。我們說解題過程的規范不只是規范書寫,更主要是規范「思考方法」,同學們應該學會不斷調控自己的思維過程,力爭使解題盡善盡美。
解決問題過程中的四種不良心態
缺乏對已學習過的典型題目及典型方法的積累:部分同學做了大量的習題,但收效甚微,效果不佳。究其原因,是迫於壓力為完成任務而被動做題,缺乏必要的 總結 和積累。在積累的基礎上增強「題性」、「題感」,逐步形成「模塊」,不斷吸取其中的智育營養,方可感悟出隱藏於模式中的數學思想方法。這就是從量的積累到質的變化的過程,只有靠「積累—消化—吸收」才能「升華」。
4數學分析方法
整理每章知識點:把書上每章、每節的內容先過一遍,然後根據自己的實際情況,標記下不懂的地方、老師上課強調過的重點和自己覺得重要的內容(包括一些重要的不等式、縮放技巧等等),整理成筆記。
整理課本習題:整理完知識點過後,就得回歸到題上,每節的課後題以及每章最後的總復習題,花時間逐個做一遍(這個也看所考學校的難度和對自己的要求),同樣,把不會的和容易出錯的標記、並整理成筆記。
整理 考研 真題:整理知識點和課本題目都是為了考上報考院校的研究生,所以第三部分就是整理你想要考學校的這一章節的歷年真題,這個至關重要,因為一切都是為了最後的考卷做准備。
當系統的復習各個章節後,把所有筆記整合到一起,接下來就是查漏補缺,不懂的可以向老師或同學請教,兩本教材時刻得拿出來翻閱。
數學速算方法及分析方法相關 文章 :
★ 數學速算技巧數學解題技巧
★ 數學二年級教學方法與措施與學重點簡便運算歸類方法
★ 小學數學快速提高計算能力學習技巧
★ 公考資料分析十大速算技巧
★ 小學六年級學生提高數學成績的八個方法
★ 小學二年級數學學習方法指導
★ 做小學數學作業實用的簡便運算方法
★ 小升初數學8種簡便計算方法歸類與復習方法
★ 高中數學簡化運算技巧